1
|
Zhu X, Ding Y, Li S, Jiang Y, Chen Y. Electroenzymatic cascade reaction on a biohybrid boosts the chiral epoxidation reaction. Sci Bull (Beijing) 2024; 69:483-491. [PMID: 38123433 DOI: 10.1016/j.scib.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/11/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
The chiral epoxidation of styrene and its derivatives is an important transformation that has attracted considerable scientific interest in the chemical industry. Herein, we integrate enzymatic catalysis and electrocatalysis to propose a new route for the chiral epoxidation of styrene and its derivatives. Chloroperoxidase (CPO) functionalized with 1-ethyl-3-methylimidazolium bromide (ILEMB) was loaded onto cobalt nitrogen-doped carbon nanotubes (CoN@CNT) to form a biohybrid (CPO-ILEMB/CoN@CNT). H2O2 species were generated in situ through a two-electron oxygen reduction reaction (2e-ORR) at CoN@CNT to initiate the following enzymatic epoxidation of styrene by CPO. CoN@CNT had high electroactivity for the ORR to produce H2O2 at a more positive potential, prohibiting the conversion of FeIII to FeII in the heme of CPO to maintain enzymatic activity. Meanwhile, CoN@CNT could serve as an ideal carrier for the immobilization of CPO-ILEMB. Hence, the coimmobilization of CPO-ILEMB and CoN@CNT could facilitate the diffusion of intermediate H2O2, which achieved 17 times higher efficiency than the equivalent amounts of free CPO-ILEMB in bulk solution for styrene epoxidation. Notably, an enhancement (∼45%) of chiral selectivity for the epoxidation of styrene was achieved.
Collapse
Affiliation(s)
- Xuefang Zhu
- School of Chemistry & Chemical Engineering, Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Ding
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Shuni Li
- School of Chemistry & Chemical Engineering, Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an 710119, China
| | - Yucheng Jiang
- School of Chemistry & Chemical Engineering, Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an 710119, China.
| | - Yu Chen
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
2
|
Ghorbani Sangoli M, Housaindokht MR, Bozorgmehr MR. Effects of the deglycosylation on the structure and activity of chloroperoxidase: Molecular dynamics simulation approach. J Mol Graph Model 2020; 97:107570. [PMID: 32097885 DOI: 10.1016/j.jmgm.2020.107570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 10/25/2022]
Abstract
Chloroperoxidase (CPO) is a versatile fungal heme-thiolate protein that catalyzes a variety of one electron and two-electron oxidations. Chloroperoxidase is a versatile fungal heme-thiolate protein that catalyzes a variety of oxidations. CPO enzyme contains thirteen sugars, including five N-acetyl D-glucosamines (NAG) and eight mannoses (MAN), which are attached to the protein via the glycosidic bonds. Removal of the sugars from CPO leads to increase the hydrophobicity of the enzyme, as well as the reduction of the alkylation reactions. However, due to the lack of the proper force field for the sugars, they are ignored in the theoretical studies. The present study aims to assess the effects of the sugar segments on the structure and activity of CPO through the simulation of the halo structure and the structures without the sugar segment. Despite the difficulty of the process and being time-consuming, the suitable force field is introduced successfully for the sugars. According to molecular dynamics simulation (MD), seven channels and fifteen cavities are identified in the CPO structure. Two of the channels provide the substrate access to the active site. The MD simulation results reveal that the removal of NAG decreases the number of the cavities from fifteen to eleven. Besides, the removal of NAG is associated with removing the channel providing the substrate access. The number of the cavities decreases from fifteen to fourteen through the removal of MAN; however, channel providing the substrate access to the active site is partly preserved. The MD simulation results indicate that the structures without the sugar units are more compact in comparison with the halo structures. The removal of the sugar segments induces the significant changes in the flexibility of the residues that affect the catalytic activity of the enzyme. As a result, the enzyme activities, such as the oxidation, alkylation, halogenation, and epoxidation cannot occur when the sugar segments of the enzyme are removed.
Collapse
Affiliation(s)
| | - Mohammad Reza Housaindokht
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | |
Collapse
|
3
|
Yadav P, Khare SK, Sharma S. Kinetics of epoxidation by a
Musa paradisiaca
chloroperoxidase. INT J CHEM KINET 2019. [DOI: 10.1002/kin.21280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pratibha Yadav
- Centre for Rural Development and TechnologyIndian Institute of Technology Delhi New Delhi India
| | - Sunil K. Khare
- Department of ChemistryIndian Institute of Technology Delhi New Delhi India
| | - Satyawati Sharma
- Centre for Rural Development and TechnologyIndian Institute of Technology Delhi New Delhi India
| |
Collapse
|
4
|
Substrate ionization energy influences the epoxidation of m-substituted styrenes catalyzed by chloroperoxidase from Caldariomyces fumago. CATAL COMMUN 2016. [DOI: 10.1016/j.catcom.2016.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Morozov AN, Pardillo AD, Chatfield DC. Chloroperoxidase-Catalyzed Epoxidation of Cis-β-Methylstyrene: NH-S Hydrogen Bonds and Proximal Helix Dipole Change the Catalytic Mechanism and Significantly Lower the Reaction Barrier. J Phys Chem B 2015; 119:14350-63. [PMID: 26452587 DOI: 10.1021/acs.jpcb.5b06731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proximal hydrogen bonding of the axial sulfur with the backbone amides (NH-S) is a conserved feature of heme-thiolate enzymes such as chloroperoxidase (CPO) and cytochrome P450 (P450). In CPO, the effect of NH-S bonds is amplified by the dipole moment of the proximal helix. Our gas-phase DFT studies show that the proximal pocket effect significantly enhances CPO's reactivity toward the epoxidation of olefinic substrates. Comparison of models with and without proximal pocket residues shows that with them, the barrier for Cβ-O bond formation is lowered by about ∼4.6 kcal/mol, while Cα-O-Cβ ring closure becomes barrierless. The dipole moment of the proximal helix was estimated to contribute 1/3 of the decrease, while the rest is attributed to the effect of NH-S bonds. The decrease of the reaction barrier correlates with increased electron density transfer to residues of the proximal pocket. The effect is most pronounced on the doublet spin surface and involves a change in the electron-transfer mechanism. A full enzyme QMMM study on the doublet spin surface gives about the same barrier as the gas-phase DFT study. The free-energy barrier was estimated to be in agreement with the experimental results for the CPO-catalyzed epoxidation of styrene.
Collapse
Affiliation(s)
- Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University , 11200 Southwest Eighth Street, Miami, Florida 33199, United States
| | - Armando D Pardillo
- Department of Chemistry and Biochemistry, Florida International University , 11200 Southwest Eighth Street, Miami, Florida 33199, United States
| | - David C Chatfield
- Department of Chemistry and Biochemistry, Florida International University , 11200 Southwest Eighth Street, Miami, Florida 33199, United States
| |
Collapse
|
6
|
Biocatalytic Performance of Chloroperoxidase from Caldariomyces fumago Immobilized onto TiO2 Based Supports. Top Catal 2015. [DOI: 10.1007/s11244-015-0438-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Holtmann D, Fraaije MW, Arends IWCE, Opperman DJ, Hollmann F. The taming of oxygen: biocatalytic oxyfunctionalisations. Chem Commun (Camb) 2015; 50:13180-200. [PMID: 24902635 DOI: 10.1039/c3cc49747j] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The scope and limitations of oxygenases as catalysts for preparative organic synthesis is discussed.
Collapse
Affiliation(s)
- Dirk Holtmann
- DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
8
|
Enhancement of operational stability of chloroperoxidase from Caldariomyces fumago by immobilization onto mesoporous supports and the use of co-solvents. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Gao F, Wang L, Liu Y, Wang S, Jiang Y, Hu M, Li S, Zhai Q. Enzymatic synthesis of (R)-modafinil by chloroperoxidase-catalyzed enantioselective sulfoxidation of 2-(diphenylmethylthio) acetamide. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Abstract
Enantiomerically pure epichlorohydrin is a key chiral synthon in the preparation of 4-chloro-3-hydroxybutyrate, pheromones,l-carnitine, and β-adrenergic blockers.
Collapse
Affiliation(s)
- Huo-Xi Jin
- School of Food Science and Pharmaceutics
- Zhejiang Ocean University
- Zhoushan 316022
- P. R. China
| | - Xiao-Kun OuYang
- School of Food Science and Pharmaceutics
- Zhejiang Ocean University
- Zhoushan 316022
- P. R. China
| |
Collapse
|
11
|
|
12
|
Zhang R, He Q, Chatfield D, Wang X. Paramagnetic nuclear magnetic resonance relaxation and molecular mechanics studies of the chloroperoxidase-indole complex: insights into the mechanism of chloroperoxidase-catalyzed regioselective oxidation of indole. Biochemistry 2013; 52:3688-701. [PMID: 23634952 DOI: 10.1021/bi4002437] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To unravel the mechanism of chloroperoxidase (CPO)-catalyzed regioselective oxidation of indole, we studied the structure of the CPO-indole complex using nuclear magnetic resonance (NMR) relaxation measurements and computational techniques. The dissociation constant (KD) of the CPO-indole complex was calculated to be approximately 21 mM. The distances (r) between protons of indole and the heme iron calculated via NMR relaxation measurements and molecular docking revealed that the pyrrole ring of indole is oriented toward the heme with its 2-H pointing directly at the heme iron. Both KD and r values are independent of pH in the range of 3.0-6.5. The stability and structure of the CPO-indole complex are also independent of the concentration of chloride or iodide ion. Molecular docking suggests the formation of a hydrogen bond between the NH group of indole and the carboxyl O of Glu 183 in the binding of indole to CPO. Simulated annealing of the CPO-indole complex using r values from NMR experiments as distance restraints reveals that the van der Waals interactions were much stronger than the Coulomb interactions in the binding of indole to CPO, indicating that the association of indole with CPO is primarily governed by hydrophobic rather than electrostatic interactions. This work provides the first experimental and theoretical evidence of the long-sought mechanism that leads to the "unexpected" regioselectivity of the CPO-catalyzed oxidation of indole. The structure of the CPO-indole complex will serve as a lighthouse in guiding the design of CPO mutants with tailor-made activities for biotechnological applications.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | | | | | | |
Collapse
|
13
|
Yadav P, Yadav M, Yadav KDS, Sharma JK, Singh VK. Purification of chloroperoxidase from Musa paradisiaca
stem juice. INT J CHEM KINET 2012. [DOI: 10.1002/kin.20746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Morozov AN, Chatfield DC. Chloroperoxidase-catalyzed epoxidation of cis-β-methylstyrene: distal pocket flexibility tunes catalytic reactivity. J Phys Chem B 2012; 116:12905-14. [PMID: 23020548 DOI: 10.1021/jp302763h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chloroperoxidase, the most versatile heme protein, has a hybrid active site pocket that shares structural features with peroxidases and cytochrome P450s. The simulation studies presented here show that the enzyme possesses a remarkable ability to efficiently utilize its hybrid structure, assuming structurally different peroxidase-like and P450-like distal pocket faces and thereby enhancing the inherent catalytic capability of the active center. We find that, during epoxidation of cis-β-methylstyrene (CBMS), the native peroxidase-like aspect of the distal pocket is diminished as the polar Glu183 side chain is displaced away from the active center and the distal pocket takes on a more hydrophobic, P450-like, aspect. The P450-like distal pocket provides a significant enthalpic stabilization of ∼4 kcal/mol of the 14 kcal/mol reaction barrier for gas-phase epoxidation of CMBS by an oxyferryl heme-thiolate species. This stabilization comes from breathing of the distal pocket. As until recently the active site of chloroperoxidase was postulated to be inflexible, these results suggest a new conceptual understanding of the enzyme's versatility: catalytic reactivity is tuned by flexibility of the distal pocket.
Collapse
Affiliation(s)
- Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.
| | | |
Collapse
|
15
|
Lin H, Liu JY, Wang HB, Ahmed AAQ, Wu ZL. Biocatalysis as an alternative for the production of chiral epoxides: A comparative review. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.07.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Abu-Omar MM. High-valent iron and manganese complexes of corrole and porphyrin in atom transfer and dioxygen evolving catalysis. Dalton Trans 2011; 40:3435-44. [DOI: 10.1039/c0dt01341b] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
|
18
|
Yadav P, Sharma JK, K. Singh V, Yadav KDS. N-Oxidation of arylamines to nitrosobenzenes using chloroperoxidase purified fromMusa paradisiacastem juice. BIOCATAL BIOTRANSFOR 2010. [DOI: 10.3109/10242422.2010.489943] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
|
20
|
|
21
|
Perez DI, Grau MM, Arends IWCE, Hollmann F. Visible light-driven and chloroperoxidase-catalyzed oxygenation reactions. Chem Commun (Camb) 2009:6848-50. [PMID: 19885500 DOI: 10.1039/b915078a] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Robust peroxidase-catalyzed enantiospecific oxyfunctionalizations can be achieved by simple light-driven in situ generation of hydrogen peroxide.
Collapse
Affiliation(s)
- Daniel I Perez
- Department of Biotechnology, Biocatalysis and Organic Chemistry, Delft University of Technology, Julianalaan 136, Delft, 2628 BL, The Netherlands
| | | | | | | |
Collapse
|
22
|
Anderson M, Allenmark S. The Potential Of Vanadium Bromoperoxidase As A Catalyst In Preparative Asymmetric Sulfoxidation. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242420009040123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Andersson M, Andersson MM, Adlercreutz P. Stabilisation of Chloroperoxidase Towards Peroxide Dependent Inactivation. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242420009015263] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Boutureira O, McGouran JF, Stafford RL, Emmerson DPG, Davis BG. Accessible sugars as asymmetric olefin epoxidation organocatalysts: glucosaminide ketones in the synthesis of terminal epoxides. Org Biomol Chem 2009; 7:4285-8. [DOI: 10.1039/b911675c] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Spreti N, Germani R, Incani A, Savelli G. Stabilization of Chloroperoxidase by Polyethylene Glycols in Aqueous Media: Kinetic Studies and Synthetic Applications. Biotechnol Prog 2008; 20:96-101. [PMID: 14763829 DOI: 10.1021/bp034167i] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chloroperoxidase (CPO) is one of the most versatile of the heme peroxidase enzymes for synthetic applications. Despite the potential use of CPO, commercial processes have not been developed because of the low water solubility of many organic substrates of synthetic interest and the limited stability due to inactivation by H(2)O(2). CPO catalytic properties have been studied in aqueous solutions in the presence of short-chain poly(ethylene glycol)s (PEGs), and the sulfoxidation of thioanisole, as model substrate, has been investigated. The addition of PEGs allows a better substrate solubilization in the reaction mixture and the enzyme to retain more of its initial activity, with respect to pure buffer. Kinetic studies were performed to optimize the experimental conditions, and complete enantioselective conversion to the (R)-sulfoxide (ee = 99%) was observed in the presence of PEG 200 and tri(ethylene glycol). The relevant stabilization of chloroperoxidase due to the presence of PEGs allows the enzyme to convert the substrate with significant product yields even after 10 days, with a consequent increase in enzyme productivity. This is a promising result in view of industrial application of the enzyme.
Collapse
Affiliation(s)
- Nicoletta Spreti
- Dipartimento di Chimica, Ingegneria Chimica e Materiali, Via Vetoio, Coppito 2, 67010 Coppito (AQ), Italy
| | | | | | | |
Collapse
|
26
|
Tzialla A, Kalogeris E, Gournis D, Sanakis Y, Stamatis H. Enhanced catalytic performance and stability of chloroperoxidase from Caldariomyces fumago in surfactant free ternary water–organic solvent systems. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.molcatb.2007.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Grey CE, Hedström M, Adlercreutz P. A Mass Spectrometric Investigation of Native and Oxidatively Inactivated Chloroperoxidase. Chembiochem 2007; 8:1055-62. [PMID: 17492739 DOI: 10.1002/cbic.200700091] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The enzyme chloroperoxidase (CPO) found in Caldariomyces fumago is able to catalyze several stereoselective oxidation reactions by using a clean oxidant, usually hydrogen peroxide (H(2)O(2)), without the need for expensive cofactor generation. CPO's lack of operational stability, however, is a major limitation for its commercial use. In the present study, a capillary-LC on-line trypsin-digestion system combined with reversed-phase chromatography and mass spectrometric detection was optimized for studying the primary sequence of CPO. Samples containing native CPO, CPO treated with H(2)O(2), and CPO oxidatively inactivated by the use of indole and H(2)O(2) were analyzed and compared. Three oxidized peptides were found in the samples treated with H(2)O(2). Two additional oxidized peptides were found in the CPO samples that were completely inactivated, one of which contained an oxidized cysteine residue, Cys50, which is an essential amino acid due to its function as the axial ligand to the iron in the heme--the prosthetic group in CPO. In addition, the heme group was absent in the inactivated samples but was readily detected in other samples.
Collapse
Affiliation(s)
- Carl Elovson Grey
- Department of Biotechnology, Lund University, P.O. Box 124, SE-22 100 Lund, Sweden
| | | | | |
Collapse
|
28
|
Zhang R, Nagraj N, Lansakara-P DSP, Hager LP, Newcomb M. Kinetics of two-electron oxidations by the compound I derivative of chloroperoxidase, a model for cytochrome P450 oxidants. Org Lett 2007; 8:2731-4. [PMID: 16774243 PMCID: PMC2535770 DOI: 10.1021/ol060762k] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[structure: see text] Rate constants for two-electron oxidation reactions of Compound I from chloroperoxidase (CPO) with a variety of substrates were measured by stopped-flow kinetic techniques. The thiolate ligand of CPO Compound I activates the iron-oxo species with the result that oxidation reactions are 2 to 3 orders of magnitude faster than oxidations by model iron(IV)-oxo porphyrin radical cations containing weaker binding counterions.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607,
| | - Nandini Nagraj
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607,
| | | | - Lowell P. Hager
- Department of Chemistry and Biochemistry, University of Illinois at Urbana, Urbana, IL 61801
| | - Martin Newcomb
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607,
| |
Collapse
|
29
|
Kaup BA, Piantini U, Wüst M, Schrader J. Monoterpenes as novel substrates for oxidation and halo-hydroxylation with chloroperoxidase from Caldariomyces fumago. Appl Microbiol Biotechnol 2007; 73:1087-96. [PMID: 17028875 DOI: 10.1007/s00253-006-0559-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 06/23/2006] [Accepted: 06/26/2006] [Indexed: 11/29/2022]
Abstract
Chloroperoxidase (CPO) from Caldariomyces fumago was analysed for its ability to oxidize ten different monoterpenes with hydrogen peroxide as oxidant. In the absence of halide ions geraniol and, to a lesser extent, citronellol and nerol were converted into the corresponding aldehydes, whereas terpene hydrocarbons did not serve as substrates under these conditions. In the presence of chloride, bromide and iodide ions, every terpene tested was converted into one or more products. (1S)-(+)-3-carene was chosen as a model substrate for the CPO-catalysed conversion of terpenes in the presence of sodium halides. With chloride, bromide and iodide, the reaction products were the respective (1S,3R,4R,6R)-4-halo-3,7,7-trimethyl-bicyclo[4.1.0]-heptane-3-ols, as identified by 1H and 13C nuclear magnetic resonance. These product formations turned out to be strictly regio- and stereoselective and proceeded very rapidly and almost quantitatively. Initial specific activities of halohydrin formation increased from 4.22 U mg-1 with chloride to 12.22 U mg-1 with bromide and 37.11 U mg-1 with iodide as the respective halide ion. These results represent the first examples of the application of CPO as a highly efficient biocatalyst for monoterpene functionalization. This is a promising strategy for 'green' terpene chemistry overcoming drawbacks usually associated with cofactor-dependent oxygenases, whole-cell biocatalysts and conventional chemical methods used for terpene conversions.
Collapse
Affiliation(s)
- Bjoern-Arne Kaup
- Biochemical Engineering Group, DECHEMA e.V, Karl-Winnacker-Institut, Theodor-Heuss-Allee 25, 60486, Frankfurt, Germany
| | | | | | | |
Collapse
|
30
|
Murali Manoj K. Chlorinations catalyzed by chloroperoxidase occur via diffusible intermediate(s) and the reaction components play multiple roles in the overall process. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1325-39. [PMID: 16870515 DOI: 10.1016/j.bbapap.2006.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 05/29/2006] [Accepted: 05/30/2006] [Indexed: 11/21/2022]
Abstract
The chlorination mechanism of the fungal enzyme chloroperoxidase (CPO) has been debated for (1) active site chlorination and (2) diffusible species mediated chlorination. Based upon the conversion of approximately 35 different substrates belonging to different reactive groups, it was found that substrate dimensions and topography had no pronounced effect on rates of CPO chlorination reaction. Epoxidation of indene was dependent on its concentration where as chlorination was not. Also, effective conversion was seen in the chlorination mixture for substrates that could not be epoxidized or sulfoxidized. Some insoluble substrates and certain molecules that exceeded the active site dimensions were chlorinated at rates comparable to the rates required for CPO's more natural substrate, monochlorodimedone. By terminating the enzymatic reaction with an active site ligand (azide), the amount of diffusible species was correlated to CPO in the reaction mixture. The preferential utilization of a substrate, earlier attributed to the active site, is found to be due to the specificity afforded by the reaction environment. It was found that the reaction medium components of peroxide, chloride and hydronium ions affected the reaction rates through varying roles in the enzymatic and non-enzymatic process. Besides these experimental evidences, key mechanistic and kinetic arguments are presented to infer that the final chlorine transfer occurs outside the active site via a diffusible species.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Department of Biochemistry, 600 South Mathews Avenue, University of Illinois at Urbana-Champaign, Urbana, IL-61801, USA.
| |
Collapse
|
31
|
|
32
|
Torres E, Aburto J. Chloroperoxidase-catalyzed oxidation of 4,6-dimethyldibenzothiophene as dimer complexes: Evidence for kinetic cooperativity. Arch Biochem Biophys 2005; 437:224-32. [PMID: 15850562 DOI: 10.1016/j.abb.2005.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 03/04/2005] [Accepted: 03/07/2005] [Indexed: 10/25/2022]
Abstract
A sigmoidal kinetic behavior of chloroperoxidase for the oxidation of 4,6-dimethyldibenzothiophene (4,6-DMDBT) in water-miscible organic solvent is for the first time reported. Kinetics of 4,6-DMDBT oxidation showed a cooperative profile probably due to the capacity of chloroperoxidase to recognize a substrate dimer (pi-pi dimer) in its active site. Experimental evidence is given for dimer formation and its presence in the active site of chloroperoxidase. The kinetic data were adjusted for a binding site able to interact with either monomer or dimer substrates, producing a cooperative model describing a one-site binding of two related species. Determination of kinetics constants by iterative calculations of possible oxidation paths of 4,6-DMDBT suggests that kinetics oxidation of dimer substrate is preferred when compared to monomer oxidation. Steady-state fluorometry of substrate in the absence and presence of chloroperoxidase, described by the spectral center of mass, supports this last conclusion.
Collapse
Affiliation(s)
- Eduardo Torres
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, 07730 Mexico City, Mexico
| | | |
Collapse
|
33
|
Petri A, Gambicorti T, Salvadori P. Covalent immobilization of chloroperoxidase on silica gel and properties of the immobilized biocatalyst. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.molcatb.2003.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
|
35
|
Manoj KM, Hager LP. Utilization of peroxide and its relevance in oxygen insertion reactions catalyzed by chloroperoxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1547:408-17. [PMID: 11410297 DOI: 10.1016/s0167-4838(01)00210-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Chloroperoxidase (CPO) catalyzed oxygen insertions are highly enantioselective and hence of immense biotechnological potential. A peroxide activation step is required to give rise to the compound I species that catalyzes this chiral reaction. A side reaction, a catalase type peroxide dismutation, is another feature of CPO's versatility. This work systematically investigates the utilization of different peroxides for the two reactions, i.e. the catalase type reaction and the oxygen insertion reaction. For the oxygen insertion reaction, indene and phenylethyl sulfide were chosen as substrate models for epoxidation and sulfoxidation respectively. The results clearly show that CPO is stable towards hydrogen peroxide and has a total number of turnovers near one million prior to deactivation. The epoxidation reactions terminate before completion because the enzyme functioning in its catalatic mode quickly removes all of the hydrogen peroxide from the reaction mixture. Sulfoxidation reactions are much faster than epoxidation reactions and thus are better able to compete with the catalase reaction for hydrogen peroxide utilization. A preliminary study towards optimizing the reaction system components for a laboratory scale synthetic epoxidation is reported.
Collapse
Affiliation(s)
- K M Manoj
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
36
|
Conesa A, van De Velde F, van Rantwijk F, Sheldon RA, van Den Hondel CA, Punt PJ. Expression of the Caldariomyces fumago chloroperoxidase in Aspergillus niger and characterization of the recombinant enzyme. J Biol Chem 2001; 276:17635-40. [PMID: 11278701 DOI: 10.1074/jbc.m010571200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Caldariomyces fumago chloroperoxidase was successfully expressed in Aspergillus niger. The recombinant enzyme was produced in the culture medium as an active protein and could be purified by a three-step purification procedure. The catalytic behavior of recombinant chloroperoxidase (rCPO) was studied and compared with that of native CPO. The specific chlorination activity (47 units/nmol) of rCPO and its pH optimum (pH 2.75) were very similar to those of native CPO. rCPO catalyzes the oxidation of various substrates in comparable yields and selectivities to native CPO. Indole was oxidized to 2-oxindole with 99% selectivity and thioanisole to the corresponding R-sulfoxide (enantiomeric excess >98%). Incorporation of (18)O from labeled H(2)18O(2) into the oxidized products was 100% in both cases.
Collapse
Affiliation(s)
- A Conesa
- Department of Applied Microbiology and Gene Technology, TNO Nutrition and Food Research Institute, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
van de Velde F, van Rantwijk F, Sheldon RA. Improving the catalytic performance of peroxidases in organic synthesis. Trends Biotechnol 2001; 19:73-80. [PMID: 11164557 DOI: 10.1016/s0167-7799(00)01529-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Peroxidases are ubiquitous enzymes that catalyze a variety of enantioselective oxygen-transfer reactions with hydrogen peroxide (H2O2). Although they have enormous potential, their industrial application is hampered by their high price and low operational stability. Recent developments, such as the controlled addition and in situ formation of the oxidant, protein engineering and the rational design of semi-synthetic peroxidases, aim to improve the operational stability of peroxidases.
Collapse
Affiliation(s)
- F van de Velde
- Nizo Food Research, PO Box 20, 6710 BA, Ede, The Netherlands
| | | | | |
Collapse
|
38
|
van de Velde F, Bakker M, van Rantwijk F, Sheldon RA. Chloroperoxidase-catalyzed enantioselective oxidations in hydrophobic organic media. Biotechnol Bioeng 2001. [DOI: 10.1002/1097-0290(20010305)72:5<523::aid-bit1016>3.0.co;2-m] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
van Rantwijk F, Sheldon RA. Selective oxygen transfer catalysed by heme peroxidases: synthetic and mechanistic aspects. Curr Opin Biotechnol 2000; 11:554-64. [PMID: 11102789 DOI: 10.1016/s0958-1669(00)00143-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The synthetic and mechanistic aspects of the use of heme peroxidases as functional mimics of the cytochrome P450 monooxygenases in oxygen-transfer reactions have been described. The chloroperoxidase from Caldariomyces fumago (CPO) is the catalyst of choice in sulfoxidation, hydroxylation and epoxidation on account of its high activity and enantioselectivity. Other heme peroxidases were less active by orders of magnitude; protein engineering has resulted in impressive improvements but even the most active mutant was still at least an order of magnitude less active than CPO. The 'oxygen-rebound' mechanisms of oxygen transfer mediated by heme enzymes - as originally conceived - have proved to be untenable. Dual pathway mechanisms, via oxoferryl species that insert oxygen as well as iron hydroperoxide species that insert OH(+), have been proposed that accommodate all of the known experimental data.
Collapse
Affiliation(s)
- F van Rantwijk
- Laboratory of Organic Chemistry and Catalysis, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| | | |
Collapse
|
40
|
Bakker M, van De Velde F, van Rantwijk F, Sheldon RA. Highly efficient immobilization of glycosylated enzymes into polyurethane foams. Biotechnol Bioeng 2000; 70:342-8. [PMID: 10992238 DOI: 10.1002/1097-0290(20001105)70:3<342::aid-bit11>3.0.co;2-a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Glycosylated enzymes, including aminoacylase from Aspergillus melleus, chloroperoxidase from Caldariomyces fumago, and phytase from Aspergillus ficuum, were covalently immobilized into polyurethane foams with very high enzyme loadings of up to 0.2 g protein per gram dry foam. The immobilization efficiency (retained activity) ranged from 100% at a low loading to 60% at high loadings. In contrast to many other immobilization methods no leaching of the enzyme from the support took place under the reaction conditions. In short, a universal method for the immobilization of enzymes from fungal sources was developed, affording a highly active, stable, and reusable biocatalyst.
Collapse
Affiliation(s)
- M Bakker
- Laboratory of Organic Chemistry and Catalysis, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| | | | | | | |
Collapse
|
41
|
Rai GP, Zong Q, Hager LP. Isolation of directed evolution mutants of chloroperoxidase resistant to suicide inactivation by primary olefins. Isr J Chem 2000. [DOI: 10.1560/264g-uh9k-meyu-9yhy] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Abstract
Approaches to the rational design of vanadium-based semi-synthetic enzymes and biomimetic models as catalysts for enantioselective oxidations are reviewed. Incorporation of vanadate ion into the active site of phytase (E.C. 3.1.3.8), which in vivo mediates the hydrolysis of phosphate esters, afforded a semi-synthetic peroxidase. It catalyzed the enantioselective oxidation of prochiral sulfides with H2O2 affording the S-sulfoxide, e.g. in 66% ee at quantitative conversion of thioanisole. Under the reaction conditions the semi-synthetic vanadium peroxidase was stable for more than 3 days with only a slight decrease in turnover frequency. Amongst the transition-metal oxoanions that are known to be potent inhibitors of phosphatases, only vanadate resulted in a semi-synthetic peroxidase when incorporated into phytase. In a biomimetic approach, vanadium complexes of chiral Schiff base complexes were encapsulated in the super cages of a hydrophobic zeolite Y. Unfortunately, these ship-in-a-bottle complexes afforded only racemic sulfoxide in the catalytic oxidation of thioanisole with H2O2.
Collapse
Affiliation(s)
- F van de Velde
- Laboratory of Organic Chemistry and Catalysis, Delft University of Technology, The Netherlands
| | | | | |
Collapse
|
43
|
|
44
|
|
45
|
van de Velde F, Lourenço ND, Bakker M, van Rantwijk F, Sheldon RA. Improved operational stability of peroxidases by coimmobilization with glucose oxidase. Biotechnol Bioeng 2000. [DOI: 10.1002/1097-0290(20000805)69:3<286::aid-bit6>3.0.co;2-r] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Manoj KM, Yi X, Rai GP, Hager LP. A kinetic epoxidation assay for chloroperoxidase. Biochem Biophys Res Commun 1999; 266:301-3. [PMID: 10600497 DOI: 10.1006/bbrc.1999.1810] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chloroperoxidase exhibits a wide variety of enantioselective epoxidation reactions. Until now, the epoxidation activities have been mainly evaluated using elaborate gas chromatographic methods. This paper reports a rapid and convenient spectrophotometric assay for CPO. The disappearance of indene by catalytic epoxidation is monitored at 250 nm and this is used as an index of enzyme activity. This method will prove to be highly useful in large-scale screening of mutants.
Collapse
Affiliation(s)
- K M Manoj
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
47
|
Novel applications of chloroperoxidase: enantioselective oxidation of racemic epoxyalcohols. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0957-4166(99)00377-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|