1
|
Vences-Guzmán MÁ, Jiménez-Rodríguez M, Lozano L, Rojas-Juárez S, Ramírez-Estudillo JA, Hernández-Vázquez ÁY, Pita-Ortiz IY, Ramírez-Ceballos KG, Medina-Medina S, Sohlenkamp C. A clinical metagenomic study of biopsies from Mexican endophthalmitis patients reveals the presence of complex bacterial communities and a diversity of resistance genes. Access Microbiol 2024; 6:000639.v3. [PMID: 39045243 PMCID: PMC11261729 DOI: 10.1099/acmi.0.000639.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 05/13/2024] [Indexed: 07/25/2024] Open
Abstract
Infectious endophthalmitis is a severe ophthalmic emergency. This infection can be caused by bacteria and fungi. For efficient treatment, the administration of antimicrobial drugs to which the microbes are susceptible is essential. The aim of this study was to identify micro-organisms in biopsies of Mexican endophthalmitis patients using metagenomic next-generation sequencing and determine which antibiotic resistance genes were present in the biopsy samples. In this prospective case study, 19 endophthalmitis patients were recruited. Samples of vitreous or aqueous humour were extracted for DNA extraction for metagenomic next-generation sequencing. Analysis of the sequencing results revealed the presence of a wide variety of bacteria in the biopsies. Resistome analysis showed that homologues of antibiotic resistance genes were present in several biopsy samples. Genes possibly conferring resistance to ceftazidime and vancomycin were detected in addition to various genes encoding efflux pumps. Our findings contrast with the widespread opinion that only one or a few bacterial strains are present in the infected tissues of endophthalmitis patients. These diverse communities might host many of the resistance genes that were detected, which can further complicate the infections.
Collapse
Affiliation(s)
| | | | - Luis Lozano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Sergio Rojas-Juárez
- Departamento de Retina, Fundación Hospital Nuestra Señora de la Luz IAP, Mexico City, Mexico
| | | | | | | | | | - Silvia Medina-Medina
- Departamento de Retina, Fundación Hospital Nuestra Señora de la Luz IAP, Mexico City, Mexico
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
2
|
Shahar S, Sant KE, Allsing N, Kelley ST. Metagenomic analysis of microbial communities and antibiotic resistant genes in the Tijuana river, and potential sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123067. [PMID: 38043772 PMCID: PMC11160352 DOI: 10.1016/j.envpol.2023.123067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
The Tijuana River is a transborder river that flows northwest across the border from Baja California in Mexico into Southern California before discharging into the Pacific Ocean. The river is frequently contaminated with raw sewage due to inadequate sanitary infrastructure in Tijuana. To assess the type and degree of microbial contamination, water samples were collected monthly from a near-border and an estuarine site from August 2020 until May 2021. A portion of each sample was used for epifluorescent microscopy and DNA was extracted directly from the rest for shotgun metagenomic sequencing. After sequence quality checking and processing, we used the rapid taxonomic identifier tool Kaiju to characterize the microbial diversity of the metagenomes and matched the sequences against the Comprehensive Antibiotic Resistance Database (CARD) to examine antimicrobial resistance genes (ARGs). Bacterial and viral-like particle (VLP) abundance was consistently higher in the near-border samples than in the estuarine samples, while alpha diversity (within sample biodiversity) was higher in estuarine samples. Beta-diversity analysis found clear compositional separation between samples from the two sites, and the near-border samples were more dissimilar to one another than were the estuarine sites. Near-border samples were dominated by fecal-associated bacteria and bacteria associated with sewage sludge, while estuarine sites were dominated by marine bacteria. ARGs were more abundant at the near-border site, but were also readily detectable in the estuarine samples, and the most abundant ARGs had multi-resistance to beta-lactam antibiotics. SourceTracker analysis identified human feces and sewage sludge to be the largest contributors to the near-border samples, while marine waters dominated estuarine samples except for two sewage overflow dates with high fecal contamination. Overall, our research determined human sewage microbes to be common in the Tijuana River, and the prevalence of ARGs confirms the importance of planned infrastructure treatment upgrades for environmental health.
Collapse
Affiliation(s)
- Shayla Shahar
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Karilyn E Sant
- School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - Nicholas Allsing
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Scott T Kelley
- Department of Biology, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
3
|
Canè C, Casciaro B, Di Somma A, Loffredo MR, Puglisi E, Battaglia G, Mellini M, Cappiello F, Rampioni G, Leoni L, Amoresano A, Duilio A, Mangoni ML. The antimicrobial peptide Esc(1-21)-1c increases susceptibility of Pseudomonas aeruginosa to conventional antibiotics by decreasing the expression of the MexAB-OprM efflux pump. Front Chem 2023; 11:1271153. [PMID: 37942400 PMCID: PMC10628714 DOI: 10.3389/fchem.2023.1271153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction: The increase in bacterial strains resistant to conventional antibiotics is an alarming problem for human health and could lead to pandemics in the future. Among bacterial pathogens responsible for a large variety of severe infections there is Pseudomonas aeruginosa. Therefore, there is an urgent need for new molecules with antimicrobial activity or that can act as adjuvants of antibiotics already in use. In this scenario, antimicrobial peptides (AMPs) hold great promise. Recently, we characterized a frog-skin AMP derived from esculentin-1a, namely Esc(1-21)-1c, endowed with antipseudomonal activity without being cytotoxic to human cells. Methods: The combinatorial effect of the peptide and antibiotics was investigated through the checkerboard assay, differential proteomic and transcriptional analysis. Results: Here, we found that Esc(1-21)-1c can synergistically inhibit the growth of P. aeruginosa cells with three different antibiotics, including tetracycline. We therefore investigated the underlying mechanism implemented by the peptide using a differential proteomic approach. The data revealed a significant decrease in the production of three proteins belonging to the MexAB-OprM efflux pump upon treatment with sub-inhibitory concentration of Esc(1-21)-1c. Down-regulation of these proteins was confirmed by transcriptional analysis and direct measurement of their relative levels in bacterial cells by tandem mass spectrometry analysis in multiple reaction monitoring scan mode. Conclusion: These evidences suggest that treatment with Esc(1-21)-1c in combination with antibiotics would increase the intracellular drug content making bacteria more susceptible to the antibiotic. Overall, these results highlight the importance of characterizing new molecules able to synergize with conventional antibiotics, paving the way for the development of alternative therapeutic strategies based on AMP/antibiotic formulations to counteract the emergence of resistant bacterial strains and increase the use of "old" antibiotics in medical practice.
Collapse
Affiliation(s)
- Carolina Canè
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Bruno Casciaro
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Angela Di Somma
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Maria Rosa Loffredo
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Elena Puglisi
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Gennaro Battaglia
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Marta Mellini
- Department of Science, University “Roma Tre”, Rome, Italy
| | - Floriana Cappiello
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Giordano Rampioni
- Department of Science, University “Roma Tre”, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Livia Leoni
- Department of Science, University “Roma Tre”, Rome, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- National Institute of Biostructure and Biosystems (INBB), Rome, Italy
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- National Institute of Biostructure and Biosystems (INBB), Rome, Italy
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Guliy OI, Zaitsev BD, Borodina IA. Electroacoustic Biosensor Systems for Evaluating Antibiotic Action on Microbial Cells. SENSORS (BASEL, SWITZERLAND) 2023; 23:6292. [PMID: 37514587 PMCID: PMC10383298 DOI: 10.3390/s23146292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023]
Abstract
Antibiotics are widely used to treat infectious diseases. This leads to the presence of antibiotics and their metabolic products in the ecosystem, especially in aquatic environments. In many countries, the growth of pathogen resistance to antibiotics is considered a threat to national security. Therefore, methods for determining the sensitivity/resistance of bacteria to antimicrobial drugs are important. This review discusses the mechanisms of the formation of antibacterial resistance and the various methods and sensor systems available for analyzing antibiotic effects on bacteria. Particular attention is paid to acoustic biosensors with active immobilized layers and to sensors that analyze antibiotics directly in liquids. It is shown that sensors of the second type allow analysis to be done within a short period, which is important for timely treatment.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms-Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia
| | - Boris D Zaitsev
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, Saratov 410019, Russia
| | - Irina A Borodina
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, Saratov 410019, Russia
| |
Collapse
|
5
|
Kumawat M, Nabi B, Sharma P, Pal N, Sarma DK, Shubham S, Tiwari RR, Singh S, Kumar M. Assessment of multidrug-resistant profile, multi-locus sequence typing and efflux pump activity in Salmonella Typhimurium isolated from hospital sewage. World J Microbiol Biotechnol 2023; 39:162. [PMID: 37067651 DOI: 10.1007/s11274-023-03607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/05/2023] [Indexed: 04/18/2023]
Abstract
Salmonella enterica serovar Typhimurium is becoming a leading cause of gastroenteritis and mortality. The use of antibiotics has increased natural resistance of S. Typhimurium to antibiotics. This study aims to isolate and characterize multi-drug-resistant (MDR) Salmonella strains from hospital sewage samples in Bhopal City, central India. The MDR isolates were characterized by molecular identification, antimicrobial resistance patterns, multi-locus sequence typing, and efflux pump activity. Specific genes (hilA, stn, invA, typh, and iroB) were used to confirm S. Typhimurium isolates. The Kirbey-Bauer method was employed to profile antimicrobial resistance using 20 antibiotics. Multi-locus sequence typing confirmed S. Typhimurium using seven housekeeping genes (aroC, dnaN, hemD, hisD, purE, sucA, and thr). Out of five strains, only four were confirmed as S. Typhimurium during MLST analysis. Efflux pump activity was determined using the ethidium bromide (EtBr) cartwheel test. Of the 160 isolates, 38 were presumptively confirmed as S. Typhimurium based on biochemical characterization, and only five MDR Salmonella strains were selected for their resistance against most antibiotics. Efflux pump activity revealed that five out of the four MDR isolates did not retain EtBr inside the cells, indicating pronounced efflux activity. Additionally, the isolated strains showed a specific correlation between the antimicrobial phenotypes and genotypes. The results of this study provide a better understanding of the characterization of S. Typhimurium serotype in Bhopal City. Future studies should focus on understanding changing antimicrobial resistance patterns, pathogenicity, and the genetic background of Salmonella serotypes. Further surveillance activities for antimicrobial-resistant Salmonella in different environmental sources should be prioritized.
Collapse
Affiliation(s)
- Manoj Kumawat
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Bilkees Nabi
- Department of Biochemistry & Biochemical Engineering, SHUATS, Allahabad, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Namrata Pal
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Swasti Shubham
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Rajnarayan R Tiwari
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Samradhi Singh
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Manoj Kumar
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
6
|
Allsing N, Kelley ST, Fox AN, Sant KE. Metagenomic Analysis of Microbial Contamination in the U.S. Portion of the Tijuana River Watershed. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:ijerph20010600. [PMID: 36612923 PMCID: PMC9819409 DOI: 10.3390/ijerph20010600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/02/2023]
Abstract
The Tijuana River watershed is binational, flowing from Tijuana, Mexico into San Diego and Imperial Beach, USA. Aging sewage and stormwater infrastructure in Tijuana has not kept pace with population growth, causing overflows into this watershed during major rainfall or equipment failures. The public health consequences of this impaired watershed on the surrounding communities remain unknown. Here, we performed untargeted metagenomic sequencing to better characterize the sewage contamination in the Tijuana River, identifying potential pathogens and molecular indicators of antibiotic resistance in surface waters. In 2019-2020, water samples were collected within 48 h of major rainfall events at five transborder flow sites and at the mouth of the river in the US portion of the Tijuana River and estuary. After filtration, DNA was extracted and sequenced, and sequences were run through the Kaiju taxonomic classification program. A pathogen profile of the most abundant disease-causing microbes and viruses present in each of the samples was constructed, and specific markers of fecal contamination were identified and linked to each site. Results from diversity analysis between the sites showed clear distinction as well as similarities between sites and dates, and antibiotic-resistant genes were found at each site. This serves as a baseline characterization of microbial exposures to these local communities.
Collapse
Affiliation(s)
- Nicholas Allsing
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Scott T. Kelley
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
- Bioinformatics and Medical Informatics Program, San Diego State University, San Diego, CA 92182, USA
| | - Alexandra N. Fox
- School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - Karilyn E. Sant
- School of Public Health, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
7
|
Li Y, Ge X. Molecular Dynamics Investigation of MFS Efflux Pump MdfA Reveals an Intermediate State between Its Inward and Outward Conformations. Int J Mol Sci 2022; 24:356. [PMID: 36613823 PMCID: PMC9820426 DOI: 10.3390/ijms24010356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Multidrug resistance poses a major challenge to antibiotic therapy. A principal cause of antibiotic resistance is through active export by efflux pumps embedded in the bacterial membrane. Major facilitator superfamily (MFS) efflux pumps constitute a major group of transporters, which are often related to quinolone resistance in clinical settings. Although a rocker-switch model is proposed for description of their conformational transitions, detailed changes in this process remain poorly understood. Here we used MdfA from E. coli as a representative MFS efflux pump to investigate factors that can affect its conformational transition in silico. Molecular dynamics (MD) simulations of MdfA's inward and outward conformations revealed an intermediate state between these two conformations. By comparison of the subtle differences between the intermediate state and the average state, we indicated that conformational transition from outward to inward was initiated by protonation of the periplasmic side. Subsequently, hydrophilic interaction of the periplasmic side with water was promoted and the regional structure of helix 1 was altered to favor this process. As the hydrophobic interaction between MdfA and membrane was also increased, energy was concentrated and stored for the opposite transition. In parallel, salt bridges at the cytoplasmic side were altered to lower probabilities to facilitate the entrance of substrate. In summary, we described the total and local changes during MdfA's conformational transition, providing insights for the development of potential inhibitors.
Collapse
Affiliation(s)
| | - Xizhen Ge
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| |
Collapse
|
8
|
Li Y, Ge X. Enhanced internal ionic interaction of MFS efflux pump MdfA contributes to its elevated antibiotic export. Phys Chem Chem Phys 2022; 25:788-795. [PMID: 36510750 DOI: 10.1039/d2cp05059e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Infections caused by Gram-negative pathogens are difficult to manage due to their antibiotic resistance. Efflux pumps, which transport intracellular toxins out of the cytoplasm, play an important role in the detoxification of bacteria when treated with antibiotics. The major facilitator superfamily (MFS) is a kind of widely distributed efflux pumps and can actively export clinically important antibiotics such as ciprofloxacin, while the role of internal ionic interactions in regulating drug export remains poorly understood. Herein we used a representative MFS efflux pump MdfA to investigate the impact of internal ionic interactions on the antibiotic resistance of E. coli. First, we identified the internal salt bridges of MdfA and searched their natural variants across all the sequenced E. coli isolates. By constructing these variants, we discovered that extending the salt bridge on the cytoplasmic side (E136D) conferred an elevated antibiotic resistance level of E. coli, and the level was further enhanced by combining it with an artificial mutation K346R. By analyzing the trajectories of MdfA's variants in molecular dynamics (MD) simulations, we revealed that ionic interaction strengths on the two sides were proportionally enhanced, while the protein flexibility was not affected. Moreover, enhanced interactions resulted in a larger surface for MdfA's protonation, suggesting a higher possibility for its activation. Collectively, our data revealed the importance of internal interactions on the drug export of MdfA, offering insights for the development of novel inhibitors against MFS efflux pumps.
Collapse
Affiliation(s)
- Ying Li
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.
| | - Xizhen Ge
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.
| |
Collapse
|
9
|
Characterisation of the triclosan efflux pump TriABC and its regulator TriR in Agrobacterium tumefaciens C58. Microbiol Res 2022; 263:127112. [DOI: 10.1016/j.micres.2022.127112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
|
10
|
Li A, Shi C, Qian S, Wang Z, Zhao S, Liu Y, Xue Z. Evaluation of antibiotic combination of Litsea cubeba essential oil on Vibrio parahaemolyticus inhibition mechanism and anti-biofilm ability. Microb Pathog 2022; 168:105574. [PMID: 35561981 DOI: 10.1016/j.micpath.2022.105574] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a common pathogen in seafood. The use of antibiotics is a primary tool to prevent and control V. parahaemolyticus in the aquaculture industry. However, V. parahaemolyticus combats the damage caused by antibiotics by forming biofilms under certain conditions. In this study, we analyzed the antibacterial effect and the characteristics of V. parahaemolyticus by experimentally determining the minimum inhibitory concentration (MIC) and the fractional inhibitory concentration index (FICI) values of a combination of the Litsea cubeba essential oil (LCEO) and several commonly used V. parahaemolyticus antibiotics. The bactericidal effect of the essential oil alone and essential oil in combination with the antibiotics were evaluated with time-kill curves. The damage to cell membranes and cell walls were assessed by measuring the content of macromolecules and alkaline phosphatase (AKP) released into the supernatant using V. parahaemolyticus ATCC17802 as the experimental strain. The membrane structure was observed by transmission electron microscopy. The results showed that the MIC value of the LCEO was 1,024 μg/mL, and the LCEO FICI values in combination with tetracycline or oxytetracycline hydrochloride was 0.3125 and 0.75, respectively, indicating synergistic and additive effects. Moreover, LCEO inhibited the growth and promoted the removal of biofilms by reducing the content of hydrophobic and extracellular polysaccharides on the cell surface. This study provides a reference for studying the antibacterial activity of LCEO and the combination of antibiotics to prevent and control the formation of biofilms by V. parahaemolyticus.
Collapse
Affiliation(s)
- Anqi Li
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, PR China
| | - Chenglong Shi
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, PR China
| | - Senhe Qian
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, PR China
| | - Zhou Wang
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, PR China.
| | - Shiguang Zhao
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, PR China; Xuancheng Industrial Technology, Research Institute of Anhui Polytechnic University, Anhui, Xuancheng, 242000, PR China
| | - Yan Liu
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, PR China
| | - Zhenglian Xue
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, PR China
| |
Collapse
|
11
|
Youlden G, McNeil HE, Blair JMA, Jabbari S, King JR. Mathematical Modelling Highlights the Potential for Genetic Manipulation as an Adjuvant to Counter Efflux-Mediated MDR in Salmonella. Bull Math Biol 2022; 84:56. [PMID: 35380320 PMCID: PMC8983579 DOI: 10.1007/s11538-022-01011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/02/2022] [Indexed: 11/18/2022]
Abstract
Bacteria have developed resistance to antibiotics by various mechanisms, notable amongst these is the use of permeation barriers and the expulsion of antibiotics via efflux pumps. The resistance-nodulation-division (RND) family of efflux pumps is found in Gram-negative bacteria and a major contributor to multidrug resistance (MDR). In particular, Salmonella encodes five RND efflux pump systems: AcrAB, AcrAD, AcrEF, MdsAB and MdtAB which have different substrate ranges including many antibiotics. We produce a spatial partial differential equation (PDE) model governing the diffusion and efflux of antibiotic in Salmonella, via these RND efflux pumps. Using parameter fitting techniques on experimental data, we are able to establish the behaviour of multiple wild-type and efflux mutant Salmonella strains, which enables us to produce efflux profiles for each individual efflux pump system. By combining the model with a gene regulatory network (GRN) model of efflux regulation, we simulate how the bacteria respond to their environment. Finally, performing a parameter sensitivity analysis, we look into various different targets to inhibit the efflux pumps. The model provides an in silico framework with which to test these potential adjuvants to counter MDR.
Collapse
Affiliation(s)
- George Youlden
- School of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK.
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Helen E McNeil
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jessica M A Blair
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sara Jabbari
- School of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - John R King
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
12
|
Liu Z, Zhang T, Wu K, Li Z, Chen X, Jiang S, Du L, Lu S, Lin C, Wu J, Wang X. Metagenomic Analysis Reveals A Possible Association Between Respiratory Infection and Periodontitis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:260-273. [PMID: 34252627 PMCID: PMC9684085 DOI: 10.1016/j.gpb.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 04/30/2021] [Accepted: 07/01/2021] [Indexed: 01/05/2023]
Abstract
Periodontitis is an inflammatory disease that is characterized by progressive destruction of the periodontium and causes tooth loss in adults. Periodontitis is known to be associated with dysbiosis of the oral microflora, which is often linked to various diseases. However, the complexity of plaque microbial communities of periodontitis, antibiotic resistance, and enhanced virulence make this disease difficult to treat. In this study, using metagenomic shotgun sequencing, we investigated the etiology, antibiotic resistance genes (ARGs), and virulence genes (VirGs) of periodontitis. We revealed a significant shift in the composition of oral microbiota as well as several functional pathways that were represented significantly more abundantly in periodontitis patients than in controls. In addition, we observed several positively selected ARGs and VirGs with the Ka/Ks ratio > 1 by analyzing our data and a previous periodontitis dataset, indicating that ARGs and VirGs in oral microbiota may be subjected to positive selection. Moreover, 5 of 12 positively selected ARGs and VirGs in periodontitis patients were found in the genomes of respiratory tract pathogens. Of note, 91.8% of the background VirGs with at least one non-synonymous single-nucleotide polymorphism for natural selection were also from respiratory tract pathogens. These observations suggest a potential association between periodontitis and respiratory infection at the gene level. Our study enriches the knowledge of pathogens and functional pathways as well as the positive selection of antibiotic resistance and pathogen virulence in periodontitis patients, and provides evidence at the gene level for an association between periodontitis and respiratory infection.
Collapse
Affiliation(s)
- Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Tao Zhang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Keke Wu
- Wenzhou Center for Disease Control and Prevention, Wenzhou 325000, China
| | - Zhongshan Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaomin Chen
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Shan Jiang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Lifeng Du
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Saisai Lu
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 352000, China
| | - Chongxiang Lin
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China,Corresponding authors.
| | - Xiaobing Wang
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 352000, China,Corresponding authors.
| |
Collapse
|
13
|
Samreen, Qais FA, Ahmad I. In silico screening and in vitro validation of phytocompounds as multidrug efflux pump inhibitor against E. coli. J Biomol Struct Dyn 2022; 41:2189-2201. [PMID: 35067192 DOI: 10.1080/07391102.2022.2029564] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple drug resistance (MDR) in bacteria has increased globally in recent times. This has reduced the efficacy of antibiotics and increasing the rate of therapeutic failure. Targeting efflux pump by natural and synthetic compounds is one of the strategies to develop an ideal broad-spectrum resistance-modifying agent. Very few inhibitors of AcrB from natural sources have been reported till date. In the current study, 19 phytocompounds were screened for efflux pump inhibitory activity against AcrB protein of E. coli TG1 using molecular docking studies. The molecular dynamics simulation provided stability the protein (AcrB) and its complex with chlorogenic acid under physiological conditions. Moreover, the detailed molecular insights of the binding were also explored. The Lipinski rule of 5 and the drug-likeness prediction was determined using Swiss ADME server, while toxicity prediction was done using admetSAR and PROTOX-II webservers. Chlorogenic acid showed the highest binding affinity (-9.1 kcal mol-1) with AcrB protein among all screened phytocompounds. Consequently, all the phytocompounds that accede to Lipinski's rule, demonstrated a high LD50 value indicating that they are non-toxic except the phytocompound reserpine. Chlorogenic acid and capsaicin are filtered out based on the synergy with tetracycline having FIC index of 0.25 and 0.28. The percentage increase of EtBr fluorescence by chlorogenic acid was 36.6% followed by piperine (24.2%). Chlorogenic acid may be a promising efflux pump inhibitor that might be employed in combination therapy with tetracycline against E. coli, based on the above relationship between in silico screening and in vitro positive efflux inhibitory activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samreen
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
14
|
Hasan CM, Dutta D, Nguyen ANT. Revisiting Antibiotic Resistance: Mechanistic Foundations to Evolutionary Outlook. Antibiotics (Basel) 2021; 11:antibiotics11010040. [PMID: 35052917 PMCID: PMC8773413 DOI: 10.3390/antibiotics11010040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Antibiotics are the pivotal pillar of contemporary healthcare and have contributed towards its advancement over the decades. Antibiotic resistance emerged as a critical warning to public wellbeing because of unsuccessful management efforts. Resistance is a natural adaptive tool that offers selection pressure to bacteria, and hence cannot be stopped entirely but rather be slowed down. Antibiotic resistance mutations mostly diminish bacterial reproductive fitness in an environment without antibiotics; however, a fraction of resistant populations 'accidentally' emerge as the fittest and thrive in a specific environmental condition, thus favouring the origin of a successful resistant clone. Therefore, despite the time-to-time amendment of treatment regimens, antibiotic resistance has evolved relentlessly. According to the World Health Organization (WHO), we are rapidly approaching a 'post-antibiotic' era. The knowledge gap about antibiotic resistance and room for progress is evident and unified combating strategies to mitigate the inadvertent trends of resistance seem to be lacking. Hence, a comprehensive understanding of the genetic and evolutionary foundations of antibiotic resistance will be efficacious to implement policies to force-stop the emergence of resistant bacteria and treat already emerged ones. Prediction of possible evolutionary lineages of resistant bacteria could offer an unswerving impact in precision medicine. In this review, we will discuss the key molecular mechanisms of resistance development in clinical settings and their spontaneous evolution.
Collapse
Affiliation(s)
- Chowdhury M. Hasan
- School of Biological Sciences, University of Queensland, Brisbane 4072, Australia
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary & Ecological Sciences (IVES), University of Liverpool, Liverpool L7 3EA, UK;
- School of Biological Sciences, Monash University, Melbourne 3800, Australia;
- Correspondence:
| | - Debprasad Dutta
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary & Ecological Sciences (IVES), University of Liverpool, Liverpool L7 3EA, UK;
- Department of Human Genetics, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore 560029, India
| | - An N. T. Nguyen
- School of Biological Sciences, Monash University, Melbourne 3800, Australia;
| |
Collapse
|
15
|
Deka B, Suri M, Sarma S, Devi MV, Bora A, Sen T, Dihingia A, Pahari P, Singh AK. Potentiating the intracellular killing of Staphylococcus aureus by dihydroquinazoline analogues as NorA efflux pump inhibitor. Bioorg Med Chem 2021; 54:116580. [PMID: 34953341 DOI: 10.1016/j.bmc.2021.116580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus is an emerging human pathogen that has become difficult to treat due to its high resistance against wide range of drugs. Emergence of drug resistant isolates has further convoluted the treatment process. Among different resistance mechanisms, efflux pump proteins play a central role and has made itself a direct approach for therapeutic exploration. To demarcate the role of dihydroquinazoline analogues as NorA efflux pump inhibitor in S. aureus1199B (NorA over producing) strain total seventeen analogues were synthesized and tested for their modulatory effects on norfloxacin and Etbr resistance. Further accumulation assays, bacterial time kill kinetics, cytotoxicity assay were also carried out. The intracellular killing ability of analogues, as EPI was determined using THP-1 monocytes. The binding interaction of analogues with NorA was also predicted. Dihydroquinazoline analogues notably reduced the MIC of norfloxacin and Etbr in S. aureus1199B. In addition to their very low toxicity, they showed high Etbr and norfloxacin accumulation respectively. Further effective over time log reduction in bacterial kill kinetics in presence of these analogues confirmed their role as NorA efflux pump inhibitor. FESEM analysis clearly depicted their effect on the cell surface morphology owing to its lyses. The most significant finding of this study was the ability of analogues to significantly reduce the intracellular S. aureus1199B in human THP-1 monocytes in presence of norfloxacin. Our study has shown for the first time the possibility of developing the dihydroquinazoline analogues as NorA efflux pump inhibitors for S. aureus and control its infection.
Collapse
Affiliation(s)
- Banani Deka
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mrinaly Suri
- Applied Organic Chemistry Group, Chemical Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Sangita Sarma
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Moirangthem Veigyabati Devi
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anamika Bora
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Applied Organic Chemistry Group, Chemical Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Tejosmita Sen
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anjum Dihingia
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pallab Pahari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Applied Organic Chemistry Group, Chemical Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
| | - Anil Kumar Singh
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Duang-Nkern J, Nontaleerak B, Udomkanarat T, Saninjuk K, Sukchawalit R, Mongkolsuk S. NieR is the repressor of a NaOCl-inducible efflux system in Agrobacterium tumefaciens C58. Microbiol Res 2021; 251:126816. [PMID: 34273784 DOI: 10.1016/j.micres.2021.126816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 05/15/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022]
Abstract
The Agrobacterium tumefaciens atu4217 gene, which encodes a TetR family transcription regulator, is a repressor of the atu4218-atu4219-atu4220 operon. The Atu4218 and Atu4219 proteins belong to the HlyD family (membrane fusion protein) and the AcrB/AcrD/AcrF family (inner membrane transporter), respectively, and may form an efflux pump. The atu4220 gene encodes a short-chain dehydrogenase. Quantitative real-time PCR analysis showed induction of atu4217 and atu4218 by NaOCl but not by N-ethylmaleimide or reactive oxygen species (ROS) including H2O2, menadione and cumene hydroperoxide; therefore, the atu4218 and atu4219 were named NaOCl-inducible efflux genes nieA and nieB, respectively. The atu4217 gene, which was named nieR, serves as a repressor of nieA and nieB. DNase I footprinting assays identified 20-bp imperfect inverted repeat (IR, underlined) motifs 5'-TAGATTTAGGATGCAATCTA-3' (box A) and 5'-TAGATTTCACTTGACATCTA-3' (box R) in the intergenic region of the divergent nieA and nieR genes; these motifs were recognized by the NieR protein. Electrophoretic mobility shift assays demonstrated that NieR specifically binds to the 20-bp IR motifs and that NaOCl prevents this NieR-DNA interaction. Promoter-lacZ fusions and mutagenesis of the NieR boxes (A and R) showed a more dominant role for box A than for box R in the repression of the nieA and nieR promoters. However, full repression of either promoter required both operators. The nieR mutant strain exhibited a small colony phenotype and was more sensitive than the wild-type to NaOCl and antibiotics, including ciprofloxacin, nalidixic acid, novobiocin, and tetracycline. By contrast, the nieAB mutant strain showed no phenotype changes under the tested conditions.
Collapse
Affiliation(s)
- Jintana Duang-Nkern
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand
| | - Benya Nontaleerak
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand
| | - Tham Udomkanarat
- Environmental Toxicology, Chulabhorn Graduate Institute, Lak Si, Bangkok, 10210, Thailand
| | - Kritsakorn Saninjuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand
| | - Rojana Sukchawalit
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand; Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand.
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand
| |
Collapse
|
17
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
18
|
Pattanayak BS, Dehury B, Priyadarshinee M, Jha S, Beuria TK, Soren D, Mallick BC. Kanamycin-Mediated Conformational Dynamics of Escherichia coli Outer Membrane Protein TolC. Front Mol Biosci 2021; 8:636286. [PMID: 33937327 PMCID: PMC8083960 DOI: 10.3389/fmolb.2021.636286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
TolC is a member of the outer membrane efflux proteins (OEPs) family and acts as an exit duct to export proteins, antibiotics, and substrate molecules across the Escherichia coli cell membrane. Export of these molecules is evidenced to be brought about through the reversible interactions and binding of substrate-specific drug molecules or antibiotics with TolC and by being open for transport, which afterward leads to cross-resistance. Hence, the binding of kanamycin with TolC was monitored through molecular docking (MD), the structural fluctuations and conformational changes to the atomic level. The results were further supported from the steady-state fluorescence binding and isothermal titration calorimetry (ITC) studies. Binding of kanamycin with TolC resulted in a concentration dependent fluorescence intensity quenching with 7 nm blue shift. ITC binding data maintains a single binding site endothermic energetic curve with binding parameters indicating an entropy driven binding process. The confirmational changes resulting from this binding were monitored by a circular dichroism (CD) study, and the results showed insignificant changes in the α-helix and β-sheets secondary structure contents, but the tertiary structure shows inclusive changes in the presence of kanamycin. The experimental data substaintially correlates the RMSD, R g, and RMSF results. The resulting conformational changes of the TolC-kanamycin complexation was stabilized through H-bonding and other interactions.
Collapse
Affiliation(s)
| | - Budheswar Dehury
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Suman Jha
- Department of Life Sciences, National Institute of Technology, Rourkela, India
| | | | | | | |
Collapse
|
19
|
Elmogy S, Ismail MA, Hassan RYA, Noureldeen A, Darwish H, Fayad E, Elsaid F, Elsayed A. Biological Insights of Fluoroaryl-2,2'-Bichalcophene Compounds on Multi-Drug Resistant Staphylococcus aureus. Molecules 2020; 26:E139. [PMID: 33396841 PMCID: PMC7795799 DOI: 10.3390/molecules26010139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 01/23/2023] Open
Abstract
Resistance of bacteria to multiple antibiotics is a significant health problem; hence, to continually respond to this challenge, different antibacterial agents must be constantly discovered. In this work, fluoroaryl-2,2'-bichalcophene derivatives were chemically synthesized and their biological activities were evaluated against Staphylococcus aureus (S. aureus). The impact of the investigated bichalcophene derivatives was studied on the ultrastructural level via scanning electron microscopy (SEM), molecular level via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) method and on the biofilm inhibition via the electrochemical biosensors. Arylbichalcophenes' antibacterial activity against S. aureus was affected by the presence and location of fluorine atoms. The fluorobithiophene derivative MA-1156 displayed the best minimum inhibitory concentration (MIC) value of 16 µM among the tested fluoroarylbichalcophenes. Over a period of seven days, S. aureus did not develop any resistance against the tested fluoroarylbichalcophenes at higher concentrations. The impact of fluoroarylbichalcophenes was strong on S. aureus protein pattern showing high degrees of polymorphism. SEM micrographs of S. aureus cells treated with fluoroarylbichalcophenes displayed smaller cell-sizes, fewer numbers, arranged in a linear form and some of them were damaged when compared to the untreated cells. The bioelectrochemical measurements demonstrated the strong sensitivity of S. aureus cells to the tested fluoroarylbichalcophenes and an antibiofilm agent. Eventually, these fluoroarylbichalcophene compounds especially the MA-1156 could be recommended as effective antibacterial agents.
Collapse
Affiliation(s)
- Sally Elmogy
- Botany Department, Faculty of Science, Mansoura University, Elgomhouria St., Mansoura 35516, Egypt;
| | - Mohamed A. Ismail
- Chemistry Department, Faculty of Science, Mansoura University, Elgomhouria St., Mansoura 35516, Egypt;
| | - Rabeay Y. A. Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, 6th October City, Giza 12588, Egypt;
- Applied Organic Chemistry Department, National Research Centre (NRC), Dokki, Giza 12622, Egypt
| | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Department of Agricultural Zoology, Faculty of Agriculture, Mansoura University, Elgomhouria St., Mansoura 35516, Egypt
| | - Hadeer Darwish
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (H.D.); (E.F.)
- Department of Medicinal and Aromatic Plants, Horticulture Institute, Agriculture Research Center, Giza 12619, Egypt
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (H.D.); (E.F.)
| | - Fahmy Elsaid
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 10347, Abha 61321, Saudi Arabia;
- Zoology Department, Faculty of Sciences, Mansoura University, Elgomhouria St., Mansoura 35516, Egypt
| | - Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University, Elgomhouria St., Mansoura 35516, Egypt;
| |
Collapse
|
20
|
Lima LM, Silva BNMD, Barbosa G, Barreiro EJ. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur J Med Chem 2020; 208:112829. [DOI: 10.1016/j.ejmech.2020.112829] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 11/27/2022]
|
21
|
Rajapaksha P, Pandeya A, Wei Y. Probing the Dynamics of AcrB Through Disulfide Bond Formation. ACS OMEGA 2020; 5:21844-21852. [PMID: 32905396 PMCID: PMC7469415 DOI: 10.1021/acsomega.0c02921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
The resistant-nodulation-division (RND) superfamily member tripartite AcrA-AcrB-TolC efflux pump is a major contributor to the multidrug resistance in Escherichia coli. AcrB is the inner membrane protein of the efflux complex and is responsible for the recognition and binding of compounds before their transportation out of the cell. Understanding the dynamics of AcrB during functional rotation in the process of drug efflux is the focus of this study. For this purpose, we introduced six inter-subunit disulfide bonds into the periplasmic domain of AcrB using site-directed mutagenesis to study the importance of the relative flexibility at the inter-subunit interface. Western blot analysis revealed the formation of disulfide bond-linked AcrB oligomers, which were reduced into monomers under reducing conditions. The impact of mutation and formation of disulfide bond on efflux were evaluated via comparison of the minimum inhibitory concentration (MIC) of an acrB knockout strain expressing different mutants. The double Cys mutants tested led to equal or higher susceptibility to AcrB substrates compared to their corresponding single mutants. To determine if the reduction of activity in a double mutant is due to restriction on conformational changes by the disulfide bond formation, ethidium bromide accumulation assays were conducted utilizing dithiothreitol (DTT) as the reducing agent. In two cases, the activities of the double Cys mutants were partially restored by DTT reduction, confirming the importance of relative movement in the respective location for function. These findings provide new insights into the dynamics of the AcrAB-TolC efflux pump in E. coli.
Collapse
|
22
|
Reuter A, Virolle C, Goldlust K, Berne-Dedieu A, Nolivos S, Lesterlin C. Direct visualisation of drug-efflux in liveEscherichia colicells. FEMS Microbiol Rev 2020; 44:782-792. [DOI: 10.1093/femsre/fuaa031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
ABSTRACTDrug-efflux by pump proteins is one of the major mechanisms of antibiotic resistance in bacteria. Here, we use quantitative fluorescence microscopy to investigate the real-time dynamics of drug accumulation and efflux in live E. coli cells. We visualize simultaneously the intrinsically fluorescent protein-synthesis inhibitor tetracycline (Tc) and the fluorescently labelled Tc-specific efflux pump, TetA. We show that Tc penetrates the cells within minutes and accumulates to stable intracellular concentration after ∼20 min. The final level of drug accumulation reflects the balance between Tc-uptake by the cells and Tc-efflux by pump proteins. In wild-type Tc-sensitive cells, drug accumulation is significantly limited by the activity of the multidrug efflux pump, AcrAB-TolC. Tc-resistance wild-type cells carrying a plasmid-borne Tn10 transposon contain variable amounts of TetA protein, produced under steady-state repression by the TetR repressor. TetA content heterogeneity determines the cells’ initial ability to efflux Tc. Yet, efflux remains partial until the synthesis of additional TetA pumps allows for Tc-efflux activity to surpass Tc-uptake. Cells overproducing TetA no longer accumulate Tc and become resistant to high concentrations of the drug. This work uncovers the dynamic balance between drug entry, protein-synthesis inhibition, efflux-pump production, drug-efflux activity and drug-resistance levels.
Collapse
Affiliation(s)
- Audrey Reuter
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Chloé Virolle
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Kelly Goldlust
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Annick Berne-Dedieu
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Sophie Nolivos
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Christian Lesterlin
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| |
Collapse
|
23
|
Hou YM, Masuda I, Foster LJ. tRNA methylation: An unexpected link to bacterial resistance and persistence to antibiotics and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1609. [PMID: 32533808 DOI: 10.1002/wrna.1609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/02/2023]
Abstract
A major threat to public health is the resistance and persistence of Gram-negative bacteria to multiple drugs during antibiotic treatment. The resistance is due to the ability of these bacteria to block antibiotics from permeating into and accumulating inside the cell, while the persistence is due to the ability of these bacteria to enter into a nonreplicating state that shuts down major metabolic pathways but remains active in drug efflux. Resistance and persistence are permitted by the unique cell envelope structure of Gram-negative bacteria, which consists of both an outer and an inner membrane (OM and IM, respectively) that lay above and below the cell wall. Unexpectedly, recent work reveals that m1 G37 methylation of tRNA, at the N1 of guanosine at position 37 on the 3'-side of the tRNA anticodon, controls biosynthesis of both membranes and determines the integrity of cell envelope structure, thus providing a novel link to the development of bacterial resistance and persistence to antibiotics. The impact of m1 G37-tRNA methylation on Gram-negative bacteria can reach further, by determining the ability of these bacteria to exit from the persistence state when the antibiotic treatment is removed. These conceptual advances raise the possibility that successful targeting of m1 G37-tRNA methylation can provide new approaches for treating acute and chronic infections caused by Gram-negative bacteria. This article is categorized under: Translation > Translation Regulation RNA Processing > RNA Editing and Modification RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Leonard J Foster
- Department of Biochemistry & Molecular Biology, and Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| |
Collapse
|
24
|
Baral B, Mozafari MR. Strategic Moves of "Superbugs" Against Available Chemical Scaffolds: Signaling, Regulation, and Challenges. ACS Pharmacol Transl Sci 2020; 3:373-400. [PMID: 32566906 PMCID: PMC7296549 DOI: 10.1021/acsptsci.0c00005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Indexed: 12/12/2022]
Abstract
Superbugs' resistivity against available natural products has become an alarming global threat, causing a rapid deterioration in public health and claiming tens of thousands of lives yearly. Although the rapid discovery of small molecules from plant and microbial origin with enhanced bioactivity has provided us with some hope, a rapid hike in the resistivity of superbugs has proven to be the biggest therapeutic hurdle of all times. Moreover, several distinct mechanisms endowed by these notorious superbugs make them immune to these antibiotics subsequently causing our antibiotic wardrobe to be obsolete. In this unfortunate situation, though the time frame for discovering novel "hit molecules" down the line remains largely unknown, our small hope and untiring efforts injected in hunting novel chemical scaffolds with unique molecular targets using high-throughput technologies may safeguard us against these life-threatening challenges to some extent. Amid this crisis, the current comprehensive review highlights the present status of knowledge, our search for bacteria Achilles' heel, distinct molecular signaling that an opportunistic pathogen bestows to trespass the toxicity of antibiotics, and facile strategies and appealing therapeutic targets of novel drugs. Herein, we also discuss multidimensional strategies to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Bikash Baral
- Department
of Biochemistry, University of Turku, Tykistökatu 6, Turku, Finland
| | - M. R. Mozafari
- Australasian
Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia
| |
Collapse
|
25
|
Genome Shuffling of Bacillus velezensis for Enhanced Surfactin Production and Variation Analysis. Curr Microbiol 2019; 77:71-78. [DOI: 10.1007/s00284-019-01807-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
|
26
|
Shati AA, Elsaid FG. Biosynthesized silver nanoparticles and their genotoxicity. J Biochem Mol Toxicol 2019; 34:e22418. [PMID: 31714658 DOI: 10.1002/jbt.22418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/17/2019] [Accepted: 10/18/2019] [Indexed: 11/09/2022]
Abstract
The human-pathogenic bacteria have become highly resistant to conventional antibiotics; for this reason, a new biosynthesized nanomaterial might be a solution. The culture filtrate of two isolates of Fusarium oxysporum (14, 17) was used in the biosynthesis of nanosilver (AgNPs). The size of the nanoparticles produced by isolate F14 ranged from 19 to 30 nm, whereas the size of those formed via isolate F17 ranged between 16 and 25 nm. Moreover, the produced bio-nanosilver was tested against the human-pathogenic bacteria Proteus vulgaris, Escherichia coli, Staphylococcus aureus, and Klebsiella pneumonia and the outcome results displayed great antibacterial efficacy in a different manner compared with the three different biogenic antibiotics. Collectively, the results depicted that the silver nanoparticles (AgNPs) showed a three and a half times greater activity than the used antibiotics. Differential display reverse transcription-polymerase chain reaction was used to study gene regulation in the treated E. coli (F14) compared with the nontreated ones. Different upregulated and downregulated genes were observed. The cytotoxicity of the produced AgNPs was examined on rats with an average body weight of 200 g each; these animals were grouped into three different groups. The obtained AgNPs showed very low toxicity on the treated rats in comparison to the control group. The physiological parameters, for example, alanine aminotransferase, aspartate transaminase, albumin, creatinine, and urea in the treated animals were changed within to a lower degree compared with those in the nontreated animals. The current study exhibited that AgNPs might be favorable antibacterial agents, especially against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Fahmy G Elsaid
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia.,Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
27
|
Penesyan A, Nagy SS, Kjelleberg S, Gillings MR, Paulsen IT. Rapid microevolution of biofilm cells in response to antibiotics. NPJ Biofilms Microbiomes 2019; 5:34. [PMID: 31728201 PMCID: PMC6834608 DOI: 10.1038/s41522-019-0108-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/03/2019] [Indexed: 02/08/2023] Open
Abstract
Infections caused by Acinetobacter baumannii are increasingly antibiotic resistant, generating a significant public health problem. Like many bacteria, A. baumannii adopts a biofilm lifestyle that enhances its antibiotic resistance and environmental resilience. Biofilms represent the predominant mode of microbial life, but research into antibiotic resistance has mainly focused on planktonic cells. We investigated the dynamics of A. baumannii biofilms in the presence of antibiotics. A 3-day exposure of A. baumannii biofilms to sub-inhibitory concentrations of antibiotics had a profound effect, increasing biofilm formation and antibiotic resistance in the majority of biofilm dispersal isolates. Cells dispersing from biofilms were genome sequenced to identify mutations accumulating in their genomes, and network analysis linked these mutations to their phenotypes. Transcriptomics of biofilms confirmed the network analysis results, revealing novel gene functions of relevance to both resistance and biofilm formation. This approach is a rapid and objective tool for investigating resistance dynamics of biofilms.
Collapse
Affiliation(s)
- Anahit Penesyan
- 1Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109 Australia.,2School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052 Australia
| | - Stephanie S Nagy
- 1Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109 Australia
| | - Staffan Kjelleberg
- 3Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Drive, SBS-01N-27, Singapore, 637551 Singapore.,4School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore.,5School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Michael R Gillings
- 6Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109 Australia
| | - Ian T Paulsen
- 1Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109 Australia
| |
Collapse
|
28
|
Atzori A, Malloci G, Prajapati JD, Basciu A, Bosin A, Kleinekathöfer U, Dreier J, Vargiu AV, Ruggerone P. Molecular Interactions of Cephalosporins with the Deep Binding Pocket of the RND Transporter AcrB. J Phys Chem B 2019; 123:4625-4635. [PMID: 31070373 PMCID: PMC6939625 DOI: 10.1021/acs.jpcb.9b01351] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The drug/proton antiporter AcrB, part of the major efflux pump AcrABZ-TolC in Escherichia coli, is characterized by its impressive ability to transport chemically diverse compounds, conferring a multidrug resistance phenotype. However, the molecular features differentiating between good and poor substrates of the pump have yet to be identified. In this work, we combined molecular docking with molecular dynamics simulations to study the interactions between AcrB and two representative cephalosporins, cefepime and ceftazidime (a good and poor substrate of AcrB, respectively). Our analysis revealed different binding preferences of the two compounds toward the subsites of the large deep binding pocket of AcrB. Cefepime, although less hydrophobic than ceftazidime, showed a higher affinity than ceftazidime for the so-called hydrophobic trap, a region known for binding inhibitors and substrates. This supports the hypothesis that surface complementarity between the molecule and AcrB, more than the intrinsic hydrophobicity of the antibiotic, is a feature required for the interaction within this region. Oppositely, the preference of ceftazidime for binding outside the hydrophobic trap might not be optimal for triggering allosteric conformational changes needed to the transporter to accomplish its function. Altogether, our findings could provide valuable information for the design of new antibiotics less susceptible to the efflux mechanism.
Collapse
Affiliation(s)
- Alessio Atzori
- Department of Physics, University of Cagliari, 09042 Monserrato (CA), Italy
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, 09042 Monserrato (CA), Italy
| | | | - Andrea Basciu
- Department of Physics, University of Cagliari, 09042 Monserrato (CA), Italy
| | - Andrea Bosin
- Department of Physics, University of Cagliari, 09042 Monserrato (CA), Italy
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Jürg Dreier
- Basilea Pharmaceutica International Ltd., Grenzacherstrasse 487, 4058 Basel, Switzerland
| | - Attilio V. Vargiu
- Department of Physics, University of Cagliari, 09042 Monserrato (CA), Italy
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, 09042 Monserrato (CA), Italy
| |
Collapse
|
29
|
Gong Z, Li H, Cai Y, Stojkoska A, Xie J. Biology of MarR family transcription factors and implications for targets of antibiotics against tuberculosis. J Cell Physiol 2019; 234:19237-19248. [PMID: 31012115 DOI: 10.1002/jcp.28720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
The emergence of multidrug resistant (MDR) Mycobacterium tuberculosis strains and increased incidence of HIV coinfection fueled the difficulty in controlling tuberculosis (TB). MarR (multiple antibiotic resistance regulator) family transcription factors can regulate marRAB operon and are involved in resistance to multiple environmental stresses. We have summarized the structure, function, distribution, and regulation of the MarR family proteins, as well as their implications for novel targets for antibiotics, especially for tuberculosis.
Collapse
Affiliation(s)
- Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Hui Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuhua Cai
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Andrea Stojkoska
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
30
|
Rehman A, Patrick WM, Lamont IL. Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: new approaches to an old problem. J Med Microbiol 2019; 68:1-10. [DOI: 10.1099/jmm.0.000873] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Attika Rehman
- 1Department of Biochemistry, University of Otago, New Zealand
| | - Wayne M. Patrick
- 1Department of Biochemistry, University of Otago, New Zealand
- 2School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Iain L. Lamont
- 1Department of Biochemistry, University of Otago, New Zealand
| |
Collapse
|
31
|
Cadena M, Froenicke L, Britton M, Settles ML, Durbin-Johnson B, Kumimoto E, Gallardo RA, Ferreiro A, Chylkova T, Zhou H, Pitesky M. Transcriptome Analysis of Salmonella Heidelberg after Exposure to Cetylpyridinium Chloride, Acidified Calcium Hypochlorite, and Peroxyacetic Acid. J Food Prot 2019; 82:109-119. [PMID: 30702951 DOI: 10.4315/0362-028x.jfp-18-235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The application of RNA sequencing in commercial poultry could facilitate a novel approach toward food safety with respect to identifying conditions in food production that mitigate transcription of genes associated with virulence and survivability. In this study, we evaluated the effects of disinfectant exposure on the transcriptomes of two field isolates of Salmonella Heidelberg (SH) isolated from a commercial broiler processing plant in 1992 and 2014. The isolates were each exposed separately to the following disinfectants commonly used in poultry processing: cetylpyridinium chloride (CPC), acidified calcium hypochlorite (aCH), and peroxyacetic acid (PAA). Exposure times were 8 s with CPC to simulate a poultry processing dipping station or 90 min with aCH and PAA to simulate the chiller tank in a poultry processing plant at 4°C. Based on comparison with a publicly available annotated SH reference genome with 5,088 genes, 90 genes were identified as associated with virulence, pathogenicity, and resistance (VPR). Of these 90 VPR genes, 9 (10.0%), 28 (31.1%), and 1 (1.1%) gene were upregulated in SH 2014 and 21 (23.3%), 26 (28.9%), and 2 (2.2%) genes were upregulated in SH 2014 challenged with CPC, aCH, and PAA, respectively. This information and previously reported MICs for the three disinfectants with both SH isolates allow researchers to make more accurate recommendations regarding control methods of SH and public health considerations related to SH in food production facilities where SH has been isolated. For example, the MICs revealed that aCH is ineffective for SH inhibition at regulatory levels allowed for poultry processing and that aCH was ineffective for inhibiting SH growth and caused an upregulation of VPR genes.
Collapse
Affiliation(s)
- Myrna Cadena
- 1 Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, California 95616, USA.,2 Cooperative Extension, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Lutz Froenicke
- 3 Genome Center, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Monica Britton
- 3 Genome Center, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Matthew L Settles
- 3 Genome Center, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Blythe Durbin-Johnson
- 4 Department of Public Health Sciences, School of Medicine, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Emily Kumimoto
- 3 Genome Center, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Rodrigo A Gallardo
- 1 Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Aura Ferreiro
- 1 Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, California 95616, USA.,2 Cooperative Extension, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Tereza Chylkova
- 1 Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, California 95616, USA.,2 Cooperative Extension, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Huaijun Zhou
- 5 Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Maurice Pitesky
- 1 Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, California 95616, USA.,2 Cooperative Extension, University of California, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
32
|
Atzori A, Malviya VN, Malloci G, Dreier J, Pos KM, Vargiu AV, Ruggerone P. Identification and characterization of carbapenem binding sites within the RND-transporter AcrB. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:62-74. [PMID: 30416087 DOI: 10.1016/j.bbamem.2018.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
Abstract
Understanding the molecular determinants for recognition, binding and transport of antibiotics by multidrug efflux systems is important for basic research and useful for the design of more effective antimicrobial compounds. Imipenem and meropenem are two carbapenems whose antibacterial activity is known to be poorly and strongly affected by MexAB-OprM, the major efflux pump transporter in Pseudomonas aeruginosa. However, not much is known regarding recognition and transport of these compounds by AcrAB-TolC, which is the MexAB-OprM homologue in Escherichia coli and by definition the paradigm model for structural studies on efflux pumps. Prompted by this motivation, we unveiled the molecular details of the interaction of imipenem and meropenem with the transporter AcrB by combining computer simulations with biophysical experiments. Regarding the interaction with the two main substrate binding regions of AcrB, the so-called access and deep binding pockets, molecular dynamics simulations revealed imipenem to be more mobile than meropenem in the former, while comparable mobilities were observed in the latter. This result is in line with isothermal titration calorimetry, differential scanning experiments, and binding free energy calculations, indicating a higher affinity for meropenem than imipenem at the deep binding pocket, while both sharing similar affinities at the access pocket. Our findings rationalize how different physico-chemical properties of compounds reflect on their interactions with AcrB. As such, they constitute precious information to be exploited for the rational design of antibiotics able to evade efflux pumps.
Collapse
Affiliation(s)
- Alessio Atzori
- Department of Physics, University of Cagliari, 09042 Monserrato, CA, Italy
| | - Viveka N Malviya
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, 09042 Monserrato, CA, Italy
| | - Jürg Dreier
- Basilea Pharmaceutica International Ltd., Grenzacherstrasse 487, 4058 Basel, Switzerland
| | - Klaas M Pos
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Attilio V Vargiu
- Department of Physics, University of Cagliari, 09042 Monserrato, CA, Italy
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, 09042 Monserrato, CA, Italy,.
| |
Collapse
|
33
|
Zaichik S, Steinbring C, Menzel C, Knabl L, Orth-Höller D, Ellemunter H, Niedermayr K, Bernkop-Schnürch A. Development of self-emulsifying drug delivery systems (SEDDS) for ciprofloxacin with improved mucus permeating properties. Int J Pharm 2018; 547:282-290. [DOI: 10.1016/j.ijpharm.2018.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/30/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022]
|
34
|
Nuonming P, Khemthong S, Dokpikul T, Sukchawalit R, Mongkolsuk S. Characterization and regulation of AcrABR, a RND-type multidrug efflux system, in Agrobacterium tumefaciens C58. Microbiol Res 2018; 214:146-155. [PMID: 30031477 DOI: 10.1016/j.micres.2018.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/11/2018] [Accepted: 06/30/2018] [Indexed: 10/28/2022]
Abstract
Agrobacterium tumefaciens AcrR is the transcriptional repressor of the acrABR operon. The AcrAB efflux pump confers resistance to various toxic compounds, including antibiotics [ciprofloxacin (CIP), nalidixic acid (NAL), novobiocin (NOV) and tetracycline (TET)], a detergent [sodium dodecyl sulfate (SDS)] and a biocide [triclosan (TRI)]. The sequence to which AcrR specifically binds in the acrA promoter region was determined by EMSA and DNase I footprinting. The AcrR-DNA interaction was abolished by adding NAL, SDS and TRI. Quantitative real time-PCR analysis showed that induction of the acrA transcript occurred when wild-type cells were exposed to NAL, SDS and TRI. Indole is a signaling molecule that increases the antibiotic resistance of bacteria, at least in part, through activation of efflux pumps. Expression of the A. tumefaciens acrA transcript was also inducible by indole in a dose-dependent manner. Indole induced protection against CIP, NAL and SDS but enhanced susceptibility to NOV and TRI. Additionally, the TET resistance of A. tumefaciens was not apparently modulated by indole. A. tumefaciens AcrAB played a dominant role and was required for tolerance to high levels of the toxic compounds. Understanding the regulation of multidrug efflux pumps and bacterial adaptive responses to intracellular and extracellular signaling molecules for antibiotic resistance is essential. This information will be useful for the rational design of effective treatments for bacterial infection to overcome possible multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Puttamas Nuonming
- Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok 10210, Thailand
| | - Sasimaporn Khemthong
- Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok 10210, Thailand
| | - Thanittra Dokpikul
- Environmental Toxicology, Chulabhorn Graduate Institute, Lak Si, Bangkok 10210, Thailand
| | - Rojana Sukchawalit
- Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok 10210, Thailand; Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand.
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
35
|
Schuldiner S. The Escherichia coli effluxome. Res Microbiol 2018; 169:357-362. [PMID: 29574104 DOI: 10.1016/j.resmic.2018.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 11/30/2022]
Abstract
Multidrug transporters function in a coordinated mode to provide an essential first-line defense mechanism that prevents antibiotics from reaching lethal concentrations, until a number of stable efficient adaptations occur that allow survival. Single-component efflux transporters remove the toxic compounds from the cytoplasm to the periplasmic space where TolC-dependent transporters expel them from the cell. The close interaction between the two types of transporters ensures handling of a wide range of xenobiotics and prevents rapid leak of the hydrophobic substrates back into the cell. In this review, we discuss the concept of the bacterial effluxome of the Gram-negative Escherichia coli that is the entire set of transporters expressed at a given time, under defined conditions. The process of identification of its members and the elucidation of the nature of the interactions throw a novel light on the roles of transporters in bacterial physiology and drug resistance development. We anticipate that the concept of an effluxome where each member contributes to the removal of noxious chemicals from the cell should contribute to improving the present strategy of searching for transport inhibitors as adjuvants of existing antibiotics and provide novel targets for this urgent undertaking.
Collapse
Affiliation(s)
- Shimon Schuldiner
- Department of Biological Chemistry, Institute of Life Sciences, Silberman Bldg. 1-339, Edmond J. Safra Campus, Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904, Israel.
| |
Collapse
|
36
|
Sun J, Deng Z, Fung DKC, Yan A. Study of the Expression of Bacterial Multidrug Efflux Pumps in Anaerobic Conditions. Methods Mol Biol 2018; 1700:253-268. [PMID: 29177835 DOI: 10.1007/978-1-4939-7454-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bacterial multidrug efflux pumps belong to a class of membrane transporter proteins that dedicate to the extrusion of a diverse range of substances out of cells including all classes of currently available antibiotics. They constitute an important mechanism of bacterial antibiotic and multidrug resistance. Since many ecological niches of bacteria and the infection foci in animal host display low oxygen tension under which condition bacterial pathogens undergo fundamental changes on their metabolic modes, it is necessary to study the expression profiles of drug efflux pumps under these physiologically and clinically relevant conditions. In this chapter, we first introduce procedures to culture bacteria under anaerobic conditions, which is achieved using screw-capped Pyrex culture tubes without agitation. We then introduce β-galactosidase activity assay using promoter-lacZ (encoding the β-galactosidase enzyme) fusion to measure the expression of efflux pumps at transcriptional level, and Western blot using chromosomal FLAG-tagged construct to examine the expression of these proteins at translational level. Applications of these gene expression studies to reveal the regulatory mechanisms of efflux genes expression as well as their physiological functions are also discussed.
Collapse
Affiliation(s)
- Jingjing Sun
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Ziqing Deng
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Danny Ka Chun Fung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR.
- Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan.
| |
Collapse
|
37
|
Sandhu P, Akhter Y. Evolution of structural fitness and multifunctional aspects of mycobacterial RND family transporters. Arch Microbiol 2017; 200:19-31. [PMID: 28951954 DOI: 10.1007/s00203-017-1434-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/07/2017] [Accepted: 09/20/2017] [Indexed: 12/11/2022]
Abstract
Drug resistance is a major concern due to the evolution and emergence of pathogenic bacterial strains with novel strategies to resist the antibiotics in use. Mycobacterium tuberculosis (Mtb) is one of such pathogens with reported strains, which are not treatable with any of the available anti-TB drugs. This scenario has led to the need to look for some novel drug targets in Mtb, which may be exploited to design effective treatment strategies against the infection. The goal of this review is to discuss one such class of emerging drug targets in Mtb. MmpL (mycobacterial membrane protein large) proteins from Mtb are reported to be involved in multi-substrate transport including drug efflux and considered as one of the contributing factors for the emergence of multidrug-resistant strains. MmpL proteins belong to resistance nodulation division permeases superfamily of membrane transporters, which are viably and pathogenetically important and their inhibition could be lethal for the bacteria.
Collapse
Affiliation(s)
- Padmani Sandhu
- Structural Bioinformatics Group, Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Shahpur District, Kangra, Himachal Pradesh, 176206, India
| | - Yusuf Akhter
- Structural Bioinformatics Group, Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Shahpur District, Kangra, Himachal Pradesh, 176206, India.
| |
Collapse
|
38
|
Primary Clofazimine and Bedaquiline Resistance among Isolates from Patients with Multidrug-Resistant Tuberculosis. Antimicrob Agents Chemother 2017; 61:AAC.00239-17. [PMID: 28320727 DOI: 10.1128/aac.00239-17] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/12/2017] [Indexed: 11/20/2022] Open
Abstract
Clofazimine has been repurposed for the treatment of tuberculosis, especially for multidrug-resistant tuberculosis (MDR-TB). To test the susceptibility to clofazimine of Mycobacterium tuberculosis clinical isolates, MICs of clofazimine were determined using the microplate alamarBlue assay (MABA) method for 80 drug-resistant isolates and 10 drug-susceptible isolates for comparison. For five clofazimine-resistant strains isolated from previously treated pre-extensively drug-resistant TB (pre-XDR-TB) and XDR-TB patients without prior exposure to clofazimine or bedaquiline, clofazimine MICs were ≥1.2 μg/ml. Four isolates with cross-resistance to bedaquiline had Rv0678 mutations. The other isolate with no resistance to bedaquiline had an Rv1979c mutation. This study adds to a recent study showing that 6.3% of MDR-TB patients without prior clofazimine or bedaquiline exposure harbored isolates with Rv0678 mutations, which raises concern that preexisting resistance to these drugs may be associated with prior TB treatment. Furthermore, we propose a tentative breakpoint of 1.2 μg/ml for clofazimine resistance using the MABA method. More-widespread surveillance and individualized testing for clofazimine and bedaquiline resistance, together with assessment of their clinical usage, especially among previously treated and MDR-TB patients, are warranted.
Collapse
|
39
|
Goldstone RJ, Smith DGE. A population genomics approach to exploiting the accessory 'resistome' of Escherichia coli. Microb Genom 2017; 3:e000108. [PMID: 28785420 PMCID: PMC5506381 DOI: 10.1099/mgen.0.000108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/13/2017] [Indexed: 01/01/2023] Open
Abstract
The emergence of antibiotic resistance is a defining challenge, and Escherichia coli is recognized as one of the leading species resistant to the antimicrobials used in human or veterinary medicine. Here, we analyse the distribution of 2172 antimicrobial-resistance (AMR) genes in 4022 E. coli to provide a population-level view of resistance in this species. By separating the resistance determinants into 'core' (those found in all strains) and 'accessory' (those variably present) determinants, we have found that, surprisingly, almost half of all E. coli do not encode any accessory resistance determinants. However, those strains that do encode accessory resistance are significantly more likely to be resistant to multiple antibiotic classes than would be expected by chance. Furthermore, by studying the available date of isolation for the E. coli genomes, we have visualized an expanding, highly interconnected network that describes how resistances to antimicrobials have co-associated within genomes over time. These data can be exploited to reveal antimicrobial combinations that are less likely to be found together, and so if used in combination may present an increased chance of suppressing the growth of bacteria and reduce the rate at which resistance factors are spread. Our study provides a complex picture of AMR in the E. coli population. Although the incidence of resistance to all studied antibiotic classes has increased dramatically over time, there exist combinations of antibiotics that could, in theory, attack the entirety of E. coli, effectively removing the possibility that discrete AMR genes will increase in frequency in the population.
Collapse
|
40
|
Puzari M, Chetia P. RND efflux pump mediated antibiotic resistance in Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa: a major issue worldwide. World J Microbiol Biotechnol 2017; 33:24. [PMID: 28044273 DOI: 10.1007/s11274-016-2190-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022]
Abstract
Therapeutic failures against diseases due to resistant Gram-negative bacteria have become a major threat nowadays as confirmed by surveillance reports across the world. One of the methods of development of multidrug resistance in Escherichia coli and Pseudomonas aeruginosa is by means of RND efflux pumps. Inhibition of these pumps might help to combat the antibiotic resistance problem, for which the structure and regulation of the pumps have to be known. Moreover, judicious antibiotic use is needed to control the situation. This paper focuses on the issue of antibiotic resistance as well as the structure, regulation and inhibition of the efflux pumps present in Escherichia coli and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Minakshi Puzari
- Department of Life Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Pankaj Chetia
- Department of Life Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India.
| |
Collapse
|
41
|
Gupta SK, Gross R, Dandekar T. An antibiotic target ranking and prioritization pipeline combining sequence, structure and network-based approaches exemplified for Serratia marcescens. Gene 2016; 591:268-278. [PMID: 27425866 DOI: 10.1016/j.gene.2016.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/26/2016] [Accepted: 07/12/2016] [Indexed: 01/20/2023]
Abstract
We investigate a drug target screening pipeline comparing sequence, structure and network-based criteria for prioritization. Serratia marcescens, an opportunistic pathogen, serves as test case. We rank according to (i) availability of three dimensional structures and lead compounds, (ii) not occurring in man and general sequence conservation information, and (iii) network information on the importance of the protein (conserved protein-protein interactions; metabolism; reported to be an essential gene in other organisms). We identify 45 potential anti-microbial drug targets in S. marcescens with KdsA involved in LPS biosynthesis as top candidate drug target. LpxC and FlgB are further top-ranked targets identified by interactome analysis not suggested before for S. marcescens. Pipeline, targets and complementarity of the three approaches are evaluated by available experimental data and genetic evidence and against other antibiotic screening pipelines. This supports reliable drug target identification and prioritization for infectious agents (bacteria, parasites, fungi) by these bundled complementary criteria.
Collapse
Affiliation(s)
- Shishir K Gupta
- Department of Bioinformatics, Biocenter, Am Hubland, D-97074 Würzburg, Germany; Department of Microbiology, Biocenter, Am Hubland, D-97074 Würzburg, Germany.
| | - Roy Gross
- Department of Microbiology, Biocenter, Am Hubland, D-97074 Würzburg, Germany.
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, Am Hubland, D-97074 Würzburg, Germany; EMBL Heidelberg, BioComputing Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
42
|
Khameneh B, Diab R, Ghazvini K, Fazly Bazzaz BS. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb Pathog 2016; 95:32-42. [DOI: 10.1016/j.micpath.2016.02.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/07/2016] [Accepted: 02/17/2016] [Indexed: 12/17/2022]
|
43
|
Abstract
The Planctomycetes genus Gemmata is represented by both uncultured organisms and cultured Gemmata obscuriglobus and 'Gemmata massiliana' organisms. Their plasmidless 9.2 Mb genomes encode a complex cell plan, cell signaling capacities, antibiotic and trace metal resistance and multidrug resistance efflux pumps. As they lack iron metabolism pathways, they are fastidious. Gemmata spp. are mainly found in aquatic and soil environments but have also been found in hospital water networks in close proximity to patients, in animals, on human skin, the gut microbiota and in the blood of aplastic leukemic patients. Due to their panoply of attack and defense mechanisms and their recently demonstrated association with humans, the potential of Gemmata organisms to behave as opportunistic pathogens should be more widely recognized.
Collapse
Affiliation(s)
- Rita Aghnatios
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095. Faculté de Médecine, Marseille 13005, France
| | - Michel Drancourt
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095. Faculté de Médecine, Marseille 13005, France
| |
Collapse
|
44
|
You KG, Bong CW, Lee CW. Antibiotic resistance and plasmid profiling of Vibrio spp. in tropical waters of Peninsular Malaysia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:171. [PMID: 26884358 DOI: 10.1007/s10661-016-5163-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
Vibrio species isolated from four different sampling stations in the west coast of Peninsular Malaysia were screened for their antimicrobial resistance and plasmid profiles. A total of 138 isolates belonging to 15 different species were identified. Vibrio campbellii, V. parahaemolyticus, V. harveyi, and V. tubiashii were found to predominance species at all stations. High incidence of erythromycin, ampicillin, and mecillinam resistance was observed among the Vibrio isolates. In contrast, resistance against aztreonam, cefepime, streptomycin, sulfamethoxazole, and sulfonamides was low. All the Vibrio isolates in this study were found to be susceptible to imipenem, norfloxacin, ofloxacin, chloramphenicol, trimethoprim/sulfamethoxazole, and oxytetracycline. Ninety-five percent of the Vibrio isolates were resistant to one or more different classes of antibiotic, and 20 different resistance antibiograms were identified. Thirty-two distinct plasmid profiles with molecular weight ranging from 2.2 to 24.8 kb were detected among the resistance isolates. This study showed that multidrug-resistant Vibrio spp. were common in the aquatic environments of west coast of Peninsular Malaysia.
Collapse
Affiliation(s)
- K G You
- Laboratory of Microbial Ecology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - C W Bong
- Laboratory of Microbial Ecology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - C W Lee
- Laboratory of Microbial Ecology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
The Asp20-to-Asn Substitution in the Response Regulator AdeR Leads to Enhanced Efflux Activity of AdeB in Acinetobacter baumannii. Antimicrob Agents Chemother 2015; 60:1085-90. [PMID: 26643347 DOI: 10.1128/aac.02413-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/28/2015] [Indexed: 01/17/2023] Open
Abstract
Overexpression of the resistance-nodulation-cell division-type efflux pump AdeABC is often associated with multidrug resistance in Acinetobacter baumannii and has been linked to mutations in the genes encoding the AdeRS two-component system. In a previous study, we reported that the Asp20→Asn amino acid substitution in the response regulator AdeR is associated with adeB overexpression and reduced susceptibility to the antimicrobials levofloxacin, tigecycline, and trimethoprim-sulfamethoxazole. To further characterize the effect of the Asp20→Asn substitution on antimicrobial susceptibility, the expression of the efflux genes adeB, adeJ, and adeG, and substrate accumulation, four plasmid constructs [containing adeR(Asp20)S, adeR(Asn20)S, adeR(Asp20)SABC, and adeR(Asn20)SABC] were introduced into the adeRSABC-deficient A. baumannii isolate NIPH 60. Neither adeRS construct induced changes in antimicrobial susceptibility or substrate accumulation from that for the vector-only control. The adeR(Asp20)SABC transformant showed reduced susceptibility to 6 antimicrobials and accumulated 12% less ethidium than the control, whereas the Asn20 variant showed reduced susceptibility to 6 of 8 antimicrobial classes tested, and its ethidium accumulation was only 72% of that observed for the vector-only construct. adeB expression was 7-fold higher in the adeR(Asn20)SABC transformant than in its Asp20 variant. No changes in adeG or adeJ expression or in acriflavine or rhodamine 6G accumulation were detected. The antimicrobial susceptibility data suggest that AdeRS does not regulate any resistance determinants other than AdeABC. Furthermore, the characterization of the Asp20→Asn20 substitution proves that the reduced antimicrobial susceptibility previously associated with this substitution was indeed caused by enhanced efflux activity of AdeB.
Collapse
|
46
|
Bodoev IN, Il’ina EN. Molecular mechanisms of formation of drug resistance in Neisseria gonorrhoeae: History and prospects. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2015. [DOI: 10.3103/s0891416815030027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
47
|
El Zowalaty ME, Al Thani AA, Webster TJ, El Zowalaty AE, Schweizer HP, Nasrallah GK, Marei HE, Ashour HM. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol 2015; 10:1683-706. [PMID: 26439366 DOI: 10.2217/fmb.15.48] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Antimicrobial resistance is one of the most serious public health issues facing humans since the discovery of antimicrobial agents. The frequent, prolonged, and uncontrolled use of antimicrobial agents are major factors in the emergence of antimicrobial-resistant bacterial strains, including multidrug-resistant variants. Pseudomonas aeruginosa is a leading cause of nosocomial infections. The abundant data on the increased resistance to antipseudomonal agents support the need for global action. There is a paucity of new classes of antibiotics active against P. aeruginosa. Here, we discuss recent antibacterial resistance profiles and mechanisms of resistance by P. aeruginosa. We also review future potential methods for controlling antibiotic-resistant bacteria, such as phage therapy, nanotechnology and antipseudomonal vaccines.
Collapse
Affiliation(s)
- Mohamed E El Zowalaty
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.,BioMedical Research Center, Qatar University, Doha, PO Box 2713, Qatar
| | - Asmaa A Al Thani
- BioMedical Research Center, Qatar University, Doha, PO Box 2713, Qatar.,Department of Health Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02018, USA.,Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ahmed E El Zowalaty
- Department of Physiology & Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Herbert P Schweizer
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA.,Emerging Pathogens Institute, Institute for Therapeutic Innovation, University of Florida Gainesville, FL 32611, USA
| | - Gheyath K Nasrallah
- BioMedical Research Center, Qatar University, Doha, PO Box 2713, Qatar.,Department of Health Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Hany E Marei
- BioMedical Research Center, Qatar University, Doha, PO Box 2713, Qatar
| | - Hossam M Ashour
- Department of Microbiology & Immunology, Faculty of Pharmacy, Cairo University, Egypt.,Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
48
|
Out-of-pocket health expenditures and antimicrobial resistance in low-income and middle-income countries: an economic analysis. THE LANCET. INFECTIOUS DISEASES 2015; 15:1203-1210. [PMID: 26164481 PMCID: PMC4609169 DOI: 10.1016/s1473-3099(15)00149-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/23/2015] [Accepted: 03/31/2015] [Indexed: 01/21/2023]
Abstract
Background The decreasing effectiveness of antimicrobial agents is a growing global public health concern. Low- and middle-income countries (LMIC) are vulnerable to the loss of antimicrobial efficacy given their high burden of infectious disease and the cost of treating resistant organisms. Methods We analyzed data from the World Health Organization’s Antibacterial Resistance Global Surveillance Report. We investigated the importance of out-of-pocket spending and copayment requirements for public sector medications on the level of bacterial resistance among LMIC, adjusting for environmental factors purported to be predictors of resistance, such as sanitation, animal husbandry and poverty as well as other structural components of the health sector. Findings Out-of-pocket health expenditures were the only factor demonstrating a statistically significant relationship with antimicrobial resistance. A ten point increase in the percentage of health expenditures that were out-of-pocket was associated with a 3·2 percentage point increase in resistant isolates [95% CI, 1·17 to 5·15, p-value=0·002]. This relationship was driven by countries requiring copayments for medications in the public health sector. Among these countries, moving from the 20th to 80th percentile of out-of-pocket health expenditures was associated with an increase in resistant bacterial isolates from 17·76 [95%CI 12·54 to 22·97] to 36·27 percentage points [95% CI 31·16 to 41·38]. Interpretation Out-of-pocket health expenditures were strongly correlated with antimicrobial resistance among LMIC. This relationship was driven by countries that require copayments on medications in the public sector. Our findings suggest cost-sharing of antimicrobials in the public sector may drive demand to the private sector where supply-side incentives to overprescribe are likely heightened and quality assurance less standardized.
Collapse
|
49
|
Penesyan A, Gillings M, Paulsen IT. Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules 2015; 20:5286-98. [PMID: 25812150 PMCID: PMC6272253 DOI: 10.3390/molecules20045286] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/11/2015] [Accepted: 03/18/2015] [Indexed: 12/26/2022] Open
Abstract
Bacterial resistance is a rapidly escalating threat to public health as our arsenal of effective antibiotics dwindles. Therefore, there is an urgent need for new antibiotics. Drug discovery has historically focused on bacteria growing in planktonic cultures. Many antibiotics were originally developed to target individual bacterial cells, being assessed in vitro against microorganisms in a planktonic mode of life. However, towards the end of the 20th century it became clear that many bacteria live as complex communities called biofilms in their natural habitat, and this includes habitats within a human host. The biofilm mode of life provides advantages to microorganisms, such as enhanced resistance towards environmental stresses, including antibiotic challenge. The community level resistance provided by biofilms is distinct from resistance mechanisms that operate at a cellular level, and cannot be overlooked in the development of novel strategies to combat infectious diseases. The review compares mechanisms of antibiotic resistance at cellular and community levels in the light of past and present antibiotic discovery efforts. Future perspectives on novel strategies for treatment of biofilm-related infectious diseases are explored.
Collapse
Affiliation(s)
- Anahit Penesyan
- Department of Chemistry and Biomolecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Michael Gillings
- Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
50
|
Hall AR, Angst DC, Schiessl KT, Ackermann M. Costs of antibiotic resistance - separating trait effects and selective effects. Evol Appl 2014; 8:261-72. [PMID: 25861384 PMCID: PMC4380920 DOI: 10.1111/eva.12187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/06/2014] [Indexed: 12/26/2022] Open
Abstract
Antibiotic resistance can impair bacterial growth or competitive ability in the absence of antibiotics, frequently referred to as a ‘cost’ of resistance. Theory and experiments emphasize the importance of such effects for the distribution of resistance in pathogenic populations. However, recent work shows that costs of resistance are highly variable depending on environmental factors such as nutrient supply and population structure, as well as genetic factors including the mechanism of resistance and genetic background. Here, we suggest that such variation can be better understood by distinguishing between the effects of resistance mechanisms on individual traits such as growth rate or yield (‘trait effects’) and effects on genotype frequencies over time (‘selective effects’). We first give a brief overview of the biological basis of costs of resistance and how trait effects may translate to selective effects in different environmental conditions. We then review empirical evidence of genetic and environmental variation of both types of effects and how such variation may be understood by combining molecular microbiological information with concepts from evolution and ecology. Ultimately, disentangling different types of costs may permit the identification of interventions that maximize the cost of resistance and therefore accelerate its decline.
Collapse
Affiliation(s)
- Alex R Hall
- Institute of Integrative Biology, ETH Zürich Zürich, Switzerland ; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich Zürich, Switzerland ; Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag) Dübendorf, Switzerland
| | - Daniel C Angst
- Institute of Integrative Biology, ETH Zürich Zürich, Switzerland ; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich Zürich, Switzerland ; Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag) Dübendorf, Switzerland
| | - Konstanze T Schiessl
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich Zürich, Switzerland ; Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag) Dübendorf, Switzerland
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich Zürich, Switzerland ; Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag) Dübendorf, Switzerland
| |
Collapse
|