1
|
Synthesis of Linoleic Acid 13-Hydroperoxides from Safflower Oil Utilizing Lipoxygenase in a Coupled Enzyme System with In-Situ Oxygen Generation. Catalysts 2021. [DOI: 10.3390/catal11091119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Linoleic acid hydroperoxides are versatile intermediates for the production of green note aroma compounds and bifunctional ω-oxo-acids. An enzyme cascade consisting of lipoxygenase, lipase and catalase was developed for one-pot synthesis of 13-hydroperoxyoctadecadienoic acid starting from safflower oil. Reaction conditions were optimized for hydroperoxidation using lipoxygenase 1 from Glycine max (LOX-1) in a solvent-free system. The addition of green surfactant Triton CG-110 improved the reaction more than two-fold and yields of >50% were obtained at linoleic acid concentrations up to 100 mM. To combine hydroperoxidation and oil hydrolysis, 12 lipases were screened for safflower oil hydrolysis under the reaction conditions optimized for LOX-1. Lipases from Candida rugosa and Pseudomonas fluorescens were able to hydrolyze safflower oil to >75% within 5 h at a pH of 8.0. In contrast to C. rugosa lipase, the enzyme from P. fluorescens did not exhibit a lag phase. Combination of P. fluorescens lipase and LOX-1 worked well upon LOX-1 dosage and a synergistic effect was observed leading to >80% of hydroperoxides. Catalase from Micrococcus lysodeikticus was used for in-situ oxygen production with continuous H2O2 dosage in the LOX-1/lipase reaction system. Foam generation was significantly reduced in the 3-enzyme cascade in comparison to the aerated reaction system. Safflower oil concentration was increased up to 300 mM linoleic acid equivalent and 13-hydroperoxides could be produced in a yield of 70 g/L and a regioselectivity of 90% within 7 h.
Collapse
|
2
|
Park JY, Kim CH, Choi Y, Park KM, Chang PS. Catalytic characterization of heterodimeric linoleate 13S-lipoxygenase from black soybean (Glycine max (L.) Merr.). Enzyme Microb Technol 2020; 139:109595. [PMID: 32732043 DOI: 10.1016/j.enzmictec.2020.109595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 11/19/2022]
Abstract
A novel lipoxygenase (BLOX) was purified from black soybean (Glycine max (L.) Merr.), and its catalytic properties were characterized. The molecular weight of BLOX was 101 kDa and its unique heterodimeric structure with two different subunits of molecular weight 46 kDa and 55 kDa was elucidated. The optimum pH and temperature of BLOX were pH 9.5 and 40 °C, respectively. BLOX was highly stable at the pH range of 6.0-10.0 and below 40 °C, and was stimulated by adding ferrous ion (Fe2+). In terms of substrate specificity, BLOX showed a substrate preference to linoleic acid that is the main substance to produce hydroperoxides in soybean. When it reacted with linoleic acid, the major product was 13(S)-hydroperoxy-9,11-octadecadienoic acid; therefore, it could be classified into the linoleate 13S-LOX family (EC 1.13.11.12). Finally, the kinetic parameters (Vmax, Km, and kcat) of BLOX were 0.124 mM min-1, 0.636 mM, and 12.28 s-1, respectively, and consequently, the catalytic efficiency (kcat/Km) was calculated as 1.93 × 104 M-1·s-1. These catalytic characteristics of BLOX could contribute to understanding the enzymatic rancidification of black soybean, and to further biotechnical approaches to control and mitigate the deterioration.
Collapse
Affiliation(s)
- Jun-Young Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Chae Hyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoonseok Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung-Min Park
- Department of Food Science and Biotechnology, Wonkwang University, Iksan 54538, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Zhang W, Lee JH, Younes SHH, Tonin F, Hagedoorn PL, Pichler H, Baeg Y, Park JB, Kourist R, Hollmann F. Photobiocatalytic synthesis of chiral secondary fatty alcohols from renewable unsaturated fatty acids. Nat Commun 2020; 11:2258. [PMID: 32382158 PMCID: PMC7206127 DOI: 10.1038/s41467-020-16099-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/09/2020] [Indexed: 12/03/2022] Open
Abstract
En route to a bio-based chemical industry, the conversion of fatty acids into building blocks is of particular interest. Enzymatic routes, occurring under mild conditions and excelling by intrinsic selectivity, are particularly attractive. Here we report photoenzymatic cascade reactions to transform unsaturated fatty acids into enantiomerically pure secondary fatty alcohols. In a first step the C=C-double bond is stereoselectively hydrated using oleate hydratases from Lactobacillus reuteri or Stenotrophomonas maltophilia. Also, dihydroxylation mediated by the 5,8-diol synthase from Aspergillus nidulans is demonstrated. The second step comprises decarboxylation of the intermediate hydroxy acids by the photoactivated decarboxylase from Chlorella variabilis NC64A. A broad range of (poly)unsaturated fatty acids can be transformed into enantiomerically pure fatty alcohols in a simple one-pot approach. Natural fatty acids are important starting materials in bio-based chemical production. Here, the authors developed a two-enzyme cascade to produce enantiomerically pure secondary fatty alcohols from natural unsaturated fatty acids in one pot.
Collapse
Affiliation(s)
- Wuyuan Zhang
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.,School of Chemical Engineering and Technology, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Jeong-Hoo Lee
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sabry H H Younes
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.,Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Fabio Tonin
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Harald Pichler
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Yoonjin Baeg
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria.
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
4
|
Sanfilippo C, Paterna A, Biondi DM, Patti A. Lyophilized extracts from vegetable flours as valuable alternatives to purified oxygenases for the synthesis of oxylipins. Bioorg Chem 2019; 93:103325. [PMID: 31586707 DOI: 10.1016/j.bioorg.2019.103325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/31/2022]
Abstract
In this work, the whole aqueous extracts of soybean flour and oat flour have been used as valuable alternatives to purified oxygenase enzymes for the preparation of oxylipins derived from (5Z,8Z,11Z,14Z,17Z)-eicosapentaenoic acid (EPA). The lipoxygenase activity in the aqueous extracts of soybean (Glycine max. L.) flour was monitored with linoleic acid as substrate and compared with the commercially available purified enzyme (LOX-1). Oat flour extracts (Avena sativa L.) were evaluated for their peroxygenase activity by comparing different enzyme preparations in the epoxidation of methyl oleate. It was found that lyophilization of the aqueous extracts from these vegetable flours offers advantages in terms of enzyme stability, reproducibility and applicability to preparative organic synthesis. The lyophilized enzyme preparations were tested for the oxyfunctionalization of EPA and the formed products were isolated in satisfactory yields. In the presence of lyophilized extract from soybean, EPA gave 15S-hydroxy-(5Z,8Z,11Z,13E,17Z)-eicosapentaenoic acid in enantiopure form as exclusive product. Peroxygenase from oat flour was less selective and catalyzed the formation of different epoxides of EPA. However, the biocatalyzed epoxidation of EPA under controlled conditions allowed to obtain optically active (17R,18S)-epoxy-(5Z,8Z,11Z,14Z)-eicosatetraenoic acid (65% ee) as the main monoepoxide, among the five possible ones.
Collapse
Affiliation(s)
- Claudia Sanfilippo
- CNR - Istituto di Chimica Biomolecolare, Via Paolo Gaifami 18, I-95126 Catania, Italy
| | - Angela Paterna
- CNR - Istituto di Chimica Biomolecolare, Via Paolo Gaifami 18, I-95126 Catania, Italy
| | - Daniela M Biondi
- CNR - Istituto di Chimica Biomolecolare, Via Paolo Gaifami 18, I-95126 Catania, Italy
| | - Angela Patti
- CNR - Istituto di Chimica Biomolecolare, Via Paolo Gaifami 18, I-95126 Catania, Italy.
| |
Collapse
|
5
|
Biocatalytic Synthesis of Natural Green Leaf Volatiles Using the Lipoxygenase Metabolic Pathway. Catalysts 2019. [DOI: 10.3390/catal9100873] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In higher plants, the lipoxygenase enzymatic pathway combined actions of several enzymes to convert lipid substrates into signaling and defense molecules called phytooxylipins including short chain volatile aldehydes, alcohols, and esters, known as green leaf volatiles (GLVs). GLVs are synthesized from C18:2 and C18:3 fatty acids that are oxygenated by lipoxygenase (LOX) to form corresponding hydroperoxides, then the action of hydroperoxide lyase (HPL) produces C6 or C9 aldehydes that can undergo isomerization, dehydrogenation, and esterification. GLVs are commonly used as flavors to confer a fresh green odor of vegetable to perfumes, cosmetics, and food products. Given the increasing demand in these natural flavors, biocatalytic processes using the LOX pathway reactions constitute an interesting application. Vegetable oils, chosen for their lipid profile are converted in natural GLVs with high added value. This review describes the enzymatic reactions of GLVs biosynthesis in the plant, as well as the structural and functional properties of the enzymes involved. The various stages of the biocatalytic production processes are approached from the lipid substrate to the corresponding aldehyde or alcoholic aromas, as well as the biotechnological improvements to enhance the production potential of the enzymatic catalysts.
Collapse
|
6
|
Liang N, Cai P, Wu D, Pan Y, Curtis JM, Gänzle MG. High-Speed Counter-Current Chromatography (HSCCC) Purification of Antifungal Hydroxy Unsaturated Fatty Acids from Plant-Seed Oil and Lactobacillus Cultures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11229-11236. [PMID: 29224354 DOI: 10.1021/acs.jafc.7b05658] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydroxy unsaturated fatty acids (HUFA) can function as antifungal agents. To investigate the antifungal spectrum, that is, the scope of the in vitro fungal-inhibition activities of HUFA and their potential applications, three HUFA were produced by microbial transformation or extracted from plant-seed oils; these compounds included coriolic acid (13-hydroxy-9,11-octadecadienoic acid) from Coriaria seed oil, 10-hydroxy-12-octadecenoic acid from cultures of Lactobacillus hammesii, and 13-hydroxy-9-octadecenoic acid from cultures of Lactobacillus plantarum TMW1.460Δlah. HUFA were purified by high-speed counter-current chromatography (HSCCC), characterized by LC-MS and MS/MS, and their antifungal activities were evaluated with 15 indicator fungal strains. The HUFA had different antifungal spectra when compared with unsaturated fatty acids with comparable structures but without hydroxy groups. The inhibitory effects of HUFA specifically targeted filamentous fungi, including Aspergillus niger and Penicillium roqueforti, whereas yeasts, including Candida spp. and Saccharomyces spp., were resistant to HUFA. The findings here support the development of food applications for antifungal HUFA.
Collapse
Affiliation(s)
- Nuanyi Liang
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton T6G 2R3, Canada
| | - Pengfei Cai
- Department of Chemistry, Zhejiang University , Hangzhou 310027, China
| | - Datong Wu
- Department of Chemistry, Zhejiang University , Hangzhou 310027, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University , Hangzhou 310027, China
| | - Jonathan M Curtis
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton T6G 2R3, Canada
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton T6G 2R3, Canada
| |
Collapse
|
7
|
Zachos I, Gaßmeyer SK, Bauer D, Sieber V, Hollmann F, Kourist R. Photobiocatalytic decarboxylation for olefin synthesis. Chem Commun (Camb) 2015; 51:1918-21. [DOI: 10.1039/c4cc07276f] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The oxidative decarboxylation of fatty acids to terminal alkenes was accomplished with high selectivity by combining a fatty acid decarboxylase OleTJE with the light-catalyzed generation of the cosubstrate hydrogen peroxide, resulting in a simple and efficient system for the light-driven cleavage of C–C bonds.
Collapse
Affiliation(s)
- Ioannis Zachos
- Junior Research Group for Microbial Biotechnology
- Department for Biology and Biotechnology
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Sarah Katharina Gaßmeyer
- Junior Research Group for Microbial Biotechnology
- Department for Biology and Biotechnology
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Daniel Bauer
- Chair of Chemistry of Biogenic Resources
- Technische Universität München
- 94315 Straubing
- Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources
- Technische Universität München
- 94315 Straubing
- Germany
| | - Frank Hollmann
- Department of Biotechnology
- Delft University of Technology
- Delft 2628BL
- The Netherlands
| | - Robert Kourist
- Junior Research Group for Microbial Biotechnology
- Department for Biology and Biotechnology
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| |
Collapse
|
8
|
|
9
|
Chohany LE, Bishop KA, Camic H, Sup SJ, Findeis PM, Clapp CH. Cationic substrates of soybean lipoxygenase-1. Bioorg Chem 2011; 39:94-100. [PMID: 21257189 DOI: 10.1016/j.bioorg.2010.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 11/18/2022]
Abstract
Soybean lipoxygenase-1 (SBLO-1) catalyzes the oxygenation of 1,4-dienes to produce conjugated diene hydroperoxides. The best substrates are anions of fatty acids; for example, linoleate is converted to 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoate. The manner in which SBLO-1 binds substrates is uncertain. In the present work, it was found that SBLO-1 will oxygenate linoleyltrimethylammonium ion (LTMA) to give primarily13(S)-hydroperoxy-9(Z),11(E)-octadecadienyltrimethylammonium ion. The rate of this process is about the same at pH 7 and pH 9 and is about 30% of the rate observed with linoleate at pH 9. At pH 7, SBLO-1 oxygenates linoleyldimethylamine (LDMA) to give primarily 13(S)-hydroperoxy-9(Z),11(E)-octadecadienyldimethylamine. The oxygenation of LDMA occurs at about the same rate as LTMA at pH 7, but more slowly at pH 9. The results demonstrate that SBLO-1 will readily oxygenate substrates in which the carboxylate of linoleate is replaced with a cationic group, and the products of these reactions have the same stereo- and regiochemistry as the products obtained from fatty acid substrates.
Collapse
Affiliation(s)
- Lucas E Chohany
- Department of Chemistry, Bucknell University, Lewisburg, PA 17837, United States
| | | | | | | | | | | |
Collapse
|
10
|
Olejniczak T. Microbial hydroxylation of non-activated carbon atoms in racemic 2-dodeceno-1-yl-succinic anhydride by Mortierella isabellina 212. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0391-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Koukoulitsa C, Hadjipavlou-Litina D, Geromichalos GD, Skaltsa H. Inhibitory effect on soybean lipoxygenase and docking studies of some secondary metabolites, isolated from Origanum vulgare L. ssp. hirtum. J Enzyme Inhib Med Chem 2007; 22:99-104. [PMID: 17373554 DOI: 10.1080/14756360600991017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
In this study, five secondary metabolites (caffeic acid, rosmarinic acid, lithospermic acid B, 12-hydroxyjasmonic acid 12-O-beta-glucoside and p-menth-3-ene-1,2-diol 1-O-beta-glucopyranoside) isolated from the polar extracts of the plant Origanum vulgare L. ssp. hirtum, were tested in vitro for their ability to inhibit soybean lipoxygenase. Among the examined compounds, lithospermic acid B demonstrated the best inhibitory activity on soybean lipoxygenase with IC50 = 0.1 mM. Docking studies have been undertaken as an attempt for better understanding the interactions of these compounds within the active site of soybean lipoxygenase. The predicted binding energy values correlated well with the observed biological data.
Collapse
Affiliation(s)
- Catherine Koukoulitsa
- Department of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, University of Athens, Panepistimiopolis, Zografou, Athens, Greece.
| | | | | | | |
Collapse
|
12
|
Schulz S, Yildizhan S, Stritzke K, Estrada C, Gilbert LE. Macrolides from the scent glands of the tropical butterflies Heliconius cydno and Heliconius pachinus. Org Biomol Chem 2007; 5:3434-41. [DOI: 10.1039/b710284d] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Lorenzi V, Maury J, Casanova J, Berti L. Purification, product characterization and kinetic properties of lipoxygenase from olive fruit (Olea europaea L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:450-4. [PMID: 17011785 DOI: 10.1016/j.plaphy.2006.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 09/01/2006] [Indexed: 05/12/2023]
Abstract
Lipoxygenase from olive fruit was purified to homogeneity for the first time after differential centrifugations and by hydrophobic chromatography. The enzyme had a molecular mass of 98 kDa and exhibited a maximal activity at pH 6. Lipoxygenase had a better affinity for linoleic acid (Km=82.44 microM) than for linolenic acid (Km = 306.26 microM). It is inhibited by linoleate:oxygen oxidoreductase (LOX) inhibitors like nordihydroguaiaretic acid (NDGA) or propyl gallate. The reaction product was 13-hydroperoxy octadecadienoic acid when linoleic acid was used as substrate.
Collapse
Affiliation(s)
- V Lorenzi
- Université de Corse, UMR 6134 CNRS, quartier Grossetti, BP 52, 20250 Corte, France
| | | | | | | |
Collapse
|
14
|
Liavonchanka A, Feussner I. Lipoxygenases: occurrence, functions and catalysis. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:348-57. [PMID: 16386332 DOI: 10.1016/j.jplph.2005.11.006] [Citation(s) in RCA: 273] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 11/02/2005] [Indexed: 05/05/2023]
Abstract
Lipid peroxidation is common to all biological systems, both appearing in developmentally and environmentally regulated processes. Products are hydroperoxy polyunsaturated fatty acids and metabolites derived there from collectively named oxylipins. They may either originate from chemical oxidation or are synthesized by the action of various enzymes, such as lipoxygenases (LOXes). Signalling compounds such as jasmonates, antimicrobial and antifungal compounds such as leaf aldehydes or divinyl ethers, and a plant-specific blend of volatiles including leaf alcohols are among the numerous products. Cloning of many LOXes and other key enzymes metabolizing oxylipins, as well as analyses by reverse genetic approaches and metabolic profiling revealed new insights on oxylipin functions, new reactions and the first hints on enzyme mechanisms. These aspects are reviewed with respect to function of specific LOX forms and on the development of new models on their substrate and product specificity.
Collapse
Affiliation(s)
- Alena Liavonchanka
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | | |
Collapse
|
15
|
Selective Conversion of Hydrocarbons with H2O2 Using Biomimetic Non-heme Iron and Manganese Oxidation Catalysts. ADVANCES IN INORGANIC CHEMISTRY 2006. [DOI: 10.1016/s0898-8838(05)58002-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Affiliation(s)
- Feng Xu
- Novozymes, Inc., 1445 Drew Avenue, Davis, CA 95616, Phone: (530) 757-8138. Fax: (530) 757-4718., E-mail:
| |
Collapse
|