1
|
Wang Q, Wu H. Mathematical modeling of chemotaxis guided amoeboid cell swimming. Phys Biol 2021; 18. [PMID: 33853049 DOI: 10.1088/1478-3975/abf7d8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/14/2021] [Indexed: 01/15/2023]
Abstract
Cells and microorganisms adopt various strategies to migrate in response to different environmental stimuli. To date, many modeling research has focused on the crawling-basedDictyostelium discoideum(Dd) cells migration induced by chemotaxis, yet recent experimental results reveal that even without adhesion or contact to a substrate, Dd cells can still swim to follow chemoattractant signals. In this paper, we develop a modeling framework to investigate the chemotaxis induced amoeboid cell swimming dynamics. A minimal swimming system consists of one deformable Dd amoeboid cell and a dilute suspension of bacteria, and the bacteria produce chemoattractant signals that attract the Dd cell. We use themathematical amoeba modelto generate Dd cell deformation and solve the resulting low Reynolds number flows, and use a moving mesh based finite volume method to solve the reaction-diffusion-convection equation. Using the computational model, we show that chemotaxis guides a swimming Dd cell to follow and catch bacteria, while on the other hand, bacterial rheotaxis may help the bacteria to escape from the predator Dd cell.
Collapse
Affiliation(s)
- Qixuan Wang
- Department of Mathematics, University of California, Riverside, CA, United States of America.,Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
| | - Hao Wu
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, United States of America
| |
Collapse
|
2
|
González-Velasco Ó, De Las Rivas J, Lacal J. Proteomic and Transcriptomic Profiling Identifies Early Developmentally Regulated Proteins in Dictyostelium Discoideum. Cells 2019; 8:cells8101187. [PMID: 31581556 PMCID: PMC6830349 DOI: 10.3390/cells8101187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cyclic AMP acts as a secondary messenger involving different cellular functions in eukaryotes. Here, proteomic and transcriptomic profiling has been combined to identify novel early developmentally regulated proteins in eukaryote cells. These proteomic and transcriptomic experiments were performed in Dictyostelium discoideum given the unique advantages that this organism offers as a eukaryotic model for cell motility and as a nonmammalian model of human disease. By comparing whole-cell proteome analysis of developed (cAMP-pulsed) wild-type AX2 cells and an independent transcriptomic analysis of developed wild-type AX4 cells, our results show that up to 70% of the identified proteins overlap in the two independent studies. Among them, we have found 26 proteins previously related to cAMP signaling and identified 110 novel proteins involved in calcium signaling, adhesion, actin cytoskeleton, the ubiquitin-proteasome pathway, metabolism, and proteins that previously lacked any annotation. Our study validates previous findings, mostly for the canonical cAMP-pathway, and also generates further insight into the complexity of the transcriptomic changes during early development. This article also compares proteomic data between parental and cells lacking glkA, a GSK-3 kinase implicated in substrate adhesion and chemotaxis in Dictyostelium. This analysis reveals a set of proteins that show differences in expression in the two strains as well as overlapping protein level changes independent of GlkA.
Collapse
Affiliation(s)
- Óscar González-Velasco
- Bioinformatics and Functional Genomics Research Group. Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Research Group. Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Jesus Lacal
- Department of Microbiology and Genetics, Faculty of Biology, University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
3
|
Lin WC, Wang LC, Pang TL, Chen MY. Actin-binding protein G (AbpG) participates in modulating the actin cytoskeleton and cell migration in Dictyostelium discoideum. Mol Biol Cell 2015; 26:1084-97. [PMID: 25609090 PMCID: PMC4357508 DOI: 10.1091/mbc.e14-05-0972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dictyostelium cells lacking actin-binding protein G (AbpG) migrate at a reduced speed and display elevated F-actin levels. AbpG is enriched in the cortical/lamellipodial regions and colocalizes with F-actin. A novel protein domain in AbpG mediates the interaction with F-actin and is required for the cellular function of AbpG. Cell migration is involved in various physiological and pathogenic events, and the complex underlying molecular mechanisms have not been fully elucidated. The simple eukaryote Dictyostelium discoideum displays chemotactic locomotion in stages of its life cycle. By characterizing a Dictyostelium mutant defective in chemotactic responses, we identified a novel actin-binding protein serving to modulate cell migration and named it actin-binding protein G (AbpG); this 971–amino acid (aa) protein contains an N-terminal type 2 calponin homology (CH2) domain followed by two large coiled-coil regions. In chemoattractant gradients, abpG− cells display normal directional persistence but migrate significantly more slowly than wild-type cells; expressing Flag-AbpG in mutant cells eliminates the motility defect. AbpG is enriched in cortical/lamellipodial regions and colocalizes well with F-actin; aa 401–600 and aa 501–550 fragments of AbpG show the same distribution as full-length AbpG. The aa 501–550 region of AbpG, which is essential for AbpG to localize to lamellipodia and to rescue the phenotype of abpG− cells, is sufficient for binding to F-actin and represents a novel actin-binding protein domain. Compared with wild-type cells, abpG− cells have significantly higher F-actin levels. Collectively our results suggest that AbpG may participate in modulating actin dynamics to optimize cell locomotion.
Collapse
Affiliation(s)
- Wei-Chi Lin
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Liang-Chen Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Te-Ling Pang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Mei-Yu Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan Genome Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
4
|
Ishimatsu K, Hata T, Mochizuki A, Sekine R, Yamamura M, Kiga D. General applicability of synthetic gene-overexpression for cell-type ratio control via reprogramming. ACS Synth Biol 2014; 3:638-44. [PMID: 24295073 DOI: 10.1021/sb400102w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Control of the cell-type ratio in multistable systems requires wide-range control of the initial states of cells. Here, using a synthetic circuit in E. coli, we describe the use of a simple gene-overexpression system combined with a bistable toggle switch, for the purposes of enabling the wide-range control of cellular states and thus generating arbitrary cell-type ratios. Theoretically, overexpression induction temporarily alters the bistable system to a monostable system, in which the location of the single steady state of cells can be manipulated over a wide range by regulating the overexpression levels. This induced cellular state becomes the initial state of the basal bistable system upon overexpression cessation, which restores the original bistable system. We experimentally demonstrated that the overexpression induced a monomodal cell distribution, and subsequent overexpression withdrawal generated a bimodal distribution. Furthermore, as designed theoretically, regulating the overexpression levels by adjusting the concentrations of small molecules generated arbitrary cell-type ratios.
Collapse
Affiliation(s)
- Kana Ishimatsu
- Department
of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Kanagawa 226-8503, Japan
- PRESTO, Japan
Science and Technology Agency, 7 Gobancho, Chiyodaku, Tokyo, 102-0076, Japan
| | - Takashi Hata
- Department
of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Kanagawa 226-8503, Japan
| | - Atsushi Mochizuki
- Department
of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Kanagawa 226-8503, Japan
- PRESTO, Japan
Science and Technology Agency, 7 Gobancho, Chiyodaku, Tokyo, 102-0076, Japan
- Theoretical Biology
Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | - Ryoji Sekine
- Department
of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Kanagawa 226-8503, Japan
| | - Masayuki Yamamura
- Department
of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Kanagawa 226-8503, Japan
| | - Daisuke Kiga
- Department
of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Kanagawa 226-8503, Japan
- PRESTO, Japan
Science and Technology Agency, 7 Gobancho, Chiyodaku, Tokyo, 102-0076, Japan
- Earth-Life
Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| |
Collapse
|
5
|
Abstract
Much remains to be understood about how a group of cells break symmetry and differentiate into distinct cell types. The simple eukaryote Dictyostelium discoideum is an excellent model system for studying questions such as cell type differentiation. Dictyostelium cells grow as single cells. When the cells starve, they aggregate to develop into a multicellular structure with only two main cell types: spore and stalk. There has been a longstanding controversy as to how a cell makes the initial choice of becoming a spore or stalk cell. In this review, we describe how the controversy arose and how a consensus developed around a model in which initial cell type choice in Dictyostelium is dependent on the cell cycle phase that a cell happens to be in at the time that it starves.
Collapse
|
6
|
Bouffanais R, Yue DKP. Hydrodynamics of cell-cell mechanical signaling in the initial stages of aggregation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:041920. [PMID: 20481766 DOI: 10.1103/physreve.81.041920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 03/17/2010] [Indexed: 05/29/2023]
Abstract
Mechanotactic cell motility has recently been shown to be a key player in the initial aggregation of crawling cells such as leukocytes and amoebae. The effects of mechanotactic signaling in the early aggregation of amoeboid cells are here investigated using a general mathematical model based on known biological evidence. We elucidate the hydrodynamic fundamentals of the direct guiding of a cell through mechanotaxis in the case where one cell transmits a mechanotactic signal through the fluid flow by changing its shape. It is found that any mechanosensing cells placed in the stimulus field of mechanical stress are able to determine the signal transmission direction with a certain angular dispersion which does not preclude the aggregation from happening. The ubiquitous presence of noise is accounted for by the model. Finally, the mesoscopic pattern of aggregation is obtained which constitutes the bridge between, on one hand, the microscopic world where the changes in the cell shape occur and, on the other hand, the cooperative behavior of the cells at the mesoscopic scale.
Collapse
Affiliation(s)
- Roland Bouffanais
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
7
|
Arya R, Bhattacharya A, Saini KS. Dictyostelium discoideum—a promising expression system for the production of eukaryotic proteins. FASEB J 2008; 22:4055-66. [DOI: 10.1096/fj.08-110544] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ranjana Arya
- Department of Biotechnology and BioinformaticsRanbaxy Laboratories LimitedGurgaonHaryanaIndia
| | | | - Kulvinder Singh Saini
- Department of Biotechnology and BioinformaticsRanbaxy Laboratories LimitedGurgaonHaryanaIndia
- School of Biotechnology, Jawaharlal Nehru UniversityNew Delhi110067India
| |
Collapse
|
8
|
Urushihara H. Developmental biology of the social amoeba: history, current knowledge and prospects. Dev Growth Differ 2008; 50 Suppl 1:S277-81. [PMID: 18482401 DOI: 10.1111/j.1440-169x.2008.01013.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cellular slime molds are known as the social amoebae because they conditionally construct multicellular forms in which cell differentiation takes place. Among them, Dictyostelium discoideum has many advantages as an experimental system and is widely used as a model organism. This review aims to reconsider how it has contributed to the understanding of developmental mechanisms and what should be done in the future. Chemotaxis, cell differentiation, genome and transcriptome, and the ecological and evolutionary implications of development are discussed.
Collapse
Affiliation(s)
- Hideko Urushihara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
9
|
Labruyère E, Guillén N. Host tissue invasion by Entamoeba histolytica is powered by motility and phagocytosis. Arch Med Res 2006; 37:253-8. [PMID: 16380326 DOI: 10.1016/j.arcmed.2005.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 10/10/2005] [Indexed: 10/25/2022]
Abstract
During amebiasis, E. histolytica motility is a key factor to achieve its progression across tissues. The pathogenicity of E. histolytica includes its capacity to phagocyte human cells. Motility requires polarization of E. histolytica that involves protrusion of a pseudopod containing actin and associated proteins [myosin IB, ABP-120 and a p21-activated kinase (PAK)] and whole-cell propulsion after contraction of the rear of the cell, where myosin II and F-actin are concentrated. An interesting characteristic of this parasite is the presence of two unique myosins (myosin II and unconventional myosin IB), in contrast to several actin genes. Little is known about the regulation of the actin-myosin cytoskeleton dynamics of E. histolytica, and a better understanding of signaling pathways that stimulate and coordinate regulators protein and cytoskeleton elements will provide new insight into the cell biology of the parasite and in amebiasis. Here we summarize the pleiotropic functions described for myosin II and PAK in E. histolytica. We propose that survival and pathogenicity of E. histolytica require an active actin-myosin cytoskeleton to cap surface receptors, to adhere to host components, to migrate through tissues, to phagocyte human cells and to form liver abscesses.
Collapse
Affiliation(s)
- Elisabeth Labruyère
- Unité de Biologie Cellulaire du Parasitisme, INSERM U389, Institut Pasteur, Paris, France
| | | |
Collapse
|
10
|
Serafimidis I, Kay RR. New prestalk and prespore inducing signals in Dictyostelium. Dev Biol 2005; 282:432-41. [PMID: 15950608 DOI: 10.1016/j.ydbio.2005.03.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/11/2005] [Accepted: 03/20/2005] [Indexed: 10/25/2022]
Abstract
The differentiation-inducing signals (DIFs) currently known in Dictyostelium appear unable to account for the full diversity of cell types produced in development. To search for new signals, we analyzed the differentiation in monolayers of cells expressing prestalk (ecmAO, ecmA, ecmO, ecmB and cAR2) and prespore (psA) markers. Expression of each marker drops off as the cell density is reduced, suggesting that cell interaction is required. Expression of each marker is inhibited by cerulenin, an inhibitor of polyketide synthesis, and can be restored by conditioned medium. However, the known stalk-inducing polyketide, DIF-1, could not replace conditioned medium and induce the ecmA or cAR2 prestalk markers, suggesting that they require different polyketide inducers. Polyketide production by fungi is stimulated by cadmium ions, which also dramatically stimulates differentiation in Dictyostelium cell cultures and the accumulation of medium factors. Factors produced with cadmium present were extracted from conditioned medium and fractionated by HPLC. A new factor inducing prespore cell differentiation, called PSI-2, and two inducing stalk cell differentiation (DIFs 6 and 7) were resolved. All are distinct from currently identified factors. DIF-6, but not DIF-7 or PSI-2, appears to have an essential carbonyl group. Thus Dictyostelium may use extensive polyketide signaling in its development.
Collapse
|
11
|
Yamaguchi H, Morita T, Amagai A, Maeda Y. Changes in spatial and temporal localization of Dictyostelium homologues of TRAP1 and GRP94 revealed by immunoelectron microscopy. Exp Cell Res 2005; 303:415-24. [PMID: 15652353 DOI: 10.1016/j.yexcr.2004.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 10/06/2004] [Indexed: 11/15/2022]
Abstract
TRAP1 (tumor necrosis factor receptor-associated protein 1) is a member of the molecular chaperone HSP90 (90-kDa heat shock protein) family. In this study, we mainly examined the behavior of Dictyostelium TRAP1 homologue, Dd-TRAP1, during Dictyostelium development by immunoelectron microscopy. In vegetatively growing D. discoideum Ax-2 cells, Dd-TRAP1 locates in nucleolus and vesicles in addition to the cell cortex including cell membrane. Many of Dd-TRAP1 molecules moved to the mitochondrial matrix in response to differentiation, although Dd-TRAP1 on the cell membrane seems to be retained. Some Dd-TRAP1 was also found to be secreted to locate outside the cell membrane in Ax-2 cells starved for 6 h. At the multicellular slug stage, Dd-TRAP1 was primarily located in mitochondria and cell membrane in both prestalk and prespore cells. More importantly, in differentiating prespore cells, a significant number of Dd-TRAP1 locates in the PSV (prespore-specific vacuole) that is a sole cell type-specific organelle and essential for spore wall formation, whereas some Dd-TRAP1 in the cell cortical region of prestalk cells. These findings strongly suggest the importance of Dd-TRAP1 regulated temporally and spatially during Dictyostelium development. Incidentally, we also have certified that the glucose-regulated protein 94 (Dd-GRP94) is predominantly located in Golgi vesicles and cisternae, followed by its colocalization with Dd-TRAP1 in the PSV.
Collapse
Affiliation(s)
- Hitomi Yamaguchi
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | | | | | | |
Collapse
|
12
|
Betapudi V, Shoebotham K, Egelhoff TT. Generation of double gene disruptions in Dictyostelium discoideum using a single antibiotic marker selection. Biotechniques 2004; 36:106-12. [PMID: 14740492 DOI: 10.2144/04361rr01] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Gene targeting is a powerful molecular genetic technique that has been widely used to understand specific gene function in vivo. This technique allows the ablation of an endogenous gene by recombination between an introduced DNA fragment and the homologous target gene. However, when multiple gene disruptions are needed, the availability of only a limited number of marker genes becomes a complication. Here we describe a new approach to perform double gene disruptions in Dictyostelium discoideum by simultaneous transfection of two gene targeting cassettes followed by performing clonal selection against only one marker gene. The subsequent PCR-based screens of blasticidin-resistant clones revealed the integration of both the selected and the nonselected targeting cassettes at their original respective loci creating complete gene disruptions. For the genes we have tested in these studies (myosin heavy chain kinases B and C), the efficiency of the double gene targeting event is found in the range of 2%-5% of all blasticidin-resistant colonies following the transfection step. This approach for the simultaneous disruptions of multiple genes should prove to be a valuable tool for other laboratories interested in creating multiple gene disruptants in Dictyostelium or other organisms where a limited number of selectable markers are available.
Collapse
|
13
|
Décave E, Rieu D, Dalous J, Fache S, Brechet Y, Fourcade B, Satre M, Bruckert F. Shear flow-induced motility of Dictyostelium discoideum cells on solid substrate. J Cell Sci 2003; 116:4331-43. [PMID: 12966168 DOI: 10.1242/jcs.00726] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Application of a mild hydrodynamic shear stress to Dicytostelium discoideum cells, unable to detach cells passively from the substrate, triggers a cellular response consisting of steady membrane peeling at the rear edge of the cell and periodic cell contact extensions at its front edge. Both processes require an active actin cytoskeleton. The cell movement induced by the hydrodynamic forces is very similar to amoeboid cell motion during chemotaxis, as for its kinematic parameters and for the involvement of phosphatidylinositol(3,4,5)-trisphosphate internal gradient to maintain cell polarity. Inhibition of phosphoinositide 3-kinases by LY294002 randomizes the orientation of cell movement with respect to the flow without modifying cell speed. Two independent signaling pathways are, therefore, induced in D. discoideum in response to external forces. The first increases the frequency of pseudopodium extension, whereas the second redirects the actin cytoskeleton polymerization machinery to the edge opposite to the stressed side of the cell.
Collapse
Affiliation(s)
- Emmanuel Décave
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, Département Réponse et Dynamique Cellulaires, CEA-Grenoble, DRDC/BBSI, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wei SH, Parker I, Miller MJ, Cahalan MD. A stochastic view of lymphocyte motility and trafficking within the lymph node. Immunol Rev 2003; 195:136-59. [PMID: 12969316 DOI: 10.1034/j.1600-065x.2003.00076.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Two-photon microscopy is providing literal insight into the cellular dynamics of lymphoid organs and, guided by analysis of three-dimensional images, into mechanisms that underlie cell migration and antigen recognition in vivo. This review describes lymphocyte motility and antigen recognition in the native tissue environment and compares these results with a much more extensive literature on lymphocyte motility, signaling, and chemotaxis in vitro. We discuss the in vitro literature on dynamic aspects of lymphocyte motility, chemotaxis, and the response to antigen and present the view that random migration of lymphocytes may drive a stochastic mechanism of antigen recognition in lymphoid organs, rather than being guided by chemotaxis.
Collapse
Affiliation(s)
- Sindy H Wei
- Departments of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
| | | | | | | |
Collapse
|