1
|
Biswas G, Ghosh S, Basu S, Bhattacharyya D, Datta AK, Banerjee R. Can the jigsaw puzzle model of protein folding re‐assemble a hydrophobic core? Proteins 2022; 90:1390-1412. [DOI: 10.1002/prot.26321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/11/2022] [Accepted: 01/28/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Gargi Biswas
- Saha Institute of Nuclear Physics Kolkata India
- Homi Bhabha National Institute Mumbai India
| | | | - Sankar Basu
- Saha Institute of Nuclear Physics Kolkata India
| | | | | | - Rahul Banerjee
- Saha Institute of Nuclear Physics Kolkata India
- Homi Bhabha National Institute Mumbai India
| |
Collapse
|
2
|
Allosteric Modulation of Binding Specificity by Alternative Packing of Protein Cores. J Mol Biol 2018; 431:336-350. [PMID: 30471255 DOI: 10.1016/j.jmb.2018.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/04/2018] [Accepted: 11/14/2018] [Indexed: 11/21/2022]
Abstract
Hydrophobic cores are often viewed as tightly packed and rigid, but they do show some plasticity and could thus be attractive targets for protein design. Here we explored the role of different functional pressures on the core packing and ligand recognition of the SH3 domain from human Fyn tyrosine kinase. We randomized the hydrophobic core and used phage display to select variants that bound to each of three distinct ligands. The three evolved groups showed remarkable differences in core composition, illustrating the effect of different selective pressures on the core. Changes in the core did not significantly alter protein stability, but were linked closely to changes in binding affinity and specificity. Structural analysis and molecular dynamics simulations revealed the structural basis for altered specificity. The evolved domains had significantly reduced core volumes, which in turn induced increased backbone flexibility. These motions were propagated from the core to the binding surface and induced significant conformational changes. These results show that alternative core packing and consequent allosteric modulation of binding interfaces could be used to engineer proteins with novel functions.
Collapse
|
3
|
Role of solvent accessibility for aggregation-prone patches in protein folding. Sci Rep 2018; 8:12896. [PMID: 30150761 PMCID: PMC6110721 DOI: 10.1038/s41598-018-31289-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/15/2018] [Indexed: 11/21/2022] Open
Abstract
The arrangement of amino acids in a protein sequence encodes its native folding. However, the same arrangement in aggregation-prone regions may cause misfolding as a result of local environmental stress. Under normal physiological conditions, such regions congregate in the protein’s interior to avoid aggregation and attain the native fold. We have used solvent accessibility of aggregation patches (SAAPp) to determine the packing of aggregation-prone residues. Our results showed that SAAPp has low values for native crystal structures, consistent with protein folding as a mechanism to minimize the solvent accessibility of aggregation-prone residues. SAAPp also shows an average correlation of 0.76 with the global distance test (GDT) score on CASP12 template-based protein models. Using SAAPp scores and five structural features, a random forest machine learning quality assessment tool, SAAP-QA, showed 2.32 average GDT loss between best model predicted and actual best based on GDT score on independent CASP test data, with the ability to discriminate native-like folds having an AUC of 0.94. Overall, the Pearson correlation coefficient (PCC) between true and predicted GDT scores on independent CASP data was 0.86 while on the external CAMEO dataset, comprising high quality protein structures, PCC and average GDT loss were 0.71 and 4.46 respectively. SAAP-QA can be used to detect the quality of models and iteratively improve them to native or near-native structures.
Collapse
|
4
|
Setiawan D, Brender J, Zhang Y. Recent advances in automated protein design and its future challenges. Expert Opin Drug Discov 2018; 13:587-604. [PMID: 29695210 DOI: 10.1080/17460441.2018.1465922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Protein function is determined by protein structure which is in turn determined by the corresponding protein sequence. If the rules that cause a protein to adopt a particular structure are understood, it should be possible to refine or even redefine the function of a protein by working backwards from the desired structure to the sequence. Automated protein design attempts to calculate the effects of mutations computationally with the goal of more radical or complex transformations than are accessible by experimental techniques. Areas covered: The authors give a brief overview of the recent methodological advances in computer-aided protein design, showing how methodological choices affect final design and how automated protein design can be used to address problems considered beyond traditional protein engineering, including the creation of novel protein scaffolds for drug development. Also, the authors address specifically the future challenges in the development of automated protein design. Expert opinion: Automated protein design holds potential as a protein engineering technique, particularly in cases where screening by combinatorial mutagenesis is problematic. Considering solubility and immunogenicity issues, automated protein design is initially more likely to make an impact as a research tool for exploring basic biology in drug discovery than in the design of protein biologics.
Collapse
Affiliation(s)
- Dani Setiawan
- a Department of Computational Medicine and Bioinformatics , University of Michigan , Ann Arbor , MI , USA
| | - Jeffrey Brender
- b Radiation Biology Branch , Center for Cancer Research, National Cancer Institute - NIH , Bethesda , MD , USA
| | - Yang Zhang
- a Department of Computational Medicine and Bioinformatics , University of Michigan , Ann Arbor , MI , USA.,c Department of Biological Chemistry , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
5
|
Nastri F, Chino M, Maglio O, Bhagi-Damodaran A, Lu Y, Lombardi A. Design and engineering of artificial oxygen-activating metalloenzymes. Chem Soc Rev 2016; 45:5020-54. [PMID: 27341693 PMCID: PMC5021598 DOI: 10.1039/c5cs00923e] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many efforts are being made in the design and engineering of metalloenzymes with catalytic properties fulfilling the needs of practical applications. Progress in this field has recently been accelerated by advances in computational, molecular and structural biology. This review article focuses on the recent examples of oxygen-activating metalloenzymes, developed through the strategies of de novo design, miniaturization processes and protein redesign. Considerable progress in these diverse design approaches has produced many metal-containing biocatalysts able to adopt the functions of native enzymes or even novel functions beyond those found in Nature.
Collapse
Affiliation(s)
- Flavia Nastri
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
- IBB, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Ambika Bhagi-Damodaran
- Department of Chemistry, University of Illinois at Urbana-Champaign, A322 CLSL, 600 South Mathews Avenue, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, A322 CLSL, 600 South Mathews Avenue, Urbana, IL 61801
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| |
Collapse
|
6
|
Banach M, Konieczny L, Roterman I. The fuzzy oil drop model, based on hydrophobicity density distribution, generalizes the influence of water environment on protein structure and function. J Theor Biol 2014; 359:6-17. [PMID: 24859428 DOI: 10.1016/j.jtbi.2014.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/25/2014] [Accepted: 05/05/2014] [Indexed: 12/24/2022]
Abstract
In this paper we show that the fuzzy oil drop model represents a general framework for describing the generation of hydrophobic cores in proteins and thus provides insight into the influence of the water environment upon protein structure and stability. The model has been successfully applied in the study of a wide range of proteins, however this paper focuses specifically on domains representing immunoglobulin-like folds. Here we provide evidence that immunoglobulin-like domains, despite being structurally similar, differ with respect to their participation in the generation of hydrophobic core. It is shown that β-structural fragments in β-barrels participate in hydrophobic core formation in a highly differentiated manner. Quantitatively measured participation in core formation helps explain the variable stability of proteins and is shown to be related to their biological properties. This also includes the known tendency of immunoglobulin domains to form amyloids, as shown using transthyretin to reveal the clear relation between amyloidogenic properties and structural characteristics based on the fuzzy oil drop model.
Collapse
Affiliation(s)
- Mateusz Banach
- Department of Bioinformatics and Telemedicine - Jagiellonian University - Medical College, Krakow, Poland; Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Leszek Konieczny
- Chair of Medical Chemistry - Jagiellonian University - Medical College, Krakow, Poland
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine - Jagiellonian University - Medical College, Krakow, Poland.
| |
Collapse
|
7
|
A multi-factors rational design strategy for enhancing the thermostability of Escherichia coli AppA phytase. ACTA ACUST UNITED AC 2013; 40:457-64. [DOI: 10.1007/s10295-013-1260-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
Abstract
Abstract
Despite recent advances in our understanding of the importance of protein surface properties for protein thermostability,there are seldom studies on multi-factors rational design strategy, so a more scientific, simple and effective rational strategy is urgent for protein engineering. Here, we first attempted to use a three-factors rational design strategy combining three common structural features, protein flexibility, protein surface, and salt bridges. Escherichia coli AppA phytase was used as a model enzyme to improve its thermostability. Moreover, the structure and enzyme features of the thermostable mutants designed by our strategy were analyzed roundly. For the single mutants, two (Q206E and Y311K), in five exhibited thermostable property with a higher success rate of prediction (40 %). For the multiple mutants, the themostable sites were combined with another site, I427L, we obtained by directed evolution, Q206E/I427L, Y311K/I427L, and Q206E/Y311K/I427L, all exhibited thermostable property. The Y311K/I427L doubled thermostability (61.7 %, and was compared to 30.97 % after being heated at 80 °C for 10 min) and catalytic efficiency (4.46 was compared to 2.37) improved more than the wild-type AppA phytase almost without hampering catalytic activity. These multi-factors of rational design strategy can be applied practically as a thermostabilization strategy instead of the conventional single-factor approach.
Collapse
|
8
|
GORIELY ALAIN, HAUSRATH ANDREW, NEUKIRCH SÉBASTIEN. THE DIFFERENTIAL GEOMETRY OF PROTEINS AND ITS APPLICATIONS TO STRUCTURE DETERMINATION. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048008000629] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Understanding the three-dimensional structure of proteins is critical to understand their function. While great progress is being made in understanding the structures of soluble proteins, large classes of proteins such as membrane proteins, large macromolecular assemblies, and partially organized or heterogeneous structures are being comparatively neglected. Part of the difficulty is that the coordinate models we use to represent protein structure are discrete and static, whereas the molecules themselves are flexible and dynamic. In this article, we review methods to develop a continuous description of proteins more general than the traditional coordinate models and which can describe smooth changes in form. This description can be shown to be strictly equivalent to the traditional atomic coordinate description.
Collapse
Affiliation(s)
- ALAIN GORIELY
- Program in Applied Mathematics and Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA
| | - ANDREW HAUSRATH
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | - SÉBASTIEN NEUKIRCH
- Laboratoire de Modélisation en Mécanique, UMR 7607, CNRS & Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
9
|
Joo JC, Pohkrel S, Pack SP, Yoo YJ. Thermostabilization of Bacillus circulans xylanase via computational design of a flexible surface cavity. J Biotechnol 2010; 146:31-9. [DOI: 10.1016/j.jbiotec.2009.12.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/12/2009] [Accepted: 12/31/2009] [Indexed: 10/20/2022]
|
10
|
Soundararajan V, Raman R, Raguram S, Sasisekharan V, Sasisekharan R. Atomic interaction networks in the core of protein domains and their native folds. PLoS One 2010; 5:e9391. [PMID: 20186337 PMCID: PMC2826414 DOI: 10.1371/journal.pone.0009391] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 02/03/2010] [Indexed: 11/19/2022] Open
Abstract
Vastly divergent sequences populate a majority of protein folds. In the quest to identify features that are conserved within protein domains belonging to the same fold, we set out to examine the entire protein universe on a fold-by-fold basis. We report that the atomic interaction network in the solvent-unexposed core of protein domains are fold-conserved, extraordinary sequence divergence notwithstanding. Further, we find that this feature, termed protein core atomic interaction network (or PCAIN) is significantly distinguishable across different folds, thus appearing to be “signature” of a domain's native fold. As part of this study, we computed the PCAINs for 8698 representative protein domains from families across the 1018 known protein folds to construct our seed database and an automated framework was developed for PCAIN-based characterization of the protein fold universe. A test set of randomly selected domains that are not in the seed database was classified with over 97% accuracy, independent of sequence divergence. As an application of this novel fold signature, a PCAIN-based scoring scheme was developed for comparative (homology-based) structure prediction, with 1–2 angstroms (mean 1.61A) Cα RMSD generally observed between computed structures and reference crystal structures. Our results are consistent across the full spectrum of test domains including those from recent CASP experiments and most notably in the ‘twilight’ and ‘midnight’ zones wherein <30% and <10% target-template sequence identity prevails (mean twilight RMSD of 1.69A). We further demonstrate the utility of the PCAIN protocol to derive biological insight into protein structure-function relationships, by modeling the structure of the YopM effector novel E3 ligase (NEL) domain from plague-causative bacterium Yersinia Pestis and discussing its implications for host adaptive and innate immune modulation by the pathogen. Considering the several high-throughput, sequence-identity-independent applications demonstrated in this work, we suggest that the PCAIN is a fundamental fold feature that could be a valuable addition to the arsenal of protein modeling and analysis tools.
Collapse
Affiliation(s)
- Venkataramanan Soundararajan
- Harvard-MIT Division of Health Sciences & Technology, Koch Institute for Integrative Cancer Research and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Rahul Raman
- Harvard-MIT Division of Health Sciences & Technology, Koch Institute for Integrative Cancer Research and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - S. Raguram
- Harvard-MIT Division of Health Sciences & Technology, Koch Institute for Integrative Cancer Research and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - V. Sasisekharan
- Harvard-MIT Division of Health Sciences & Technology, Koch Institute for Integrative Cancer Research and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ram Sasisekharan
- Harvard-MIT Division of Health Sciences & Technology, Koch Institute for Integrative Cancer Research and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Yang K, Hsieh YH, Kim CK, Zhang H, Wolfe S. Hydration of acetone in the gas phase and in water solvent. CAN J CHEM 2010. [DOI: 10.1139/v09-135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In water solvent, the hydration of acetone proceeds by a cyclic (cooperative) process in which concurrent C–O bond formation and proton transfer to oxygen take place through a solvent and (or) catalyst bridge. Reactivity is determined primarily by the concentration of a reactant complex and not the barrier from this complex. This situation is reversed in the gas phase; although the concentrations of reactive complexes are much higher than in solution, the barriers are also higher and dominant in determining reactivity. Calculations of isotope effects suggest that multiple hydron transfers are synchronous in the gas phase to avoid zwitterionic transition states. In solution, such transition states are stabilized by solvation and hydron transfers can be asynchronous.
Collapse
Affiliation(s)
- Kiyull Yang
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- On leave from Department of Chemistry Education, Gyeongsang National University, Jinju 660-701, Korea
- On leave from Department of Chemistry, Inha University, Incheon 402-751, Korea
| | - Yih-Huang Hsieh
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- On leave from Department of Chemistry Education, Gyeongsang National University, Jinju 660-701, Korea
- On leave from Department of Chemistry, Inha University, Incheon 402-751, Korea
| | - Chan-Kyung Kim
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- On leave from Department of Chemistry Education, Gyeongsang National University, Jinju 660-701, Korea
- On leave from Department of Chemistry, Inha University, Incheon 402-751, Korea
| | - Hui Zhang
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- On leave from Department of Chemistry Education, Gyeongsang National University, Jinju 660-701, Korea
- On leave from Department of Chemistry, Inha University, Incheon 402-751, Korea
| | - Saul Wolfe
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- On leave from Department of Chemistry Education, Gyeongsang National University, Jinju 660-701, Korea
- On leave from Department of Chemistry, Inha University, Incheon 402-751, Korea
| |
Collapse
|
12
|
Vondrásek J, Kubar T, Jenney FE, Adams MWW, Kozísek M, Cerný J, Sklenár V, Hobza P. Dispersion interactions govern the strong thermal stability of a protein. Chemistry 2008; 13:9022-7. [PMID: 17696186 DOI: 10.1002/chem.200700428] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Rubredoxin from the hyperthermophile Pyrococcus furiosus (Pf Rd) is an extremely thermostable protein, which makes it an attractive subject of protein folding and stability studies. A fundamental question arises as to what the reason for such extreme stability is and how it can be elucidated from a complex set of interatomic interactions. We addressed this issue first theoretically through a computational analysis of the hydrophobic core of the protein and its mutants, including the interactions taking place inside the core. Here we show that a single mutation of one of phenylalanine's residues inside the protein's hydrophobic core results in a dramatic decrease in its thermal stability. The calculated unfolding Gibbs energy as well as the stabilization energy differences between a few core residues follows the same trend as the melting temperature of protein variants determined experimentally by microcalorimetry measurements. NMR spectroscopy experiments have shown that the only part of the protein affected by mutation is the reasonably rearranged hydrophobic core. It is hence concluded that stabilization energies, which are dominated by London dispersion, represent the main source of stability of this protein.
Collapse
Affiliation(s)
- Jirí Vondrásek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, Praha 6, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ziegler J, Schwarzinger S. Genetic algorithms as a tool for helix design – computational and experimental studies on prion protein helix 1. J Comput Aided Mol Des 2006; 20:47-54. [PMID: 16544054 DOI: 10.1007/s10822-006-9035-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 01/17/2006] [Indexed: 10/24/2022]
Abstract
Evolutionary computing is a general optimization mechanism successfully implemented for a variety of numeric problems in a variety of fields, including structural biology. We here present an evolutionary approach to optimize helix stability in peptides and proteins employing the AGADIR energy function for helix stability as scoring function. With the ability to apply masks determining positions, which are to remain constant or fixed to a certain class of amino acids, our algorithm is capable of developing stable helical scaffolds containing a wide variety of structural and functional amino acid patterns. The algorithm showed good convergence behaviour in all tested cases and can be parameterized in a wide variety of ways. We have applied our algorithm for the optimization of the stability of prion protein helix 1, a structural element of the prion protein which is thought to play a crucial role in the conformational transition from the cellular to the pathogenic form of the prion protein, and which therefore poses an interesting target for pharmacological as well as genetic engineering approaches to counter the as of yet uncurable prion diseases. NMR spectroscopic investigations of selected stabilizing and destabilizing mutations found by our algorithm could demonstrate its ability to create stabilized variants of secondary structure elements.
Collapse
Affiliation(s)
- Jan Ziegler
- Lehrstuhl Biopolymere, University of Bayreuth, Universitätsstr. 30, 95444, Bayreuth, Germany.
| | | |
Collapse
|
14
|
Vizcarra CL, Mayo SL. Electrostatics in computational protein design. Curr Opin Chem Biol 2005; 9:622-6. [PMID: 16257567 DOI: 10.1016/j.cbpa.2005.10.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 10/11/2005] [Indexed: 11/18/2022]
Abstract
Catalytic activity and protein-protein recognition have proven to be significant challenges for computational protein design. Electrostatic interactions are crucial for these and other protein functions, and therefore accurate modeling of electrostatics is necessary for successfully advancing protein design into the realm of protein function. This review focuses on recent progress in modeling electrostatic interactions in computational protein design, with particular emphasis on continuum models.
Collapse
Affiliation(s)
- Christina L Vizcarra
- Division of Chemistry and Chemical Engineering, Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
15
|
Tsai HHG, Tsai CJ, Ma B, Nussinov R. In silico protein design by combinatorial assembly of protein building blocks. Protein Sci 2005; 13:2753-65. [PMID: 15388863 PMCID: PMC2286547 DOI: 10.1110/ps.04774004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Utilizing concepts of protein building blocks, we propose a de novo computational algorithm that is similar to combinatorial shuffling experiments. Our goal is to engineer new naturally occurring folds with low homology to existing proteins. A selected protein is first partitioned into its building blocks based on their compactness, degree of isolation from the rest of the structure, and hydrophobicity. Next, the protein building blocks are substituted by fragments taken from other proteins with overall low sequence identity, but with a similar hydrophobic/hydrophilic pattern and a high structural similarity. These criteria ensure that the designed protein has a similar fold, low sequence identity, and a good hydrophobic core compared with its native counterpart. Here, we have selected two proteins for engineering, protein G B1 domain and ubiquitin. The two engineered proteins share approximately 20% and approximately 25% amino acid sequence identities with their native counterparts, respectively. The stabilities of the engineered proteins are tested by explicit water molecular dynamics simulations. The algorithm implements a strategy of designing a protein using relatively stable fragments, with a high population time. Here, we have selected the fragments by searching for local minima along the polypeptide chain using the protein building block model. Such an approach provides a new method for engineering new proteins with similar folds and low homology.
Collapse
Affiliation(s)
- Hui-Hsu Gavin Tsai
- Basic Research Program, SAIC-Frederick, Inc., Laboratory of Experimental and Computational Biology, NCI-Frederick, Building 469, Room 145, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
16
|
Chen J, Stites WE. Replacement of Staphylococcal Nuclease Hydrophobic Core Residues with Those from Thermophilic Homologues Indicates Packing is Improved in Some Thermostable Proteins. J Mol Biol 2004; 344:271-80. [PMID: 15504416 DOI: 10.1016/j.jmb.2004.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 09/06/2004] [Accepted: 09/07/2004] [Indexed: 11/26/2022]
Abstract
The importance of tight hydrophobic core packing in stabilizing proteins found in thermophilic organisms has been vigorously disputed. Here, portions of the cores found in three thermophilic homologues were transplanted into the core of staphylococcal nuclease, a protein of modest stability. Packing of the core was evaluated by comparing interaction energy of the three mutants to the comprehensive mutant library built up previously at these same sites in staphylococcal nuclease. It was found that the interaction energy of one thermophilic sequence is extraordinarily favorable and the interaction energies of other two transplanted thermophilic sequences are good, comparable to the interaction energies of mutant cores based on cores found in mesophilic homologues. As expected when transferring just a portion of the core sequence, the mutant proteins were destabilized overall relative to wild-type staphylococcal nuclease. The overall conclusion is that improvement of packing interactions is a mechanism to confer stability employed in some proteins from thermophiles, but not all.
Collapse
Affiliation(s)
- Junmei Chen
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701-1201, USA
| | | |
Collapse
|
17
|
Abstract
Aromatic interactions, including pi-pi, cation-pi, aryl-sulfur, and carbohydrate-pi interactions, have been shown to be prevalent in proteins through protein structure analysis, suggesting that they are important contributors to protein structure. However, the magnitude and significance of aromatic interactions is not defined by such studies. Investigation of aromatic interactions in the context of structured peptides has complemented studies of protein structure and has provided a wealth of information regarding the role of aromatic interactions in protein structure and function. Recent advances in this area are reviewed.
Collapse
Affiliation(s)
- Marcey L Waters
- Department of Chemistry, CB 3290, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
Abstract
Metal-assembled parallel helix-bundle proteins have been used to investigate electron transfer through alpha-helical structures. Fermi Golden Rule distance dependence of electron transfer rates was established in a family of designed metalloproteins, and the contribution of intrahelical hydrogen bonding to the matrix tunneling element was explored. The first steps toward the design of functional proteins using dynamic combinatorial assembly of alpha-helical structural elements are described.
Collapse
Affiliation(s)
- Martin A Case
- Department of Chemistry, The University of Vermont, Burlington, Vermont 05405, USA.
| | | |
Collapse
|
19
|
Chen J, Lu Z, Sakon J, Stites WE. Proteins with simplified hydrophobic cores compared to other packing mutants. Biophys Chem 2004; 110:239-48. [PMID: 15228960 DOI: 10.1016/j.bpc.2004.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/06/2004] [Accepted: 02/27/2004] [Indexed: 11/28/2022]
Abstract
Efforts to design proteins with greatly reduced sequence diversity have often resulted in proteins with so-called molten globule properties. Substitutions were made at six neighboring sites in the major hydrophobic core of staphylococcal nuclease to create variants with all leucine, all isoleucine or all valine at these sites. The mutant proteins with simplified cores constructed here are quite unstable and have poorly packed cores, attested to by interaction energies. Eight related mutants with greater sequence diversity were also constructed. Comparison to these mutants and 159 other permutations of these 3 aliphatic side chains at these same 6 sites previously constructed shows that the simplified cores are not unusual in their stabilities or interaction energies. Further, crystal structures of the two mutants with the worst packing, as measured by interaction energies, showed no unusual disorder in the core. Therefore, reduction of sequence diversity is not necessarily incompatible with a single stable native structure. Other factors must also contribute to previous protein design failures.
Collapse
Affiliation(s)
- Junmei Chen
- Department of Chemistry and Biochemistry, University of Arkansas, CHEM 101, Fayetteville, AR 72701-1201, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Why do proteins adopt the conformations that they do, and what determines their stabilities? While we have come to some understanding of the forces that underlie protein architecture, a precise, predictive, physicochemical explanation is still elusive. Two obstacles to addressing these questions are the unfathomable vastness of protein sequence space, and the difficulty in making direct physical measurements on large numbers of protein variants. Here, we review combinatorial methods that have been applied to problems in protein biophysics over the last 15 years. The effects of hydrophobic core composition, the most important determinant of structure and stability, are still poorly understood. Particular attention is given to core composition as addressed by library methods. Increasingly useful screens and selections, in combination with modern high-throughput approaches borrowed from genomics and proteomics efforts, are making the empirical, statistical correlation between sequence and structure a tractable problem for the coming years.
Collapse
Affiliation(s)
- Thomas J Magliery
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | | |
Collapse
|
21
|
Di Nardo AA, Larson SM, Davidson AR. The relationship between conservation, thermodynamic stability, and function in the SH3 domain hydrophobic core. J Mol Biol 2003; 333:641-55. [PMID: 14556750 DOI: 10.1016/j.jmb.2003.08.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To investigate the relationships between sequence conservation, protein stability, and protein function, we have measured the thermodynamic stability, folding kinetics, and in vitro peptide-binding activity of a large number of single-site substitutions in the hydrophobic core of the Fyn SH3 domain. Comparison of these data to that derived from an analysis of a large alignment of SH3 domain sequences revealed a very good correlation between the distinct pattern of conservation observed at each core position and the thermodynamic stability of mutants. Conservation was also found to correlate well with the unfolding rates of mutants, but not to the folding rates, suggesting that evolution selects more strongly for optimal native state packing interactions than for maximal folding rates. Structural analysis suggests that residue-residue core packing interactions are very similar in all SH3 domains, which provides an explanation for the correlation between conservation and mutant stability effects studied in a single SH3 domain. We also demonstrate a correlation between stability and the in vivo activity of mutants, and between conservation and activity. However, the relationship between conservation and activity was very strong only for the three most conserved hydrophobic core positions. The weaker correlation between activity and conservation seen at the other seven core positions indicates that maintenance of protein stability is the dominant selective pressure at these positions. In general, the pattern of conservation at hydrophobic core positions appears to arise from conserved packing constraints, and can be effectively utilized to predict the destabilizing effects of amino acid substitutions.
Collapse
Affiliation(s)
- Ariel A Di Nardo
- Department of Biochemistry, University of Toronto, Toronto, Ont., Canada M5S 1A8
| | | | | |
Collapse
|
22
|
Cooper HJ, Case MA, McLendon GL, Marshall AG. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometric analysis of metal-ion selected dynamic protein libraries. J Am Chem Soc 2003; 125:5331-9. [PMID: 12720445 DOI: 10.1021/ja021138f] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The application of electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry to the investigation of the relative stabilities (and thus packing efficiencies) of Fe-bound trihelix peptide bundles is demonstrated. Small dynamic protein libraries are created by metal-ion assisted assembly of peptide subunits. Control of the trimeric aggregation state is coupled to stability selection by exploiting the coordination requirements of Fe(2+) in the presence of bidentate 2,2'-bipyridyl ligands covalently appended to the peptide monomers. At limiting metal-ion concentration, the most thermodynamically stable, optimally packed peptide trimers dominate the mass spectrum. The identities of optimally stable candidate trimers observed in the ESI FT-ICR mass spectra are confirmed by resynthesis of exchange-inert analogues and measurement of their folding free energies. The peptide composition of the trimers may be determined by infrared multiphoton dissociation (IRMPD) MS(3) experiments. Additional sequence information for the peptide subunits is obtained from electron capture dissociation (ECD) of peptides and metal-bound trimers. The experiments also suggest the presence of secondary structure in the gas phase, possibly due to partial retention of the solution-phase coiled coil structure.
Collapse
Affiliation(s)
- Helen J Cooper
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310-3706, USA
| | | | | | | |
Collapse
|
23
|
Zhou H, Zhou Y. Stability scale and atomic solvation parameters extracted from 1023 mutation experiments. Proteins 2002; 49:483-92. [PMID: 12402358 DOI: 10.1002/prot.10241] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The stability scale of 20 amino acid residues is derived from a database of 1023 mutation experiments on 35 proteins. The resulting scale of hydrophobic residues has an excellent correlation with the octanol-to-water transfer free energy corrected with an additional Flory-Huggins molar-volume term (correlation coefficient r = 0.95, slope = 1.05, and a near zero intercept). Thus, hydrophobic contribution to folding stability is characterized remarkably well by transfer experiments. However, no corresponding correlation is found for hydrophilic residues. Both the hydrophilic portion and the entire scale, however, correlate strongly with average burial accessible surface (r = 0.76 and 0.97, respectively). Such a strong correlation leads to a near uniform value of the atomic solvation parameters for atoms C, S, O/N, O(-0.5), and N(+0.5,1). All are in the range of 12-28 cal x mol(-1) A(-2), close to the original estimate of hydrophobic contribution of 25-30 cal x mol(-1) A(-2) to folding stability. Without any adjustable parameters, the new stability scale and new atomic solvation parameters yielded an accurate prediction of protein-protein binding free energy for a separate database of 21 protein-protein complexes (r = 0.80 and slope = 1.06, and r = 0.83 and slope = 0.93, respectively).
Collapse
Affiliation(s)
- Hongyi Zhou
- Howard Hughes Medical Institute Center for Single Molecule Biophysics, Department of Physiology & Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | |
Collapse
|
24
|
Loladze VV, Ermolenko DN, Makhatadze GI. Thermodynamic consequences of burial of polar and non-polar amino acid residues in the protein interior. J Mol Biol 2002; 320:343-57. [PMID: 12079391 DOI: 10.1016/s0022-2836(02)00465-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Effects of amino acid substitutions at four fully buried sites of the ubiquitin molecule on the thermodynamic parameters (enthalpy, Gibbs energy) of unfolding were evaluated experimentally using differential scanning calorimetry. The same set of substitutions has been incorporated at each of four sites. These substitutions have been designed to perturb packing (van der Waals) interactions, hydration, and/or hydrogen bonding. From the analysis of the thermodynamic parameters for these ubiquitin variants we conclude that: (i) packing of non-polar groups in the protein interior is favorable and is largely defined by a favorable enthalpy of van der Waals interactions. The removal of one methylene group from the protein interior will destabilize a protein by approximately 5 kJ/mol, and will decrease the enthalpy of a protein by 12 kJ/mol. (ii) Burial of polar groups in the non-polar interior of a protein is highly destabilizing, and the degree of destabilization depends on the relative polarity of this group. For example, burial of Thr side-chain in the non-polar interior will be less destabilizing than burial of Asn side-chain. This decrease in stability is defined by a large enthalpy of dehydration of polar groups upon burial. (iii) The destabilizing effect of dehydration of polar groups upon burial can be compensated if these buried polar groups form hydrogen bonding. The enthalpy of this hydrogen bonding will compensate for the unfavorable dehydration energy and as a result the effect will be energetically neutral or even slightly stabilizing.
Collapse
Affiliation(s)
- Vakhtang V Loladze
- Department of Biochemistry and Molecular Biology, College of Medicine, Penn State University, Hershey, PA 17033-2390, USA
| | | | | |
Collapse
|
25
|
West M, Wilson VG. Hydrophobic residue contributions to sequence-specific DNA binding by the bovine papillomavirus helicase E1. Virology 2002; 296:52-61. [PMID: 12036317 DOI: 10.1006/viro.2002.1362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, mutational analyses of the DNA binding domain of the bovine papillomavirus E1 protein (E1DBD) identified several hydrophobic residues that are critical for DNA binding activity (M. West, D. Flanery, K. Woytek, D. Rangasamy, and V. G. Wilson, 2001, J. Virol. 75, 11948-11960). Hydrophobic interactions of nonpolar amino acid side chains can contribute to the function of DNA binding proteins through both conformational effects and direct interaction with nucleotides. To further investigate the role of hydrophobic residues in E1DBD function, a more extensive site-directed mutational analysis of hydrophobic amino acids was conducted. Alanine substitutions were made at residues V196, F197, F217, F, 237, V246, L249, and F276, and the mutants were tested for DNA binding activity in vitro and in vivo. The E1 F237A and F276A mutants were completely defective for site-specific DNA binding, while the other mutants retained partial to full wild-type binding activity. Consistent with their DNA binding defect, the F237A and F276A mutants were severely impaired for the ability to support transient in vivo replication of an origin plasmid. Combined with our previous study, five critical hydrophobic residues have been identified: F175, V193, F237, V246, and F276. These five residues localize to two internal clusters in the E1DBD structure designated hydrophobic clusters A (HCA; includes F175, V193, and F276) and B (HCB; includes F237 and V246). Amino acid side chains from residues in HCA and HCB have little surface accessibility and it is unlikely that they are involved in direct contact with DNA. HCA is distal to the DNA binding surface and presumably contributes to global conformational organization of the E1DBD. HCB is positioned beneath the DNA contact surface and we propose that it serves as an anchor or platform device to stabilize the DNA-binding element. A comparable hydrophobic cluster is present in the corresponding position in the T antigen DBD and likely serves a similar function.
Collapse
Affiliation(s)
- Michael West
- Department of Medical Microbiology and Immunology, Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA
| | | |
Collapse
|
26
|
Abstract
The field of computational protein design is reaching its adolescence. Protein design algorithms have been applied to design or engineer proteins that fold, fold faster, catalyze, catalyze faster, signal, and adopt preferred conformational states. Further developments of scoring functions, sampling strategies, and optimization methods will expand the range of applicability of computational protein design to larger and more varied systems, with greater incidence of success. Developments in this field are beginning to have significant impact on biotechnology and chemical biology.
Collapse
Affiliation(s)
- C M Kraemer-Pecore
- The Pennsylvania State University, Department of Chemistry, Chandlee Laboratory, University Park, PA 16802, USA
| | | | | |
Collapse
|
27
|
North B, Summa CM, Ghirlanda G, DeGrado WF. D(n)-symmetrical tertiary templates for the design of tubular proteins. J Mol Biol 2001; 311:1081-90. [PMID: 11531341 DOI: 10.1006/jmbi.2001.4900] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antiparallel helical bundles are found in a wide range of proteins. Often, four-helical bundles form tube-like structures, with binding sites for substrates or cofactors near their centers. For example, a transmembrane four-helical bundle in cytochrome bc(1) binds a pair of porphyrins in an elongated central cavity running down the center of the structure. Antiparallel helical barrels with larger diameters are found in the crystal structures of TolC and DSD, which form antiparallel 12-helical and six-helical bundles, respectively. The backbone geometries of the helical bundles of cytochrome bc(1), TolC, and DSD are well described using a simple D(n)-symmetrical model with only eight adjustable parameters. This parameterization provides an excellent starting point for construction of minimal models of these proteins as well as the de novo design of proteins with novel functions.
Collapse
Affiliation(s)
- B North
- The Johnson Research Foundation, Department of Biochemistry & Biophysics School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | | | | | | |
Collapse
|
28
|
HILL RBLAKE, RALEIGH DANIELP, LOMBARDI ANGELA, DEGRADO WILLIAMF. De novo design of helical bundles as models for understanding protein folding and function. Acc Chem Res 2000; 33:745-54. [PMID: 11087311 PMCID: PMC3050006 DOI: 10.1021/ar970004h] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
De novo protein design has proven to be a powerful tool for understanding protein folding, structure, and function. In this Account, we highlight aspects of our research on the design of dimeric, four-helix bundles. Dimeric, four-helix bundles are found throughout nature, and the history of their design in our laboratory illustrates our hierarchic approach to protein design. This approach has been successfully applied to create a completely native-like protein. Structural and mutational analysis allowed us to explore the determinants of native protein structure. These determinants were then applied to the design of a dinuclear metal-binding protein that can now serve as a model for this important class of proteins.
Collapse
Affiliation(s)
| | | | | | - WILLIAM F. DEGRADO
- To whom correspondence should be addressed. . Telephone: (215) 898-4590. Fax: (215) 573-7229
| |
Collapse
|
29
|
Lombardi A, Summa CM, Geremia S, Randaccio L, Pavone V, DeGrado WF. Retrostructural analysis of metalloproteins: application to the design of a minimal model for diiron proteins. Proc Natl Acad Sci U S A 2000; 97:6298-305. [PMID: 10841536 PMCID: PMC18597 DOI: 10.1073/pnas.97.12.6298] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2000] [Indexed: 11/18/2022] Open
Abstract
De novo protein design provides an attractive approach for the construction of models to probe the features required for function of complex metalloproteins. The metal-binding sites of many metalloproteins lie between multiple elements of secondary structure, inviting a retrostructural approach to constructing minimal models of their active sites. The backbone geometries comprising the metal-binding sites of zinc fingers, diiron proteins, and rubredoxins may be described to within approximately 1 A rms deviation by using a simple geometric model with only six adjustable parameters. These geometric models provide excellent starting points for the design of metalloproteins, as illustrated in the construction of Due Ferro 1 (DF1), a minimal model for the Glu-Xxx-Xxx-His class of dinuclear metalloproteins. This protein was synthesized and structurally characterized as the di-Zn(II) complex by x-ray crystallography, by using data that extend to 2.5 A. This four-helix bundle protein is comprised of two noncovalently associated helix-loop-helix motifs. The dinuclear center is formed by two bridging Glu and two chelating Glu side chains, as well as two monodentate His ligands. The primary ligands are mostly buried in the protein interior, and their geometries are stabilized by a network of hydrogen bonds to second-shell ligands. In particular, a Tyr residue forms a hydrogen bond to a chelating Glu ligand, similar to a motif found in the diiron-containing R2 subunit of Escherichia coli ribonucleotide reductase and the ferritins. DF1 also binds cobalt and iron ions and should provide an attractive model for a variety of diiron proteins that use oxygen for processes including iron storage, radical formation, and hydrocarbon oxidation.
Collapse
Affiliation(s)
- A Lombardi
- Department of Chemistry, University of Napoli "Federico II," Via Mezzocannone, 4, I-80134 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Lazar GA, Johnson EC, Desjarlais JR, Handel TM. Rotamer strain as a determinant of protein structural specificity. Protein Sci 1999; 8:2598-610. [PMID: 10631975 PMCID: PMC2144231 DOI: 10.1110/ps.8.12.2598] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We present direct evidence for a change in protein structural specificity due to hydrophobic core packing. High resolution structural analysis of a designed core variant of ubiquitin reveals that the protein is in slow exchange between two conformations. Examination of side-chain rotamers indicates that this dynamic response and the lower stability of the protein are coupled to greater strain and mobility in the core. The results suggest that manipulating the level of side-chain strain may be one way of fine tuning the stability and specificity of proteins.
Collapse
Affiliation(s)
- G A Lazar
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|
31
|
Johnson EC, Lazar GA, Desjarlais JR, Handel TM. Solution structure and dynamics of a designed hydrophobic core variant of ubiquitin. Structure 1999; 7:967-76. [PMID: 10467150 DOI: 10.1016/s0969-2126(99)80123-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND The recent merger of computation and protein design has resulted in a burst of success in the generation of novel proteins with native-like properties. A critical component of this coupling between theory and experiment is a detailed analysis of the structures and stabilities of designed proteins to assess and improve the accuracy of design algorithms. RESULTS Here we report the solution structure of a hydrophobic core variant of ubiquitin, referred to as 1D7, which was designed with the core-repacking algorithm ROC. As a measure of conformational specificity, we also present amide exchange protection factors and backbone and sidechain dynamics. The results indicate that 1D7 is similar to wild-type (WT) ubiquitin in backbone structure and degree of conformational specificity. We also observe a good correlation between experimentally determined sidechain structures and those predicted by ROC. However, evaluation of the core sidechain conformations indicates that, in general, 1D7 has more sidechains in less statistically favorable conformations than WT. CONCLUSIONS Our results provide an explanation for the lower stability of 1D7 compared to WT, and suggest modifications to design algorithms that may improve the accuracy with which structure and stability are predicted. The results also demonstrate that core packing can affect conformational flexibility in subtle ways that are likely to be important for the design of function and protein-ligand interactions.
Collapse
Affiliation(s)
- E C Johnson
- Department of Physics, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|