1
|
Jia M, Liu M, Li J, Jiang W, Xin F, Zhang W, Jiang Y, Jiang M. Formaldehyde: An Essential Intermediate for C1 Metabolism and Bioconversion. ACS Synth Biol 2024. [PMID: 39395007 DOI: 10.1021/acssynbio.4c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Formaldehyde is an intermediate metabolite of methylotrophic microorganisms that can be obtained from formate and methanol through oxidation-reduction reactions. Formaldehyde is also a one-carbon (C1) compound with high uniquely reactive activity and versatility, which is more amenable to further biocatalysis. Biosynthesis of high-value-added chemicals using formaldehyde as an intermediate is theoretically feasible and promising. This review focuses on the design of the biosynthesis of high-value-added chemicals using formaldehyde as an essential intermediate. The upstream biosynthesis and downstream bioconversion pathways of formaldehyde as an intermediate metabolite are described in detail, aiming to highlight the important role of formaldehyde in the transition from inorganic to organic carbon and carbon chain elongation. In addition, challenges and future directions of formaldehyde as an intermediate for the chemicals are discussed, with the expectation of providing ideas for the utilization of C1.
Collapse
Affiliation(s)
- Mengshi Jia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Mengge Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Jiawen Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
- Jiangsu Biochemical Chiral Engineering Technology Reseach Center, Changmao Biochemical Engineering Co., Ltd., Changzhou 213034, P. R. China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| |
Collapse
|
2
|
Pfeifenschneider J, Markert B, Stolzenberger J, Brautaset T, Wendisch VF. Transaldolase in Bacillus methanolicus: biochemical characterization and biological role in ribulose monophosphate cycle. BMC Microbiol 2020; 20:63. [PMID: 32204692 PMCID: PMC7092467 DOI: 10.1186/s12866-020-01750-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/11/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The Gram-positive facultative methylotrophic bacterium Bacillus methanolicus uses the sedoheptulose-1,7-bisphosphatase (SBPase) variant of the ribulose monophosphate (RuMP) cycle for growth on the C1 carbon source methanol. Previous genome sequencing of the physiologically different B. methanolicus wild-type strains MGA3 and PB1 has unraveled all putative RuMP cycle genes and later, several of the RuMP cycle enzymes of MGA3 have been biochemically characterized. In this study, the focus was on the characterization of the transaldolase (Ta) and its possible role in the RuMP cycle in B. methanolicus. RESULTS The Ta genes of B. methanolicus MGA3 and PB1 were recombinantly expressed in Escherichia coli, and the gene products were purified and characterized. The PB1 Ta protein was found to be active as a homodimer with a molecular weight of 54 kDa and displayed KM of 0.74 mM and Vmax of 16.3 U/mg using Fructose-6 phosphate as the substrate. In contrast, the MGA3 Ta gene, which encodes a truncated Ta protein lacking 80 amino acids at the N-terminus, showed no Ta activity. Seven different mutant genes expressing various full-length MGA3 Ta proteins were constructed and all gene products displayed Ta activities. Moreover, MGA3 cells displayed Ta activities similar as PB1 cells in crude extracts. CONCLUSIONS While it is well established that B. methanolicus can use the SBPase variant of the RuMP cycle this study indicates that B. methanolicus possesses Ta activity and may also operate the Ta variant of the RuMP.
Collapse
Affiliation(s)
- Johannes Pfeifenschneider
- Genetics of Prokaryotes, Faculty of Biology & Center for Biotechnology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Benno Markert
- Genetics of Prokaryotes, Faculty of Biology & Center for Biotechnology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Jessica Stolzenberger
- Genetics of Prokaryotes, Faculty of Biology & Center for Biotechnology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Trygve Brautaset
- Department of Biotechnology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & Center for Biotechnology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.
| |
Collapse
|
3
|
Takeya T, Yamakita M, Hayashi D, Fujisawa K, Sakai Y, Yurimoto H. Methanol production by reversed methylotrophy constructed in Escherichia coli. Biosci Biotechnol Biochem 2020; 84:1062-1068. [PMID: 31942827 DOI: 10.1080/09168451.2020.1715202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We constructed a reversed methylotrophic pathway that produces methanol, a promising feedstock for production of useful compounds, from fructose 6-phosphate (F6P), which can be supplied by catabolism of biomass-derived sugars including glucose, by a synthetic biology approach. Using Escherichia coli as an expression host, we heterologously expressed genes encoding methanol utilization enzymes from methylotrophic bacteria, i.e. the NAD+-dependent methanol dehydrogenase (MDH) from Bacillus methanolicus S1 and an artificial fusion enzyme of 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase from Mycobacterium gastri MB19 (HPS-PHI). We confirmed that these enzymes can catalyze reverse reactions of methanol oxidation and formaldehyde fixation. The engineered E. coli strain co-expressing MDH and HPS-PHI genes produced methanol in resting cell reactions not only from F6P but also from glucose. We successfully conferred reversed methylotrophy to E. coli and our results provide a proof-of-concept for biological methanol production from biomass-derived sugar compounds.
Collapse
Affiliation(s)
- Tomoyuki Takeya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Miyabi Yamakita
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Daisuke Hayashi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kento Fujisawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Dubey AA, Jain V. Mycofactocin is essential for the establishment of methylotrophy in Mycobacterium smegmatis. Biochem Biophys Res Commun 2019; 516:1073-1077. [PMID: 31279528 DOI: 10.1016/j.bbrc.2019.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022]
Abstract
Mycobacterium smegmatis possesses (N,N-dimethyl-4-nitrosoaniline)-dependent (NDMA) methanol dehydrogenase (Mno) to establish methylotrophy by utilizing methanol as the source of both carbon and energy. In this study, we show that Mno forms decamer and has NADPH as the bound cofactor. Interestingly, Mno uses NDMA and not NADP+ as an electron acceptor in in vitro reactions. We further show that the operon mftAD required for the biosynthesis of mycofactocin, a ribosomally-synthesized electron carrier, is indispensable for the growth of M. smegmatis on methanol. Our data obtained from 2,6-Dichlorophenolindophenol reduction assays also suggest that Mno uses mycofactocin as an in vivo electron acceptor for the oxidation of methanol to formaldehyde. We thus provide here biochemical evidence for mycofactocin as an electron carrier in mycobacterial physiology.
Collapse
Affiliation(s)
- Abhishek Anil Dubey
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India.
| |
Collapse
|
5
|
Chen Y, Xu Y, Yang S, Li S, Ding W, Zhang W. Deficiency of D-alanyl-D-alanine ligase A attenuated cell division and greatly altered the proteome of Mycobacterium smegmatis. Microbiologyopen 2019; 8:e00819. [PMID: 30828981 PMCID: PMC6741128 DOI: 10.1002/mbo3.819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022] Open
Abstract
D‐Alanyl‐D‐alanine ligase A (DdlA) catalyses the dimerization of two D‐alanines yielding D‐alanyl‐D‐alanine required for mycobacterial peptidoglycan biosynthesis, and is a promising antimycobacterial drug target. To better understand the roles of DdlA in mycobacteria in vivo, we established a cell model in which DdlA expression was specifically downregulated by ddlA antisense RNA by introducing a 380 bp ddlA fragment into pMind followed by transforming the construct into nonpathogenic Mycobacterium smegmatis. The M. smegmatis cell model was verified by plotting the growth inhibition curves and quantifying endogenous DdlA expression using a polyclonal anti‐DdlA antibody produced from the expressed DdlA. Scanning electron microscopy and transmission electron microscopy were used to investigate mycobacterial morphology. Bidimensional gel electrophoresis and mass spectrometry were used to analyze differentially expressed proteins. Consequently, the successful construction of the M. smegmatis cell model was verified. The morphological investigation of the model indicated that DdlA deficiency led to an increased number of Z rings and a rearrangement of intracellular content, including a clear nucleoid and visible filamentous DNA. Proteomic techniques identified six upregulated and 14 downregulated proteins that interacted with each other to permit cell survival by forming a regulatory network under DdlA deficiency. Finally, our data revealed that DdlA deficiency inhibited cell division in mycobacteria and attenuated the process of carbohydrate catabolism and the pathway of fatty acid anabolism, while maintaining active protein degradation and synthesis. N‐Nitrosodimethylamine (NDMA)‐dependent methanol dehydrogenase (MSMEG_6242) and fumonisin (MSMEG_1419) were identified as potential antimycobacterial drug targets.
Collapse
Affiliation(s)
- Yingfei Chen
- Dalian Yuming Senior High School, Liaoning, China
| | - Yuefei Xu
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shufeng Yang
- Department of Microbiology, Dalian Medical University, Dalian, China
| | - Sheng Li
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Wenyong Ding
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Wenli Zhang
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
The deep-subsurface sulfate reducer Desulfotomaculum kuznetsovii employs two methanol-degrading pathways. Nat Commun 2018; 9:239. [PMID: 29339722 PMCID: PMC5770442 DOI: 10.1038/s41467-017-02518-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/06/2017] [Indexed: 11/08/2022] Open
Abstract
Methanol is generally metabolized through a pathway initiated by a cobalamine-containing methanol methyltransferase by anaerobic methylotrophs (such as methanogens and acetogens), or through oxidation to formaldehyde using a methanol dehydrogenase by aerobes. Methanol is an important substrate in deep-subsurface environments, where thermophilic sulfate-reducing bacteria of the genus Desulfotomaculum have key roles. Here, we study the methanol metabolism of Desulfotomaculum kuznetsovii strain 17T, isolated from a 3000-m deep geothermal water reservoir. We use proteomics to analyze cells grown with methanol and sulfate in the presence and absence of cobalt and vitamin B12. The results indicate the presence of two methanol-degrading pathways in D. kuznetsovii, a cobalt-dependent methanol methyltransferase and a cobalt-independent methanol dehydrogenase, which is further confirmed by stable isotope fractionation. This is the first report of a microorganism utilizing two distinct methanol conversion pathways. We hypothesize that this gives D. kuznetsovii a competitive advantage in its natural environment.
Collapse
|
7
|
Del Rocío Bustillos-Cristales M, Corona-Gutierrez I, Castañeda-Lucio M, Águila-Zempoaltécatl C, Seynos-García E, Hernández-Lucas I, Muñoz-Rojas J, Medina-Aparicio L, Fuentes-Ramírez LE. Culturable Facultative Methylotrophic Bacteria from the Cactus Neobuxbaumia macrocephala Possess the Locus xoxF and Consume Methanol in the Presence of Ce 3+ and Ca 2. Microbes Environ 2017; 32:244-251. [PMID: 28855445 PMCID: PMC5606694 DOI: 10.1264/jsme2.me17070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Methanol-consuming culturable bacteria were isolated from the plant surface, rhizosphere, and inside the stem of Neobuxbaumia macrocephala. All 38 isolates were facultative methylotrophic microorganisms. Their classification included the Classes Actinobacteria, Sphingobacteriia, Alpha-, Beta-, and Gammaproteobacteria. The deduced amino acid sequences of methanol dehydrogenase obtained by PCR belonging to Actinobacteria, Alpha-, Beta-, and Gammaproteobacteria showed high similarity to rare-earth element (REE)-dependent XoxF methanol dehydrogenases, particularly the group XoxF5. The sequences included Asp301, the REE-coordinating amino acid, present in all known XoxF dehydrogenases and absent in MxaF methanol dehydrogenases. The quantity of the isolates showed positive hybridization with a xoxF probe, but not with a mxaF probe. Isolates of all taxonomic groups showed methylotrophic growth in the presence of Ce3+ or Ca2+. The presence of xoxF-like sequences in methylotrophic bacteria from N. macrocephala and its potential relationship with their adaptability to xerophytic plants are discussed.
Collapse
|
8
|
XoxF-type methanol dehydrogenase from the anaerobic methanotroph “Candidatus Methylomirabilis oxyfera”. Appl Environ Microbiol 2016; 81:1442-51. [PMID: 25527536 DOI: 10.1128/aem.03292-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
“Candidatus Methylomirabilis oxyfera” is a newly discovered anaerobic methanotroph that, surprisingly, oxidizes methane through an aerobic methane oxidation pathway. The second step in this aerobic pathway is the oxidation of methanol. In Gramnegative bacteria, the reaction is catalyzed by pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH). The genome of “Ca. Methylomirabilis oxyfera” putatively encodes three different MDHs that are localized in one large gene cluster: one so-called MxaFI-type MDH and two XoxF-type MDHs (XoxF1 and XoxF2). MxaFI MDHs represent the canonical enzymes, which are composed of two PQQ-containing large (α) subunits (MxaF) and two small (β) subunits (MxaI). XoxF MDHs are novel, ecologically widespread, but poorly investigated types of MDHs that can be phylogenetically divided into at least five different clades. The XoxF MDHs described thus far are homodimeric proteins containing a large subunit only. Here, we purified a heterotetrameric MDH from “Ca. Methylomirabilis oxyfera” that consisted of two XoxF and two MxaI subunits. The enzyme was localized in the periplasm of “Ca. Methylomirabilis oxyfera” cells and catalyzed methanol oxidation with appreciable specific activity and affinity (Vmax of 10 micromole min(-1) mg(-1) protein, Km of 17 microM). PQQ was present as the prosthetic group,which has to be taken up from the environment since the known gene inventory required for the synthesis of this cofactor is lacking. The MDH from “Ca. Methylomirabilis oxyfera” is the first representative of type 1 XoxF proteins to be described.
Collapse
|
9
|
Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Appl Microbiol Biotechnol 2015; 99:10163-76. [PMID: 26276544 DOI: 10.1007/s00253-015-6906-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
Abstract
Methanol, a one-carbon compound, can be utilized by a variety of bacteria and other organisms as carbon and energy source and is regarded as a promising substrate for biotechnological production. In this study, a strain of non-methylotrophic Corynebacterium glutamicum, which was able to produce the polyamide building block cadaverine as non-native product, was engineered for co-utilization of methanol. Expression of the gene encoding NAD+-dependent methanol dehydrogenase (Mdh) from the natural methylotroph Bacillus methanolicus increased methanol oxidation. Deletion of the endogenous aldehyde dehydrogenase genes ald and fadH prevented methanol oxidation to carbon dioxide and formaldehyde detoxification via the linear formaldehyde dissimilation pathway. Heterologous expression of genes for the key enzymes hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase of the ribulose monophosphate (RuMP) pathway in this strain restored growth in the presence of methanol or formaldehyde, which suggested efficient formaldehyde detoxification involving RuMP key enzymes. While growth with methanol as sole carbon source was not observed, the fate of 13C-methanol added as co-substrate to sugars was followed and the isotopologue distribution indicated incorporation into central metabolites and in vivo activity of the RuMP pathway. In addition, 13C-label from methanol was traced to the secreted product cadaverine. Thus, this synthetic biology approach led to a C. glutamicum strain that converted the non-natural carbon substrate methanol at least partially to the non-native product cadaverine.
Collapse
|
10
|
Reimann J, Jetten MSM, Keltjens JT. Metal enzymes in "impossible" microorganisms catalyzing the anaerobic oxidation of ammonium and methane. Met Ions Life Sci 2015; 15:257-313. [PMID: 25707470 DOI: 10.1007/978-3-319-12415-5_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ammonium and methane are inert molecules and dedicated enzymes are required to break up the N-H and C-H bonds. Until recently, only aerobic microorganisms were known to grow by the oxidation of ammonium or methane. Apart from respiration, oxygen was specifically utilized to activate the inert substrates. The presumed obligatory need for oxygen may have resisted the search for microorganisms that are capable of the anaerobic oxidation of ammonium and of methane. However extremely slowly growing, these "impossible" organisms exist and they found other means to tackle ammonium and methane. Anaerobic ammonium-oxidizing (anammox) bacteria use the oxidative power of nitric oxide (NO) by forging this molecule to ammonium, thereby making hydrazine (N2H4). Nitrite-dependent anaerobic methane oxidizers (N-DAMO) again take advantage of NO, but now apparently disproportionating the compound into dinitrogen and dioxygen gas. This intracellularly produced dioxygen enables N-DAMO bacteria to adopt an aerobic mechanism for methane oxidation.Although our understanding is only emerging how hydrazine synthase and the NO dismutase act, it seems clear that reactions fully rely on metal-based catalyses known from other enzymes. Metal-dependent conversions not only hold for these key enzymes, but for most other reactions in the central catabolic pathways, again supported by well-studied enzymes from model organisms, but adapted to own specific needs. Remarkably, those accessory catabolic enzymes are not unique for anammox bacteria and N-DAMO. Close homologs are found in protein databases where those homologs derive from (partly) known, but in most cases unknown species that together comprise an only poorly comprehended microbial world.
Collapse
Affiliation(s)
- Joachim Reimann
- Department of Microbiology, Institute of Wetland and Water Research (IWWR), Radboud University of Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands,
| | | | | |
Collapse
|
11
|
Keltjens JT, Pol A, Reimann J, Op den Camp HJM. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Appl Microbiol Biotechnol 2014; 98:6163-83. [PMID: 24816778 DOI: 10.1007/s00253-014-5766-8] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 01/06/2023]
Abstract
Methanol dehydrogenase (MDH) catalyzes the first step in methanol use by methylotrophic bacteria and the second step in methane conversion by methanotrophs. Gram-negative bacteria possess an MDH with pyrroloquinoline quinone (PQQ) as its catalytic center. This MDH belongs to the broad class of eight-bladed β propeller quinoproteins, which comprise a range of other alcohol and aldehyde dehydrogenases. A well-investigated MDH is the heterotetrameric MxaFI-MDH, which is composed of two large catalytic subunits (MxaF) and two small subunits (MxaI). MxaFI-MDHs bind calcium as a cofactor that assists PQQ in catalysis. Genomic analyses indicated the existence of another MDH distantly related to the MxaFI-MDHs. Recently, several of these so-called XoxF-MDHs have been isolated. XoxF-MDHs described thus far are homodimeric proteins lacking the small subunit and possess a rare-earth element (REE) instead of calcium. The presence of such REE may confer XoxF-MDHs a superior catalytic efficiency. Moreover, XoxF-MDHs are able to oxidize methanol to formate, rather than to formaldehyde as MxaFI-MDHs do. While structures of MxaFI- and XoxF-MDH are conserved, also regarding the binding of PQQ, the accommodation of a REE requires the presence of a specific aspartate residue near the catalytic site. XoxF-MDHs containing such REE-binding motif are abundantly present in genomes of methylotrophic and methanotrophic microorganisms and also in organisms that hitherto are not known for such lifestyle. Moreover, sequence analyses suggest that XoxF-MDHs represent only a small part of putative REE-containing quinoproteins, together covering an unexploited potential of metabolic functions.
Collapse
Affiliation(s)
- Jan T Keltjens
- Department of Microbiology, Institute of Wetland and Water Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
12
|
Hung WL, Wade WG, Boden R, Kelly DP, Wood AP. Facultative methylotrophs from the human oral cavity and methylotrophy in strains of Gordonia, Leifsonia, and Microbacterium. Arch Microbiol 2011; 193:407-17. [PMID: 21374057 DOI: 10.1007/s00203-011-0689-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 12/14/2022]
Abstract
We show that bacteria with methylotrophic potential are ubiquitous in the human mouth microbiota. Numerous strains of Actinobacteria (Brevibacterium, Gordonia, Leifsonia, Microbacterium, Micrococcus, Rhodococcus) and Proteobacteria (Achromobacter, Klebsiella, Methylobacterium, Pseudomonas, Ralstonia) were isolated, and one strain of each of the eleven genera was studied in detail. These strains expressed enzymes associated with methylotrophic metabolism (methanol, methylamine, and formate dehydrogenases), and the assimilation of one-carbon compounds by the serine pathway (hydroxypyruvate reductase). Methylotrophic growth of the strains was enhanced by the addition of glass beads to cultures, suggesting that they may naturally occur in biofilms in the mouth. This is the first report of Gordonia, Leifsonia, and Rhodococcus being present in the mouth and of the unequivocal demonstration for the first time of the methylotrophic potential of strains of Gordonia, Leifsonia, and Microbacterium.
Collapse
Affiliation(s)
- Wei-Lian Hung
- King's College London Dental Institute, Microbiology, Guy's Campus, London, SE1 9RT, UK
| | | | | | | | | |
Collapse
|
13
|
Rudolph J, Kim J, Copley SD. Multiple turnovers of the nicotino-enzyme PdxB require α-keto acids as cosubstrates. Biochemistry 2010; 49:9249-55. [PMID: 20831184 PMCID: PMC3295541 DOI: 10.1021/bi101291d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PdxB catalyzes the second step in the biosynthesis of pyridoxal phosphate by oxidizing 4-phospho-d-erythronate (4PE) to 2-oxo-3-hydroxy-4-phosphobutanoate (OHPB) with concomitant reduction of NAD(+) to NADH. PdxB is a nicotino-enzyme wherein the NAD(H) cofactor remains tightly bound to PdxB. It has been a mystery how PdxB performs multiple turnovers since addition of free NAD(+) does not reoxidize the enzyme-bound NADH following conversion of 4PE to OHPB. We have solved this mystery by demonstrating that a variety of physiologically available α-keto acids serve as oxidants of PdxB to sustain multiple turnovers. In a coupled assay using the next two enzymes of the biosynthetic pathway for pyridoxal phosphate (SerC and PdxA), we have found that α-ketoglutarate, oxaloacetic acid, and pyruvate are equally good substrates for PdxB (k(cat)/K(m) values ~1 × 10(4) M⁻¹s⁻¹). The kinetic parameters for the substrate 4PE include a k(cat) of 1.4 s⁻¹, a K(m) of 2.9 μM, and a k(cat)/K(m) of 6.7 × 10(6) M⁻¹s⁻¹. Additionally, we have characterized the stereochemistry of α-ketoglutarate reduction by showing that d-2-HGA, but not l-2-HGA, is a competitive inhibitor vs 4PE and a noncompetitive inhibitor vs α-ketoglutarate.
Collapse
Affiliation(s)
- Johannes Rudolph
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
| | - Juhan Kim
- Cooperative Institute for Research in Environmental Sciences. University of Colorado at Boulder, Boulder, CO, USA
| | - Shelley D. Copley
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences. University of Colorado at Boulder, Boulder, CO, USA
| |
Collapse
|
14
|
Park H, Lee H, Ro YT, Kim YM. Identification and functional characterization of a gene for the methanol : N,N'-dimethyl-4-nitrosoaniline oxidoreductase from Mycobacterium sp. strain JC1 (DSM 3803). MICROBIOLOGY-SGM 2009; 156:463-471. [PMID: 19875438 DOI: 10.1099/mic.0.034124-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacterium sp. strain JC1 is able to grow on methanol as a sole source of carbon and energy using methanol : N,N'-dimethyl-4-nitrosoaniline oxidoreductase (MDO) as a key enzyme for primary methanol oxidation. Purified MDO oxidizes ethanol and formaldehyde as well as methanol. The Mycobacterium sp. strain JC1 gene for MDO (mdo) was cloned, sequenced, and determined to have an open reading frame of 1272 bp. Northern blot and promoter analysis revealed that mdo transcription was induced in cells grown in the presence of methanol. Northern blotting together with RT-PCR also showed that the mdo gene was transcribed as monocistronic mRNA. Primer extension analysis revealed that the transcriptional start site of the mdo gene is located 21 bp upstream of the mdo start codon. An mdo-deficient mutant of Mycobacterium sp. strain JC1 did not grow with methanol as a sole source of carbon and energy.
Collapse
Affiliation(s)
- Hyuk Park
- Molecular Microbiology Laboratory, Department of Biology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Hyunil Lee
- Laboratory of Biochemistry, Graduate School of Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | - Young T Ro
- Laboratory of Biochemistry, Graduate School of Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | - Young M Kim
- Molecular Microbiology Laboratory, Department of Biology, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
15
|
Harris DM, van der Krogt ZA, van Gulik WM, van Dijken JP, Pronk JT. Formate as an auxiliary substrate for glucose-limited cultivation of Penicillium chrysogenum: impact on penicillin G production and biomass yield. Appl Environ Microbiol 2007; 73:5020-5. [PMID: 17545326 PMCID: PMC1951027 DOI: 10.1128/aem.00093-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Production of beta-lactams by the filamentous fungus Penicillium chrysogenum requires a substantial input of ATP. During glucose-limited growth, this ATP is derived from glucose dissimilation, which reduces the product yield on glucose. The present study has investigated whether penicillin G yields on glucose can be enhanced by cofeeding of an auxiliary substrate that acts as an energy source but not as a carbon substrate. As a model system, a high-producing industrial strain of P. chrysogenum was grown in chemostat cultures on mixed substrates containing different molar ratios of formate and glucose. Up to a formate-to-glucose ratio of 4.5 mol.mol(-1), an increasing rate of formate oxidation via a cytosolic NAD(+)-dependent formate dehydrogenase increasingly replaced the dissimilatory flow of glucose. This resulted in increased biomass yields on glucose. Since at these formate-to-glucose ratios the specific penicillin G production rate remained constant, the volumetric productivity increased. Metabolic modeling studies indicated that formate transport in P. chrysogenum does not require an input of free energy. At formate-to-glucose ratios above 4.5 mol.mol(-1), the residual formate concentrations in the cultures increased, probably due to kinetic constraints in the formate-oxidizing system. The accumulation of formate coincided with a loss of the coupling between formate oxidation and the production of biomass and penicillin G. These results demonstrate that, in principle, mixed-substrate feeding can be used to increase the yield on a carbon source of assimilatory products such as beta-lactams.
Collapse
Affiliation(s)
- Diana M Harris
- Delft University of Technology, Department of Biotechnology, Julianalaan 67, Delft, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Pacheco CC, Passos JF, Moradas-Ferreira P, De Marco P. Strain PM2, a novel methylotrophic fluorescent Pseudomonas sp. FEMS Microbiol Lett 2004; 227:279-85. [PMID: 14592720 DOI: 10.1016/s0378-1097(03)00692-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A novel bacterial strain, PM2, capable of growing on methanol, was isolated in alkaline conditions from a soil inoculum. This bacterium was characterized at the physiological, biochemical and molecular level. Based on biochemical and molecular data strain PM2 was classified as a novel member of the group of fluorescent pseudomonads. Evidence for the presence of a pyrroloquinoline quinone (PQQ)-linked alcohol dehydrogenase in this organism is presented. Strain PM2 is, to our knowledge, the first example of a methylotrophic Pseudomonas to be characterized in detail. This novel type of metabolism in Pseudomonas broadens even further the metabolic versatility for which this genus is renowned.
Collapse
Affiliation(s)
- Catarina C Pacheco
- Cellular and Applied Microbiology group, IBMC, University of Porto, R. do Campo Alegre, 823, 4150-180, Porto, Portugal
| | | | | | | |
Collapse
|
17
|
Kloosterman H, Vrijbloed JW, Dijkhuizen L. Molecular, biochemical, and functional characterization of a Nudix hydrolase protein that stimulates the activity of a nicotinoprotein alcohol dehydrogenase. J Biol Chem 2002; 277:34785-92. [PMID: 12089158 DOI: 10.1074/jbc.m205617200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytoplasmic coenzyme NAD(+)-dependent alcohol (methanol) dehydrogenase (MDH) employed by Bacillus methanolicus during growth on C(1)-C(4) primary alcohols is a decameric protein with 1 Zn(2+)-ion and 1-2 Mg(2+)-ions plus a tightly bound NAD(H) cofactor per subunit (a nicotinoprotein). Mg(2+)-ions are essential for binding of NAD(H) cofactor in MDH protein expressed in Escherichia coli. The low coenzyme NAD(+)-dependent activity of MDH with C(1)-C(4) primary alcohols is strongly stimulated by a second B. methanolicus protein (ACT), provided that MDH contains NAD(H) cofactor and Mg(2+)-ions are present in the assay mixture. Characterization of the act gene revealed the presence of the highly conserved amino acid sequence motif typical of Nudix hydrolase proteins in the deduced ACT amino acid sequence. The act gene was successfully expressed in E. coli allowing purification and characterization of active ACT protein. MDH activation by ACT involved hydrolytic removal of the nicotinamide mononucleotide NMN(H) moiety of the NAD(H) cofactor of MDH, changing its Ping-Pong type of reaction mechanism into a ternary complex reaction mechanism. Increased cellular NADH/NAD(+) ratios may reduce the ACT-mediated activation of MDH, thus preventing accumulation of toxic aldehydes. This represents a novel mechanism for alcohol dehydrogenase activity regulation.
Collapse
Affiliation(s)
- Harm Kloosterman
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | |
Collapse
|