1
|
López-Sánchez C, Lagoa R, Poejo J, García-López V, García-Martínez V, Gutierrez-Merino C. An Update of Kaempferol Protection against Brain Damage Induced by Ischemia-Reperfusion and by 3-Nitropropionic Acid. Molecules 2024; 29:776. [PMID: 38398528 PMCID: PMC10893315 DOI: 10.3390/molecules29040776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Kaempferol, a flavonoid present in many food products, has chemical and cellular antioxidant properties that are beneficial for protection against the oxidative stress caused by reactive oxygen and nitrogen species. Kaempferol administration to model experimental animals can provide extensive protection against brain damage of the striatum and proximal cortical areas induced by transient brain cerebral ischemic stroke and by 3-nitropropionic acid. This article is an updated review of the molecular and cellular mechanisms of protection by kaempferol administration against brain damage induced by these insults, integrated with an overview of the contributions of the work performed in our laboratories during the past years. Kaempferol administration at doses that prevent neurological dysfunctions inhibit the critical molecular events that underlie the initial and delayed brain damage induced by ischemic stroke and by 3-nitropropionic acid. It is highlighted that the protection afforded by kaempferol against the initial mitochondrial dysfunction can largely account for its protection against the reported delayed spreading of brain damage, which can develop from many hours to several days. This allows us to conclude that kaempferol administration can be beneficial not only in preventive treatments, but also in post-insult therapeutic treatments.
Collapse
Affiliation(s)
- Carmen López-Sánchez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal
| | - Joana Poejo
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
| | - Virginio García-López
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Medical and Surgical Therapeutics, Pharmacology Area, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Virginio García-Martínez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Carlos Gutierrez-Merino
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
| |
Collapse
|
2
|
Tavan M, Hanachi P, de la Luz Cádiz-Gurrea M, Segura Carretero A, Mirjalili MH. Natural Phenolic Compounds with Neuroprotective Effects. Neurochem Res 2024; 49:306-326. [PMID: 37940760 DOI: 10.1007/s11064-023-04046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023]
Abstract
Neurodegenerative disorders are characterized by mitochondrial dysfunction and subsequently oxidative stress, inflammation, and apoptosis that contribute to neuronal cytotoxicity and degeneration. Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) diseases are three of the major neurodegenerative diseases. To date, researchers have found various natural phytochemicals that could potentially be used to treat neurodegenerative diseases. Particularly, the application of natural phenolic compounds has gained significant traction in recent years, driven by their various biological activities and therapeutic efficacy in human health. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and can neutralize the effects of oxidative stress, inflammation, and apoptosis in animal models. This review focuses on the current state of knowledge on phenolic compounds, including phenolic acids, flavonoids, stilbenes, and coumarins, as well as their beneficial effects on human health. We further provide an overview of the therapeutic potential and mechanisms of action of natural dietary phenolics in curing neurodegenerative diseases in animal models.
Collapse
Affiliation(s)
- Mansoureh Tavan
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran.
| | - Parichehr Hanachi
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | | | | | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| |
Collapse
|
3
|
Hussein RM, Kandeil MA, Soliman HM, El-Shahawy AA. Effect of quercetin-loaded poly (lactic-co-glycolic) acid nanoparticles on lipopolysaccharide-induced memory decline, oxidative stress, amyloidogenesis, neurotransmission, and Nrf2/HO-1 expression. Heliyon 2024; 10:e23527. [PMID: 38169932 PMCID: PMC10758873 DOI: 10.1016/j.heliyon.2023.e23527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/11/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Neuroinflammation contributes to the pathogenesis of several neurodegenerative disorders. This study examined the neuroprotective effect of quercetin (QUR)-loaded poly (lactic-co-glycolic) acid (PLGA) nanoparticles (QUR NANO) against the neurotoxicity induced by lipopolysaccharide (LPS) in mice. A QUR NANO formulation was prepared and characterized by differential scanning calorimetry, X-ray diffraction, entrapment efficiency (EE), high-resolution transmission electron microscopy, field emission scanning electron microscopy, and in vitro drug release profile. Levels of glutathione, malondialdehyde, catalase, inducible nitric oxide synthase (iNOS), amyloid beta 42 (Aβ42), β-secretase, gamma-aminobutyric acid (GABA), and acetylcholine esterase (AChE) were measured in the mouse brain tissues. The gene expression of nuclear factor erythroid-related factor 2 (Nrf-2) and heme oxygenase-1 (HO-1) were also determined. The prepared QUR NANO formulation showed 92.07 ± 3.21% EE and drug loading of 4.62 ± 0.55. It exhibited clusters of nano-spherical particles with smooth surface areas, and the loading process was confirmed. In vivo, the QUR NANO preserved the spatial memory of mice and protected the hippocampus from LPS-induced histological lesions. The QUR NANO significantly reduced the levels of malondialdehyde, iNOS, Aβ42, β-secretase, and AChE in brain tissue homogenates. Conversely, QUR NANO increased the glutathione, catalase, and GABA concentrations and upregulated the expression of Nrf-2 and HO-1 genes. Remarkably, the neuroprotective effect of QUR NANO was significantly greater than that of herbal QUR. In summary, the prepared QUR NANO formulation was efficient in mitigating LPS-induced neurotoxicity by reducing memory loss, oxidative stress, and amyloidogenesis while preserving neurotransmission and upregulating the expression of Nrf2 and HO-1 genes. This study addresses several key factors in neuroinflammatory disorders and explores the potential of QUR-loaded nanoparticles as a novel therapeutic approach to alleviate these factors.
Collapse
Affiliation(s)
- Rasha M. Hussein
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Mohamed A. Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Hatem M. Soliman
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed A.G. El-Shahawy
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Egypt
| |
Collapse
|
4
|
Park MN. Therapeutic Strategies for Pancreatic-Cancer-Related Type 2 Diabetes Centered around Natural Products. Int J Mol Sci 2023; 24:15906. [PMID: 37958889 PMCID: PMC10648679 DOI: 10.3390/ijms242115906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a highly malignant neoplasm, is classified as one of the most severe and devastating types of cancer. PDAC is a notable malignancy that exhibits a discouraging prognosis and a rising occurrence. The interplay between diabetes and pancreatic cancer exhibits a reciprocal causation. The identified metabolic disorder has been observed to possess noteworthy consequences on health outcomes, resulting in elevated rates of morbidity. The principal mechanisms involve the suppression of the immune system, the activation of pancreatic stellate cells (PSCs), and the onset of systemic metabolic disease caused by dysfunction of the islets. From this point forward, it is important to recognize that pancreatic-cancer-related diabetes (PCRD) has the ability to increase the likelihood of developing pancreatic cancer. This highlights the complex relationship that exists between these two physiological states. Therefore, we investigated into the complex domain of PSCs, elucidating their intricate signaling pathways and the profound influence of chemokines on their behavior and final outcome. In order to surmount the obstacle of drug resistance and eliminate PDAC, researchers have undertaken extensive efforts to explore and cultivate novel natural compounds of the next generation. Additional investigation is necessary in order to comprehensively comprehend the effect of PCRD-mediated apoptosis on the progression and onset of PDAC through the utilization of natural compounds. This study aims to examine the potential anticancer properties of natural compounds in individuals with diabetes who are undergoing chemotherapy, targeted therapy, or immunotherapy. It is anticipated that these compounds will exhibit increased potency and possess enhanced pharmacological benefits. According to our research findings, it is indicated that naturally derived chemical compounds hold potential in the development of PDAC therapies that are both safe and efficacious.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| |
Collapse
|
5
|
Potential Therapeutic Implication of Herbal Medicine in Mitochondria-Mediated Oxidative Stress-Related Liver Diseases. Antioxidants (Basel) 2022; 11:antiox11102041. [PMID: 36290765 PMCID: PMC9598588 DOI: 10.3390/antiox11102041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are double-membrane organelles that play a role in ATP synthesis, calcium homeostasis, oxidation-reduction status, apoptosis, and inflammation. Several human disorders have been linked to mitochondrial dysfunction. It has been found that traditional therapeutic herbs are effective on alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) which are leading causes of liver cirrhosis and hepatocellular carcinoma. The generation of reactive oxygen species (ROS) in response to oxidative stress is caused by mitochondrial dysfunction and is considered critical for treatment. The role of oxidative stress, lipid toxicity, and inflammation in NAFLD are well known. NAFLD is a chronic liver disease that commonly progresses to cirrhosis and chronic liver disease, and people with obesity, insulin resistance, diabetes, hyperlipidemia, and hypertension are at a higher risk of developing NAFLD. NAFLD is associated with a number of pathological factors, including insulin resistance, lipid metabolic dysfunction, oxidative stress, inflammation, apoptosis, and fibrosis. As a result, the improvement in steatosis and inflammation is enough to entice researchers to look into liver disease treatment. However, antioxidant treatment has not been very effective for liver disease. Additionally, it has been suggested that the beneficial effects of herbal medicines on immunity and inflammation are governed by various mechanisms for lipid metabolism and inflammation control. This review provided a summary of research on herbal medicines for the therapeutic implementation of mitochondria-mediated ROS production in liver disease as well as clinical applications through herbal medicine. In addition, the pathophysiology of common liver disorders such as ALD and NAFLD would be investigated in the role that mitochondria play in the process to open new therapeutic avenues in the management of patients with liver disease.
Collapse
|
6
|
Moazzen A, Öztinen N, Ak-Sakalli E, Koşar M. Structure-antiradical activity relationships of 25 natural antioxidant phenolic compounds from different classes. Heliyon 2022; 8:e10467. [PMID: 36091954 PMCID: PMC9459676 DOI: 10.1016/j.heliyon.2022.e10467] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, 11 hydroxybenzoic acids, 6 hydroxycinnamic acids, 6 flavonoids, and 2 synthetic phenolic antioxidants were evaluated according to their scavenging capacity and structure relationships. The IC50 was calculated for all compounds and the effects of the concentration of antioxidant and the length of the reaction on antioxidant capacity were taken into consideration. Based on the data of tested phenolics some structure-activity relationships were suggested and discussed in detail. Poor correspondence of the results between ABTS+• and DPPH• assays was attained, indicating that the antioxidant properties of each compound differ with regards to the applied method. Nevertheless, it can be argued that the number of electron-donating substituents (-OH and -OCH3) and their configuration has a significant impact on the antioxidant capacity. Undoubtedly, concerns about the reliability of these assays demand further in-depth investigations to give detailed insight into the structure and antioxidant activity relationships.
Collapse
|
7
|
Inhibition Mechanism of Components Isolated from Morus alba Branches on Diabetes and Diabetic Complications via Experimental and Molecular Docking Analyses. Antioxidants (Basel) 2022; 11:antiox11020383. [PMID: 35204264 PMCID: PMC8869400 DOI: 10.3390/antiox11020383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Previously, we reported the anti-diabetic effect of Morus alba root bark and the compounds therein. In our continuous study of other parts of this plant, the ability of the branch of Morus alba to inhibit α-glucosidase, protein tyrosine phosphatase 1B (PTP1B), and advanced glycation end products (AGEs) formation was evaluated. Moreover, there are no previous studies that have performed enzyme kinetics and molecular docking analyses, along with assessments of peroxynitrite (ONOO−) inhibitory activities. Since the Morus alba branch exhibited favorable inhibitory effects, repeated column chromatography was performed to obtain eight compounds, including four flavonoids (1, 3, 6, 8), one arylbenzofuran (2), one stilbene (5), one Diels–Alder-type adduct (7), and one sterol (4). Among them, compounds 1–3 and 5–7 were mixed-type inhibitors of α-glucosidase, sharing the same catalytic residues with acarbose and the same allosteric sites with (Z)-3-bytylidenephthalide. On the other hand, kuwanon C (1) and oxyresveratrol (5) interacted with residues of the allosteric site (α3 and α6 helices) of PTP1B, indicating their use as non-competitive inhibitors. Interestingly, kuwanon G (7) directly bound the catalytic site, or interrupted the binding between the substrate and the active site, as a mixed-type inhibitor. Moreover, most of the compounds exhibited greater activity against AGE formation and ONOO− than positive controls. The IC50 values required to inhibit ONOO− using compounds 1, 3, 5, 6, and 7 were reported for the first time, and range from 1.08 to 12.92 μM. Based on the structure–activity relationship, the presence of hydroxyl, resorcinol, and prenyl moieties was important in the prevention of diabetes’ pathological mechanisms, and these findings have been further supported by molecular docking analysis. These computational and experimental results will be useful in the development of therapeutic candidates to prevent/treat diabetes and its complications.
Collapse
|
8
|
Li Z, Zhang M, Haenen GRMM, Vervoort L, Moalin M. Flavonoids Seen through the Energy Perspective. Int J Mol Sci 2021; 23:187. [PMID: 35008613 PMCID: PMC8745170 DOI: 10.3390/ijms23010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/09/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
In all life forms, opposing forces provide the energy that flows through networks in an organism, which fuels life. In this concept, health is the ability of an organism to maintain the balance between these opposing forces, which creates resilience, and a deranged flow of energy is the basis for diseases. Treatment should focus on adjusting the deranged flow of energy, e.g., by the redox modulating activity of antioxidants. A major group of antioxidants is formed by flavonoids, a group of polyphenolic compounds abundantly present in our diet. The objective here is to review how the redox modulation by flavonoids fits in the various concepts on the mode of action of bioactive compounds, so we can 'see' where there is overlap and where the missing links are. Based on this fundament, we should choose our research path aiming to 'understand' the redox modulating profile of specific flavonoids, so we can ultimately rationally apply the redox modulating power of flavonoids to improve our health.
Collapse
Affiliation(s)
- Zhengwen Li
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (Z.L.); (L.V.); (M.M.)
| | - Ming Zhang
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China
| | - Guido R. M. M. Haenen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (Z.L.); (L.V.); (M.M.)
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Lily Vervoort
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (Z.L.); (L.V.); (M.M.)
| | - Mohamed Moalin
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (Z.L.); (L.V.); (M.M.)
- Research Centre Material Sciences, Zuyd University of Applied Science, 6400 AN Heerlen, The Netherlands
| |
Collapse
|
9
|
Phimphilai S, Koonyosying P, Hutachok N, Kampoun T, Daw R, Chaiyasut C, Prasartthong-osoth V, Srichairatanakool S. Identifying Chemical Composition, Safety and Bioactivity of Thai Rice Grass Extract Drink in Cells and Animals. Molecules 2021; 26:molecules26226887. [PMID: 34833982 PMCID: PMC8621899 DOI: 10.3390/molecules26226887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Rice grass has been reported to contain bioactive compounds that possess antioxidant and free-radical scavenging activities. We aimed to assess rice grass extract (RGE) drink by determining catechin content, free-radical scavenging and iron-binding properties, as well as toxicity in cells and animals. Young rice grass (Sukhothai-1 strain) was dried, extracted with hot water and lyophilized in a vacuum chamber. The resulting extract was reconstituted with deionized water (260 mg/40 mL) and served as Sukhothai-1 rice grass extract drink (ST1-RGE). HPLC results revealed at least eight phenolic compounds, for which the major catechins were catechin, epicatechin and epigallocatechin-3-gallate (EGCG) (2.71-3.57, 0.98-1.85 and 25.47-27.55 mg/40 mL serving, respectively). Elements (As, Cu, Pb, Sn and Zn) and aflatoxin (B1, B2, G1 and G2) contents did not exceed the relevant limits when compared with WHO guideline values. Importantly, ST1-RGE drink exerted radical-scavenging, iron-chelating and anti-lipid peroxidation properties in aqueous and biological environments in a concentration-dependent manner. The drink was not toxic to cells and animals. Thus, Sukhothai-1 rice grass product is an edible drink that is rich in catechins, particularly EGCG, and exhibited antioxidant, free radical scavenging and iron-binding/chelating properties. The product represents a functional drink that is capable of alleviating conditions of oxidative stress and iron overload.
Collapse
Affiliation(s)
- Suthaya Phimphilai
- Division of Science and Food Technology, Faculty of Engineering and Agro-Industry, Maejo University, Chiang Mai 50290, Thailand;
| | - Pimpisid Koonyosying
- Oxidative Stress Research Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.H.); (T.K.); (R.D.)
| | - Nuntouchaporn Hutachok
- Oxidative Stress Research Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.H.); (T.K.); (R.D.)
| | - Tanyaluk Kampoun
- Oxidative Stress Research Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.H.); (T.K.); (R.D.)
| | - Rufus Daw
- Oxidative Stress Research Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.H.); (T.K.); (R.D.)
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Chaiyavat Chaiyasut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | | | - Somdet Srichairatanakool
- Oxidative Stress Research Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.H.); (T.K.); (R.D.)
- Correspondence: ; Tel.: +66-5393-5322
| |
Collapse
|
10
|
Desmet S, Morreel K, Dauwe R. Origin and Function of Structural Diversity in the Plant Specialized Metabolome. PLANTS (BASEL, SWITZERLAND) 2021; 10:2393. [PMID: 34834756 PMCID: PMC8621143 DOI: 10.3390/plants10112393] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 05/07/2023]
Abstract
The plant specialized metabolome consists of a multitude of structurally and functionally diverse metabolites, variable from species to species. The specialized metabolites play roles in the response to environmental changes and abiotic or biotic stresses, as well as in plant growth and development. At its basis, the specialized metabolism is built of four major pathways, each starting from a few distinct primary metabolism precursors, and leading to distinct basic carbon skeleton core structures: polyketides and fatty acid derivatives, terpenoids, alkaloids, and phenolics. Structural diversity in specialized metabolism, however, expands exponentially with each subsequent modification. We review here the major sources of structural variety and question if a specific role can be attributed to each distinct structure. We focus on the influences that various core structures and modifications have on flavonoid antioxidant activity and on the diversity generated by oxidative coupling reactions. We suggest that many oxidative coupling products, triggered by initial radical scavenging, may not have a function in se, but could potentially be enzymatically recycled to effective antioxidants. We further discuss the wide structural variety created by multiple decorations (glycosylations, acylations, prenylations), the formation of high-molecular weight conjugates and polyesters, and the plasticity of the specialized metabolism. We draw attention to the need for untargeted methods to identify the complex, multiply decorated and conjugated compounds, in order to study the functioning of the plant specialized metabolome.
Collapse
Affiliation(s)
- Sandrien Desmet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; (S.D.); (K.M.)
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; (S.D.); (K.M.)
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Rebecca Dauwe
- Unité de Recherche Biologie des Plantes et Innovation (BIOPI), UMR Transfrontalière BioEcoAgro, Université de Picardie Jules Verne, 80000 Amiens, France
| |
Collapse
|
11
|
Oyewopo AO, Adeleke O, Johnson O, Akingbade A, Olaniyi KS, Areola ED, Tokunbo O. Regulatory effects of quercetin on testicular histopathology induced by cyanide in Wistar rats. Heliyon 2021; 7:e07662. [PMID: 34401560 PMCID: PMC8353301 DOI: 10.1016/j.heliyon.2021.e07662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/24/2021] [Accepted: 07/23/2021] [Indexed: 01/17/2023] Open
Abstract
Several causes of infertility have been identified, and several papers have documented some compounds that cause infertility. One of the compounds reported to be toxic to the reproductive system is cyanide. In the management of infertility, various mechanisms ranging from synthetic drugs, natural products and supplements have been employed. Quercetin is an antioxidant supplement that has been used in the treatment of a variety of ailments. This work is aimed at investigating the role of quercetin in attenuating spermato-toxicity and testicular-histopathology induced by cyanide. Seventy-two (72) male wistar rat (weight 190 g ± 10 g) were divided into nine groups (n = 8) except for groups 4 and 5 with (n = 16). Group 1 (control) received physiological saline while Groups 2 and 3 received 0.5 and 1 mg/kg body weight (bwt) cyanide respectively for 56 days, groups 4 and 5 received 0.5 and 1 mg/kg bwt cyanide respectively for 30 days. At day 30, eight animals were sacrificed from Groups 4 and 5 and the remaining eight (8) rats were subdivided into groups (6 and 7) and were given 20 and 40 mg/kg bwt of quercetin respectively for twenty-six days. Co-administration of cyanide and quercetin at a dose of 0.5 mg/kg cyanide +20 mg/kg quercetin and 1 mg/kg cyanide +40 mg/kg quercetin were given to group 8 and 9 respectively for 56 days. Significant decreases in sperm parameters (count, motile and normal sperm) and increases in malondiadehyde concentration were observed in the cyanide treated groups. Testicular histoarchitecture showed few to no spermatozoa in the lumen of rats treated with cyanide. All these effects were attenuated by quercetin. In conclusion, quercetin regulates testicular histopathology induced by cyanide in Wistar rats. Data from this work suggests potential preventive or therapeutic applications of quercetin for individuals subjected to cyanide environmental pollution.
Collapse
Affiliation(s)
- Adeoye O. Oyewopo
- Department of Anatomy, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
- Corresponding author.
| | - Opeyemi Adeleke
- Department of Anatomy, College of Health Sciences, Osun State University, Osogbo, Osun State, Nigeria
| | - Olawumi Johnson
- Department of Anatomy, University of Medical Sciences, Ondo City, Ondo State, Nigeria
| | - Adebanji Akingbade
- Department of Anatomy, College of Medicine and Health Sciences, Ekiti State University, Ekiti State, Nigeria
| | - Kehinde S. Olaniyi
- Department of Physiology, College of Health Sciences, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Emmanuel D. Areola
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Olorunfemi Tokunbo
- Department of Anatomy, College of Health Sciences, Osun State University, Osogbo, Osun State, Nigeria
| |
Collapse
|
12
|
Rutkowska M, Kolodziejczyk-Czepas J, Owczarek A, Zakrzewska A, Magiera A, Olszewska MA. Novel insight into biological activity and phytochemical composition of Sorbus aucuparia L. fruits: Fractionated extracts as inhibitors of protein glycation and oxidative/nitrative damage of human plasma components. Food Res Int 2021; 147:110526. [PMID: 34399504 DOI: 10.1016/j.foodres.2021.110526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022]
Abstract
Sorbus aucuparia L. is a source of edible fruits appreciated for their nutritional and medicinal properties. In this work some bioactivity mechanisms were evaluated, which might be connected with the traditional application of rowanberries in cardiovascular complications of diabetes. With the use of a panel of chemical and biological in vitro models the rowanberry extracts were proved to significantly inhibit the formation of advanced glycation end products, neutralise multiple oxidants generated in vivo, increase the non-enzymatic antioxidant capacity of human plasma and protect plasma components (proteins and lipids) against oxidative/nitrative damage at in vivo-relevant levels (1-5 µg/mL). Moreover, the extracts were found safe in cytotoxicity tests on the peripheral blood mononuclear cells. The comprehensive phytochemical profiling of the extracts (RP/HILIC-UHPLC-PDA-ESI-MS3, HPLC-PDA, and UV-spectrophotometric methods) led to the identification of 51 phenolics, including caffeic and ferulic acids pseudodepsides (34 compounds, prevailing isomers of chlorogenic acid and cynarin, total content up to 269.4 mg/g), flavonols (mostly quercetin glycosides, up to 5.8 mg/g), flavan-3-ol derivatives (proanthocyanidin oligomers and polymers, up to 17.0 mg/g), and simple phenolic acids. The experiments on model constituents of the extracts and correlation studies were used to evaluate contribution of polyphenols to the observed effects. Taking into account the possible additive and synergistic effects, the co-occurrence of various compounds was indicated as partly responsible for biological activity of the fruits. Considering both the composition and activity parameters, the methanol-water (1:1, v/v) extract and its concentrated phenolic fractions appeared to be the most advantageous for biological application.
Collapse
Affiliation(s)
- Magdalena Rutkowska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St, 90-151 Lodz, Poland.
| | - Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St, 90-236 Lodz, Poland
| | - Aleksandra Owczarek
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St, 90-151 Lodz, Poland
| | - Anna Zakrzewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St, 90-151 Lodz, Poland
| | - Anna Magiera
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St, 90-151 Lodz, Poland
| | - Monika A Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St, 90-151 Lodz, Poland
| |
Collapse
|
13
|
Electrochemical and spectroscopic studies of the interaction of (+)-epicatechin with bovine serum albumin. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01894-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Šafranko S, Stanković A, Asserghine A, Jakovljević M, Hajra S, Nundy S, Medvidović‐Kosanović M, Jokić S. Electroactivated Disposable Pencil Graphite Electrode – New, Cost‐effective, and Sensitive Electrochemical Detection of Bioflavonoid Hesperidin. ELECTROANAL 2020. [DOI: 10.1002/elan.202060511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Silvija Šafranko
- Faculty of Food Technology Osijek Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20 31000 Osijek Croatia
| | - Anamarija Stanković
- Department of Chemistry Josip Juraj Strossmayer University of Osijek Ulica cara Hadrijana 8 A 31000 Osijek Croatia
| | - Abdelilah Asserghine
- Department of General and Physical Chemistry Faculty of Sciences University of Pécs 7624 Ifjúság u. 6. Pécs Hungary
| | - Martina Jakovljević
- Faculty of Food Technology Osijek Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20 31000 Osijek Croatia
| | - Sugato Hajra
- Department of Electronics and Instrumentation Siksha O Anusandhan University (deemed to be University) Bhubaneswar 751030 India
| | - Srijita Nundy
- School of Advanced Materials Science and Engineering Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Martina Medvidović‐Kosanović
- Department of Chemistry Josip Juraj Strossmayer University of Osijek Ulica cara Hadrijana 8 A 31000 Osijek Croatia
| | - Stela Jokić
- Faculty of Food Technology Osijek Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20 31000 Osijek Croatia
| |
Collapse
|
15
|
Li Z, Moalin M, Zhang M, Vervoort L, Hursel E, Mommers A, Haenen GRMM. The Flow of the Redox Energy in Quercetin during Its Antioxidant Activity in Water. Int J Mol Sci 2020; 21:E6015. [PMID: 32825576 PMCID: PMC7504380 DOI: 10.3390/ijms21176015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 11/17/2022] Open
Abstract
Most studies on the antioxidant activity of flavonoids like Quercetin (Q) do not consider that it comprises a series of sequential reactions. Therefore, the present study examines how the redox energy flows through the molecule during Q's antioxidant activity, by combining experimental data with quantum calculations. It appears that several main pathways are possible. Pivotal are subsequently: deprotonation of the 7-OH group; intramolecular hydrogen transfer from the 3-OH group to the 4-Oxygen atom; electron transfer leading to two conformers of the Q radical; deprotonation of the OH groups in the B-ring, leading to three different deprotonated Q radicals; and finally electron transfer of each deprotonated Q radical to form the corresponding quercetin quinones. The quinone in which the carbonyl groups are the most separated has the lowest energy content, and is the most abundant quinone. The pathways are also intertwined. The calculations show that Q can pick up redox energy at various sites of the molecule which explains Q's ability to scavenge all sorts of reactive oxidizing species. In the described pathways, Q picked up, e.g., two hydroxyl radicals, which can be processed and softened by forming quercetin quinone.
Collapse
Affiliation(s)
- Zhengwen Li
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Mohamed Moalin
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
- Research Centre Material Sciences, Zuyd University of Applied Sciences, 6419 DJ Heerlen, The Netherlands
| | - Ming Zhang
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Lily Vervoort
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Erik Hursel
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Alex Mommers
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Guido R. M. M. Haenen
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| |
Collapse
|
16
|
Veiko AG, Sekowski S, Lapshina EA, Wilczewska AZ, Markiewicz KH, Zamaraeva M, Zhao HC, Zavodnik IB. Flavonoids modulate liposomal membrane structure, regulate mitochondrial membrane permeability and prevent erythrocyte oxidative damage. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183442. [PMID: 32814117 DOI: 10.1016/j.bbamem.2020.183442] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/15/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022]
Abstract
In the present work, we investigated the interaction of flavonoids (quercetin, naringenin and catechin) with cellular and artificial membranes. The flavonoids considerably inhibited membrane lipid peroxidation in rat erythrocytes treated with tert-butyl hydroperoxide (700 μM), and the IC50 values for prevention of this process were equal to 9.7 ± 0.8 μM, 8.8 ± 0.7 μM, and 37.8 ± 4.4 μM in the case of quercetin, catechin and naringenin, respectively, and slightly decreased glutathione oxidation. In isolated rat liver mitochondria, quercetin, catechin and naringenin (10-50 μM) dose-dependently increased the sensitivity to Ca2+ ions - induced mitochondrial permeability transition. Using the probes TMA-DPH and DPH we showed that quercetin rather than catechin and naringenin strongly decreased the microfluidity of the 1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomal membrane bilayer at different depths. On the contrary, using the probe Laurdan we observed that naringenin transfer the bilayer to a more ordered state, whereas quercetin dose-dependently decreased the order of lipid molecule packing and increased hydration in the region of polar head groups. The incorporation of the flavonoids, quercetin and naringenin and not catechin, into the liposomes induced an increase in the zeta potential of the membrane and enlarged the area of the bilayer as well as lowered the temperature and the enthalpy of the membrane phase transition. The effects of the flavonoids were connected with modification of membrane fluidity, packing, stability, electrokinetic properties, size and permeability, prevention of oxidative stress, which depended on the nature of the flavonoid molecule and the nature of the membrane.
Collapse
Affiliation(s)
- Artem G Veiko
- Department of Biochemistry, Yanka Kupala State University of Grodno, 230030 Grodno, Belarus
| | - Szymon Sekowski
- Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland
| | - Elena A Lapshina
- Department of Biochemistry, Yanka Kupala State University of Grodno, 230030 Grodno, Belarus
| | - Agnieszka Z Wilczewska
- Faculty of Chemistry, University of Białystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Karolina H Markiewicz
- Faculty of Chemistry, University of Białystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Maria Zamaraeva
- Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland
| | - Hu-Cheng Zhao
- Institute of Biomechanics and Medical Engineering, Tsinghua University, 100084 Beijing, PR China
| | - Ilya B Zavodnik
- Department of Biochemistry, Yanka Kupala State University of Grodno, 230030 Grodno, Belarus.
| |
Collapse
|
17
|
Gutiérrez-Venegas G, Fernández-Rojas B, Rosas-Martínez M, Sánchez-Carballido MA. Rutin Prevents LTA Induced Oxidative Changes in H9c2 Cells. Prev Nutr Food Sci 2020; 25:203-211. [PMID: 32676472 PMCID: PMC7333009 DOI: 10.3746/pnf.2020.25.2.203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/20/2020] [Indexed: 12/29/2022] Open
Abstract
Lipoteichoic acid (LTA), a component of Gram-positive bacteria cell walls is involved in infective endocarditis (IE), a life-threatening disease. We evaluated for the first time, whether flavonoid rutin (quercetin-3-rutinoside) can block LTA-induced pro-inflammatory response and reactive oxygen species (ROS) production, and reduction of antioxidant enzymes. We found that rutin suppresses LTA effects on the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, as well as the pro-inflammatory enzyme cyclooxygenase-2, preventing phosphorylation of the mitogen-activated protein kinases (MAPKs), p38, and c-Jun N-terminal kinase, and the increase of ROS production induced by LTA. Taken together, these findings suggest that rutin prevents oxidative damage, inflammation, and MAPKs activation induced by LTA. Rutin may exert a protective effect in IE. These data provide novel insights for future use of rutin to prevent the mechanisms of LTA-related pathogenesis, inflammatory processes, and antioxidant enzyme levels in diseases such as IE.
Collapse
Affiliation(s)
- Gloria Gutiérrez-Venegas
- Biochemistry Laboratory of the Division of Graduate Studies and Research, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Berenice Fernández-Rojas
- Biochemistry Laboratory of the Division of Graduate Studies and Research, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Marisol Rosas-Martínez
- Biochemistry Laboratory of the Division of Graduate Studies and Research, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Manuel Alejandro Sánchez-Carballido
- Biochemistry Laboratory of the Division of Graduate Studies and Research, Faculty of Dentistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
18
|
Rashidi Z, Khosravizadeh Z, Talebi A, Khodamoradi K, Ebrahimi R, Amidi F. Overview of biological effects of Quercetin on ovary. Phytother Res 2020; 35:33-49. [PMID: 32557927 DOI: 10.1002/ptr.6750] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/14/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022]
Abstract
Over the last few decades, using natural products has been increased to treat different diseases. Today, great attention has been pointed toward the usage of natural products such as flavonoids, especially Quercetin (QUR), in the treatment of diseases. QUR as a natural antioxidant has been traditionally used to prevent or treat a variety of diseases such as cancer, cardiovascular disease, polycystic ovary syndrome (PCOS), obesity, chronic inflammation, and reproductive system dysfunction. Several studies demonstrated that QUR acts as an anti-inflammatory, anti-apoptotic, antioxidant, and anticancer agent. With this in view, in this study, we intended to describe an overview of the biological effects of QUR on the ovary. QUR improves the quality of oocytes and embryos. It affects the proliferation and apoptosis and decreases the oxidative stress in granulosa cells (GCs). Furthermore, QUR can be used as a complementary and alternative therapy in ovarian cancer and it has beneficial effects in the treatment of PCOS patients. It seems that QUR as a supplementary factor has different activities for the treatment of different disorders and it also has bidirectional activities. However, further investigations are needed for understanding the efficacy of QUR in the treatment and improvement of gynecological patients.
Collapse
Affiliation(s)
- Zahra Rashidi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Khosravizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Talebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Kajal Khodamoradi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Li Z, Moalin M, Zhang M, Vervoort L, Mommers A, Haenen GR. Delocalization of the Unpaired Electron in the Quercetin Radical: Comparison of Experimental ESR Data with DFT Calculations. Int J Mol Sci 2020; 21:E2033. [PMID: 32188142 PMCID: PMC7139295 DOI: 10.3390/ijms21062033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
In the antioxidant activity of quercetin (Q), stabilization of the energy in the quercetin radical (Q•) by delocalization of the unpaired electron (UE) in Q• is pivotal. The aim of this study is to further examine the delocalization of the UE in Q•, and to elucidate the importance of the functional groups of Q for the stabilization of the UE by combining experimentally obtained spin resonance spectroscopy (ESR) measurements with theoretical density functional theory (DFT) calculations. The ESR spectrum and DFT calculation of Q• and structurally related radicals both suggest that the UE of Q• is mostly delocalized in the B ring and partly on the AC ring. The negatively charged oxygen groups in the B ring (3' and 4') of Q• have an electron-donating effect that attract and stabilize the UE in the B ring. Radicals structurally related to Q• indicate that the negatively charged oxygen at 4' has more of an effect on concentrating the UE in ring B than the negatively charged oxygen at 3'. The DFT calculation showed that an OH group at the 3-position of the AC ring is essential for concentrating the radical on the C2-C3 double bond. All these effects help to explain how the high energy of the UE is captured and a stable Q• is generated, which is pivotal in the antioxidant activity of Q.
Collapse
Affiliation(s)
- Zhengwen Li
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (A.M.)
| | - Mohamed Moalin
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (A.M.)
- Research Centre Material Sciences, Zuyd University of Applied Sciences, 6419 DJ Heerlen, The Netherlands
| | - Ming Zhang
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (A.M.)
| | - Lily Vervoort
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (A.M.)
| | - Alex Mommers
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (A.M.)
| | - Guido R.M.M. Haenen
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (A.M.)
| |
Collapse
|
20
|
Roudsari NM, Lashgari NA, Momtaz S, Farzaei MH, Marques AM, Abdolghaffari AH. Natural polyphenols for the prevention of irritable bowel syndrome: molecular mechanisms and targets; a comprehensive review. Daru 2019; 27:755-780. [PMID: 31273572 PMCID: PMC6895345 DOI: 10.1007/s40199-019-00284-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a well diagnosed disease, thoroughly attributed to series of symptoms criteria that embrace a broad range of abdominal complainers. Such criteria help to diagnosis the disease and can guide controlled clinical trials to seek new therapeutic agents. Accordingly, a verity of mechanisms and pathophysiological conditions including inflammation, oxidative stress, lipid peroxidation and different life styles are involved in IBS. Predictably, diverse therapeutic approaches are available and prescribed by clinicians due to major manifestations (i.e., diarrhea-predominance, constipation-predominance, abdominal pain and visceral hypersensitivity), psychological disturbances, and patient preferences between herbal treatments versus pharmacological therapies, dietary or microbiological approaches. Herein, we gathered the latest scientific data between 1973 and 2019 from databases such as PubMed, Google Scholar, Scopus and Cochrane library on relevant studies concerning beneficial effects of herbal treatments for IBS, in particular polyphenols. This is concluded that polyphenols might be applicable for preventing IBS and improving the IBS symptoms, mainly through suppressing the inflammatory signaling pathways, which nowadays are known as novel platform for the IBS management. Graphical abstract.
Collapse
Affiliation(s)
- Nazanin Momeni Roudsari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Naser-Aldin Lashgari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - André M Marques
- Oswaldo Cruz Foundation (FIOCRUZ), Institute of Technology in Pharmaceuticals (Farmanguinhos), Rio de Janeiro, RJ, Brazil
| | - Amir Hossein Abdolghaffari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
21
|
Puertas-Bartolomé M, Benito-Garzón L, Fung S, Kohn J, Vázquez-Lasa B, San Román J. Bioadhesive functional hydrogels: Controlled release of catechol species with antioxidant and antiinflammatory behavior. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110040. [PMID: 31546368 DOI: 10.1016/j.msec.2019.110040] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Chronic wounds are particularly difficult to heal and constitute an important global health care problem. Some key factors that make chronic wounds challenging to heal are attributed to the incessant release of free radicals, which activate the inflammatory system and impair the repair of the wound. Intrinsic characteristics of hydrogels are beneficial for wound healing, but the effective control of free radical levels in the wound and subsequent inflammation is still a challenge. Catechol, the key molecule responsible for the mechanism of adhesion of mussels, has been proven to be an excellent radical scavenger and anti-inflammatory agent. Our approach in this work lies in the preparation of a hybrid system combining the beneficial properties of hydrogels and catechol for its application as a bioactive wound dressing to assist in the treatment of chronic wounds. The hydrogel backbone is obtained through a self-covalent crosslinking between chitosan (Ch) and oxidized hyaluronic acid (HAox) in the presence of a synthetic catechol terpolymer, which is subsequently coordinated to Fe to obtain an interpenetrated polymer network (IPN). The structural analysis, catechol release profiles, in vitro biological behavior and in vivo performance of the IPN are analyzed and compared with the semi-IPN (without Fe) and the Ch/HAox crosslinked hydrogels as controls. Catechol-containing hydrogels present high tissue adhesion strength under wet conditions, support growth, migration and proliferation of hBMSCs, protect cells against oxidative stress damage induce by ROS, and promote down-regulation of the pro-inflammatory cytokine IL-1β. Furthermore, in vivo experiments reveal their biocompatibility and stability, and histological studies indicate normal inflammatory responses and faster vascularization, highlighting the performance of the IPN system. The novel IPN design also allows for the in situ controlled and sustained delivery of catechol. Therefore, the developed IPN is a suitable ECM-mimic platform with high cell affinity and bioactive functionalities that, together with the controlled catechol release, will enhance the tissue regeneration process and has a great potential for its application as wound dressing.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; CIBER-BBN, Institute of Health Carlos III, Monforte de Lemos 3-5 (11), 28029 Madrid, Spain
| | | | - Stephanie Fung
- Rutgers University, New Jersey Center for Biomaterials, 08854 Piscataway, NJ, USA
| | - Joachim Kohn
- Rutgers University, New Jersey Center for Biomaterials, 08854 Piscataway, NJ, USA
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; CIBER-BBN, Institute of Health Carlos III, Monforte de Lemos 3-5 (11), 28029 Madrid, Spain.
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; CIBER-BBN, Institute of Health Carlos III, Monforte de Lemos 3-5 (11), 28029 Madrid, Spain
| |
Collapse
|
22
|
Toghan A, Abo-Bakr AM, Rageh HM, Abd-Elsabour M. Green electrochemical strategy for one-step synthesis of new catechol derivatives. RSC Adv 2019; 9:13145-13152. [PMID: 35520793 PMCID: PMC9063765 DOI: 10.1039/c9ra01206k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/15/2019] [Indexed: 11/21/2022] Open
Abstract
In this paper, we present promising results in the green electrochemical oxidation of catechol in the presence of three different thiol nucleophiles at the surface of a glassy carbon electrode in an aqueous solution using cyclic voltammetry (CV). The outcome indicated the synthesis of some new heterocyclic compounds functionalized with phenolic, triazole, triazine and pyrimidine groups. The effects of repetitive cycling, nucleophile concentrations and sweep rates were explored to get more information about the systems. The voltammetric data showed that the electro-generated o-benzoquinone is a quite reactive intermediate, which in aqueous solutions can quickly participate in a Michael-addition reaction with any one of the nucleophiles to form the corresponding products. The structures of all newly electro-synthesized compounds were confirmed by elemental analyses and FT-IR, 1H NMR, 13C-NMR and MS spectra. The one-pot synthesis strategy led to new organics with high purities and good yields under green conditions without harmful reagents.
Collapse
Affiliation(s)
- Arafat Toghan
- Chemistry Department, Faculty of Science, South Valley University Qena 83523 Egypt
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Kingdom of Saudi Arabia
| | - Ahmed M Abo-Bakr
- Chemistry Department, Faculty of Science, South Valley University Qena 83523 Egypt
| | - Hesham M Rageh
- Chemistry Department, Faculty of Science, South Valley University Qena 83523 Egypt
| | - Mohamed Abd-Elsabour
- Chemistry Department, Faculty of Science, South Valley University Qena 83523 Egypt
| |
Collapse
|
23
|
Abstract
Flavonoids are not essential nutrients in that their absence from the diet does not produce deficiency conditions in animals and man. However, many have important similarities to pharmacological agents used in the treatment of disease. Their role as dietary components in disease prevention is less clear. Many potentially anti-carcinogenic and anti-atherogenic effects observed in cell cultures will not be of nutritional relevance unless flavonoids gain access to appropriate cellular sites. The bioavailability of flavonoids will depend on numerous factors including molecular structure, the amount consumed, the food matrix, degree of bioconversion in the gut and tissues, the nutrient status of the host and genetic factors. Moreover, extensive and rapid intestinal and hepatic metabolism of flavonoids suggests that the body may treat them as xenobiotic and potentially toxic compounds requiring rapid elimination. Consequently, in addition to potential health benefits, possible adverse effects of flavonoids in the diet also need to be considered when assessing their roles in the prevention of degenerative diseases.
Collapse
Affiliation(s)
- Janet Kyle
- Molecular Nutrition Group, Rowett Research Institute, Aberdeen, AB21 9SB, Scotland, UK
| | - Garry Duthie
- Molecular Nutrition Group, Rowett Research Institute, Aberdeen, AB21 9SB, Scotland, UK
| |
Collapse
|
24
|
Fang Y, Cao W, Liang F, Xia M, Pan S, Xu X. Structure affinity relationship and docking studies of flavonoids as substrates of multidrug-resistant associated protein 2 (MRP2) in MDCK/MRP2 cells. Food Chem 2019; 291:101-109. [PMID: 31006447 DOI: 10.1016/j.foodchem.2019.03.111] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
This study was aimed to determine the relationship of flavonoid structures to their affinity for an important efflux transporter, multidrug-resistant associated protein 2 (MRP2). The cellular uptake (CU) of 35 flavonoids was investigated in MRP2 overexpression MDCK/MRP2 cells. Resulting data identified 8 flavonoids as MRP2 substrates based on their high CUMK with MK-571 in MDCK/MRP2 cells. Also, three substrates showed better CUMD in MDCK cells than did CUMRP in MDCK/MRP2 cells. Docking analyses showed a good correlation (R = 0.926, p = 0.003) between efflux-fold of flavonoid substrates and their docking S_scoring with the MRP2 model, indicating consistency between in silico and in vitro approaches. A structure affinity relationship (SAR) study indicated that 3-OH, 5-OH, 6-OH, 3'-OH, and 4'-OCH3 substituents were favourable while, 8-OCH3, 2'-OH, 3'-OCH3, 4'-OH and 5'-OH were unfavourable for flavonoid affinity to MRP2. Our study provides valuable information for dietary application of flavonoids with specific structures for high absorption.
Collapse
Affiliation(s)
- Yajing Fang
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, PR China.
| | - Weiwei Cao
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, PR China.
| | - Fuqiang Liang
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, PR China.
| | - Mengmeng Xia
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, PR China.
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, PR China.
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, PR China.
| |
Collapse
|
25
|
Harisha K, Kumara Swamy B, Ganesh P, Jayadevappa H. Electrochemical oxidation of haematoxylin at poly(alanine) modified carbon paste electrode: A cyclic voltammetric study. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
26
|
Feng JH, Hu XL, Lv XY, Wang BL, Lin J, Zhang XQ, Ye WC, Xiong F, Wang H. Synthesis and biological evaluation of clovamide analogues with catechol functionality as potent Parkinson's disease agents in vitro and in vivo. Bioorg Med Chem Lett 2018; 29:302-312. [PMID: 30470490 DOI: 10.1016/j.bmcl.2018.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/23/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Jia-Hao Feng
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiao-Long Hu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xian-Yu Lv
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Bao-Lin Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jun Lin
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiao-Qi Zhang
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, People's Republic of China.
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
27
|
Kozachok S, Pecio Ł, Kolodziejczyk-Czepas J, Marchyshyn S, Nowak P, Mołdoch J, Oleszek W. γ-Pyrone compounds: flavonoids and maltol glucoside derivatives from Herniaria glabra L. collected in the Ternopil region of the Ukraine. PHYTOCHEMISTRY 2018; 152:213-222. [PMID: 29783188 DOI: 10.1016/j.phytochem.2018.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
The phytochemical investigation of the whole plant extracts of Herniaria glabra L. (Caryophyllaceae) led to the identification and isolation of four known flavonoids, one known and three undescribed maltol derivatives, and benzyl β-gentiobioside. The structures were established by extensive 1D and 2D NMR spectroscopic analyses, as well as HRESIMS data. For the first time in Herniaria genus, as well as in Caryophylaceae family the presence of apiorutin {quercetin 3-O-[(D-apio-β-d-furanosyl-(1 → 2)-O-[-α-l-rhamnopyranosyl-(1 → 6)]-β-d-glucopyranoside]} and licoagroside B {maltol 3-O-[6-O-(3-hydroxy-3-methylglutaroyl)]-β-d-glucopyranoside} were revealed. Additionally, antioxidant actions of apiorutin, rutin, narcissin (isorhamentin 3-O-β-d-rutinoside) and licoagroside B were assessed in human blood plasma, exposed to the peroxynitrite-induced oxidative stress in vitro. The isolates partly reduced oxidative (oxidation of thiol groups) and nitrative (tyrosine nitration) damage to blood plasma proteins, decreased plasma lipid peroxidation as well as enhanced the non-enzymatic antioxidant capacity of blood plasma. No cytotoxicity of the examined substances towards peripheral blood mononuclear cells was found.
Collapse
Affiliation(s)
- Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100, Puławy, Poland; Department of Pharmacognosy with Medical Botany, I. Horbachevsky Ternopil State Medical University Maidan Voli 1, 46001, Ternopil, Ukraine.
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100, Puławy, Poland
| | - Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, ul. Pomorska 141/143, 90-236, Łódź, Poland
| | - Svitlana Marchyshyn
- Department of Pharmacognosy with Medical Botany, I. Horbachevsky Ternopil State Medical University Maidan Voli 1, 46001, Ternopil, Ukraine
| | - Pawel Nowak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, ul. Pomorska 141/143, 90-236, Łódź, Poland
| | - Jarosław Mołdoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100, Puławy, Poland
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100, Puławy, Poland
| |
Collapse
|
28
|
Puertas-Bartolomé M, Vázquez-Lasa B, San Román J. Bioactive and Bioadhesive Catechol Conjugated Polymers for Tissue Regeneration. Polymers (Basel) 2018; 10:polym10070768. [PMID: 30960693 PMCID: PMC6403640 DOI: 10.3390/polym10070768] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 01/12/2023] Open
Abstract
The effective treatment of chronic wounds constitutes one of the most common worldwide healthcare problem due to the presence of high levels of proteases, free radicals and exudates in the wound, which constantly activate the inflammatory system, avoiding tissue regeneration. In this study, we describe a multifunctional bioactive and resorbable membrane with in-built antioxidant agent catechol for the continuous quenching of free radicals as well as to control inflammatory response, helping to promote the wound-healing process. This natural polyphenol (catechol) is the key molecule responsible for the mechanism of adhesion of mussels providing also the functionalized polymer with bioadhesion in the moist environment of the human body. To reach that goal, synthesized statistical copolymers of N-vinylcaprolactam (V) and 2-hydroxyethyl methacrylate (H) have been conjugated with catechol bearing hydrocaffeic acid (HCA) molecules with high yields. The system has demonstrated good biocompatibility, a sustained antioxidant response, an anti-inflammatory effect, an ultraviolet (UV) screen, and bioadhesion to porcine skin, all of these been key features in the wound-healing process. Therefore, these novel mussel-inspired materials have an enormous potential for application and can act very positively, favoring and promoting the healing effect in chronic wounds.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
- CIBER's Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain.
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
- CIBER's Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain.
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
- CIBER's Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain.
| |
Collapse
|
29
|
Structure-antioxidant activity relationship of β-cyclodextrin inclusion complexes with olive tyrosol, hydroxytyrosol and oleuropein: Deep insights from X-ray analysis, DFT calculation and DPPH assay. Carbohydr Polym 2018; 199:661-669. [PMID: 30143174 DOI: 10.1016/j.carbpol.2018.07.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/12/2018] [Accepted: 07/07/2018] [Indexed: 11/20/2022]
Abstract
Olives and olive oil, a key food type of the Mediterranean diets, are packed with various important polyphenols including oleuropein (OLE), hydroxytyrosol (HTY) and tyrosol (TYR). OLE and HTY are highly powerful antioxidants and play a prime role in the therapeutics of free radical-related diseases. Their molecular stabilities and antioxidant properties can be improved by cyclodextrin (CD) encapsulation. Here, we present a systematic investigation on the inclusion complexes of β-CD-TYR (1), β-CD-HTY (2) and β-CD-OLE (3) by combined single-crystal structure determination, DFT complete-geometry optimization and DPPH antioxidant assay. X-ray analysis and DFT calculation reveal the preference of inclusion geometry with deep protrusion of the aromatic ring moieties of TYR, HTY and OLE from the β-CD O6-H-side, and the common host-guest stabilization scheme via intermolecular O-H⋯O hydrogen bonding interactions. No polyphenol OH group is shielded in the β-CD cavity, in contrast to the structures of β-CD-tea catechins complexes. The established host-guest O-H⋯O hydrogen bonds help to elevate antioxidant capacities of the olive polyphenols upon β-CD encapsulation. The order of antioxidant activity 2 >3 ≫ 1 based on the DPPH measurement is in fair agreement with their relative thermodynamic stabilities derived from DFT calculation.
Collapse
|
30
|
Alugoju P, Periyasamy L, Dyavaiah M. Quercetin enhances stress resistance in Saccharomyces cerevisiae tel1 mutant cells to different stressors. Journal of Food Science and Technology 2018; 55:1455-1466. [PMID: 29606760 DOI: 10.1007/s13197-018-3062-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
The Saccharomyces cerevisiae TEL1 gene is an ortholog of the human ATM (Ataxia telangiectasia mutated) gene. S. cerevisiae tel1 mutant (tel1∆) lacking Tel1p, share some of the cellular defects with ATM mutation that includes prevention of oxidative damage repair, premature aging and apoptosis. In the present study, we investigated the protective effects of quercetin on the sensitivity of yeast S. cerevisiae tel1∆ cells exposed to oxidative, apoptotic and DNA damaging stress and viability of tel1∆ cells during chronological aging. Quercetin improved the stress resistance of tel1∆ cells when challenged with oxidants such as hydrogen peroxide (H2O2), menadine bisulphite (MBS) and tertiary butyl hydroperoxide (t-BHP) by scavenging reactive oxygen species (ROS). Quercetin protected the tel1∆ cells from acetic acid-induced apoptotic cell death and sensitivity against hydroxyurea. We found that quercetin attenuated ROS accumulation and apoptotic markers in tel1∆ cells and therefore an increase in cell viability during chronological aging. Our results from the S. cerevisiae model, suggest that use of quercetin as a food supplement might alleviate oxidative stress mediated DNA damage, apoptosis and age related damaging effects in AT patients and also improve health beneficial effects in humans.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, 605 014 India
| | - Latha Periyasamy
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, 605 014 India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, 605 014 India
| |
Collapse
|
31
|
Matczak M, Marchelak A, Michel P, Owczarek A, Piszczan A, Kolodziejczyk-Czepas J, Nowak P, Olszewska MA. Sorbus domestica L. leaf extracts as functional products: phytochemical profiling, cellular safety, pro-inflammatory enzymes inhibition and protective effects against oxidative stress in vitro. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.10.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
32
|
Marchelak A, Owczarek A, Matczak M, Pawlak A, Kolodziejczyk-Czepas J, Nowak P, Olszewska MA. Bioactivity Potential of Prunus spinosa L. Flower Extracts: Phytochemical Profiling, Cellular Safety, Pro-inflammatory Enzymes Inhibition and Protective Effects Against Oxidative Stress In Vitro. Front Pharmacol 2017; 8:680. [PMID: 29085295 PMCID: PMC5649189 DOI: 10.3389/fphar.2017.00680] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/11/2017] [Indexed: 01/06/2023] Open
Abstract
Flower extracts of Prunus spinosa L. (blackthorn)-a traditional medicinal plant of Central and Eastern Europe indicated for the treatment of urinary tract disorders, inflammation, and adjunctive therapy of cardiovascular diseases-were evaluated in terms of chemical composition, antioxidant activity, potential anti-inflammatory effects, and cellular safety in function of fractionated extraction. The UHPLC-PDA-ESI-MS3 fingerprinting led to full or partial identification of 57 marker constituents (36 new for the flowers), mostly flavonoids, A-type proanthocyanidins, and phenolic acids, and provided the basis for authentication and standardization of the flower extracts. With the contents up to 584.07 mg/g dry weight (dw), 490.63, 109.43, and 66.77 mg/g dw of total phenolics (TPC), flavonoids, proanthocyanidins, and phenolic acids, respectively, the extracts were proven to be rich sources of polyphenols. In chemical in vitro tests of antioxidant (DPPH, FRAP, TBARS) and enzyme (lipoxygenase and hyaluronidase) inhibitory activity, the extracts effects were profound, dose-, phenolic-, and extraction solvent-dependent. Moreover, at in vivo-relevant levels (1-5 μg/mL) the extracts effectively protected the human plasma components against peroxynitrite-induced damage (reduced the levels of oxidative stress biomarkers: 3-nitrotyrosine, lipid hydroperoxides, and thiobarbituric acid-reactive substances) and enhanced the total antioxidant status of plasma. The effects observed in biological models were in general dose- and TPC-dependent; only for protein nitration the relationships were not significant. Furthermore, in cytotoxicity tests, the extracts did not affect the viability of human peripheral blood mononuclear cells (PBMC), and might be regarded as safe. Among extracts, the defatted methanol-water (7:3, v/v) extract and its diethyl ether and ethyl acetate fractions appear to be the most advantageous for biological applications. As compared to the positive controls, activity of the extracts was favorable, which might be attributed to some synergic effects of their constituents. In conclusion, this research proves that the antioxidant and enzyme inhibitory capacity of phenolic fractions should be counted as one of the mechanisms behind the activity of the flowers reported by traditional medicine and demonstrates the potential of the extracts as alternative ingredients for functional products supporting the treatment of oxidative stress-related pathologies cross-linked with inflammatory changes, especially in cardiovascular protection.
Collapse
Affiliation(s)
- Anna Marchelak
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Owczarek
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Magdalena Matczak
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Adam Pawlak
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Pawel Nowak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Monika A Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
33
|
Sasikumar R, Govindasamy M, Chen SM, Chieh-Liu Y, Ranganathan P, Rwei SP. Electrochemical determination of morin in Kiwi and Strawberry fruit samples using vanadium pentoxide nano-flakes. J Colloid Interface Sci 2017; 504:626-632. [DOI: 10.1016/j.jcis.2017.03.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/04/2017] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
|
34
|
Synthesis and preliminary biological evaluation of new phenolic and catecholic dehydroamino acid derivatives. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
35
|
Wen L, Zhao Y, Jiang Y, Yu L, Zeng X, Yang J, Tian M, Liu H, Yang B. Identification of a flavonoid C-glycoside as potent antioxidant. Free Radic Biol Med 2017; 110:92-101. [PMID: 28587909 DOI: 10.1016/j.freeradbiomed.2017.05.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 05/11/2017] [Accepted: 05/31/2017] [Indexed: 11/23/2022]
Abstract
Flavonoids have been documented to have good antioxidant activities in vitro. However, reports on the cellular antioxidant activities of flavonoid C-glycosides are very limited. In this work, an apigenin C-glycoside was purified from Artocarpus heterophyllus by column chromatography and was identified to be 2″-O-β-D-xylosylvitexin by nuclear magnetic resonance spectroscopy. The cellular antioxidant activity and anticancer activity of 2″-O-β-D-xylosylvitexin were evaluated for the first time. The quantitative structure-activity relationship was analysed by molecular modeling. Apigenin presented an unexpected cellular antioxidation behaviour. It had an antioxidant activity at low concentration and a prooxidant activity at high concentration, whereas 2″-O-β-D-xylosylvitexin showed a dose-dependent cellular antioxidant activity. It indicated that C-glycosidation improved the cellular antioxidation performance of apigenin and eliminated the prooxidant effect. The ortho-dihydroxyl at C-3'/C-4' and C-3 hydroxyl in the flavonoid skeleton play important roles in the antioxidation behaviour. The cell proliferation assay revealed a low cytotoxicity of 2″-O-β-D-xylosylvitexin.
Collapse
Affiliation(s)
- Lingrong Wen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yupeng Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Limei Yu
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiali Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Miaomiao Tian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Huiling Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Bao Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
36
|
Tao T, He C, Deng J, Huang Y, Su Q, Peng M, Yi M, Darko KO, Zou H, Yang X. A novel synthetic derivative of quercetin, 8-trifluoromethyl-3,5,7,3',4'- O-pentamethyl-quercetin, inhibits bladder cancer growth by targeting the AMPK/mTOR signaling pathway. Oncotarget 2017; 8:71657-71671. [PMID: 29069736 PMCID: PMC5641079 DOI: 10.18632/oncotarget.17799] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/27/2017] [Indexed: 02/06/2023] Open
Abstract
Quercetin is a naturally existing compound and shows attractive anticancer properties for a variety of solid tumors including glioma, bladder cancer, hepatocellular carcinoma, breast cancer, hematological malignancies and prostate carcinoma. However, these anticancer properties have not been clinically approved due to unclear mechanistic information and its low bioactivity. In our previous study, we elucidated that quercetin activates AMPK pathway which is the major mechanism for its unique anticancer effect in bladder cancer. In the present study, we are trying to enhance its bioactivity by chemical modification using fluorination approach to prepare novel chemical entities, based on the principle of intermediate derivative method (IDM). The compound we obtained is named 8-trifluoromethyl-3,5,7,3′,4′-O-pentamethyl- quercetin (TFQ), characterized by NMR spectra and mass spectrum (MS). The results from MTT and cologenic assay in two human and one murine bladder cancer cell lines showed that TFQ exhibits more potent inhibition on the three bladder cancer cell lines than quercetin (Que) although this enhanced effects is not very dramatic. Furthermore, we found that the survival of normal bladder cells PEBC was not significantly suppressed by TFQ compared with Que. Western blot analysis showed that TFQ possess more potent AMPK activation than Que. The downstream of AMPK was further examined by western blot. TFQ treatment is able to inactivate mTOR signaling pathway with the regulation of mTOR, 4EBP1 and P70S6K. These results demonstrated that the fluorinated quercetin derivative TFQ inhibits bladder cancer cell growth through the AMPK/mTOR pathway. Altogether, our findings suggest that TFQ could serve as a new potential therapeutic agent for bladder cancer more effective than Que.
Collapse
Affiliation(s)
- Ting Tao
- Key Laboratory of Small Targeted Molecules' Discovery, Hunan Normal University, Changsha, Hunan, 410013 China.,Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, 410013 China
| | - Caimei He
- Key Laboratory of Small Targeted Molecules' Discovery, Hunan Normal University, Changsha, Hunan, 410013 China.,Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, 410013 China
| | - Jun Deng
- Key Laboratory of Small Targeted Molecules' Discovery, Hunan Normal University, Changsha, Hunan, 410013 China.,Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, 410013 China
| | - Yanjun Huang
- Key Laboratory of Small Targeted Molecules' Discovery, Hunan Normal University, Changsha, Hunan, 410013 China.,Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, 410013 China
| | - Qiongli Su
- Key Laboratory of Small Targeted Molecules' Discovery, Hunan Normal University, Changsha, Hunan, 410013 China.,Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, 410013 China
| | - Mei Peng
- Key Laboratory of Small Targeted Molecules' Discovery, Hunan Normal University, Changsha, Hunan, 410013 China.,Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, 410013 China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008 China
| | - Meiling Yi
- Key Laboratory of Small Targeted Molecules' Discovery, Hunan Normal University, Changsha, Hunan, 410013 China.,Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, 410013 China
| | - Kwame Oteng Darko
- Key Laboratory of Small Targeted Molecules' Discovery, Hunan Normal University, Changsha, Hunan, 410013 China.,Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, 410013 China
| | - Hui Zou
- Key Laboratory of Small Targeted Molecules' Discovery, Hunan Normal University, Changsha, Hunan, 410013 China.,Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, 410013 China
| | - Xiaoping Yang
- Key Laboratory of Small Targeted Molecules' Discovery, Hunan Normal University, Changsha, Hunan, 410013 China.,Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, 410013 China.,Key Laboratory of Animal Nutrition and Human Health, Hunan Normal University, Changsha, Hunan, 410013 China
| |
Collapse
|
37
|
Gupta SS, Azmi L, Mohapatra PK, Rao CV. Flavonoids from whole Plant of Euphorbia hirta and their Evaluation against Experimentally induced Gastroesophageal Reflux Disease in Rats. Pharmacogn Mag 2017; 13:S127-S134. [PMID: 28479737 PMCID: PMC5407104 DOI: 10.4103/0973-1296.203987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/02/2016] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Euphorbia hirta possesses antibacterial, anti-inflammatory, galactogenic, antidiarrheal, antioxidant, hypoglycemic, antiasthmatic, antiamebic, antifungal, and antimalarial activities. OBJECTIVE The overall objective of the current study was the investigation of the whole plant extract of E. hirta and flavonoids from E. hirta on gastroesophageal reflux disease (GERD) in rats. MATERIALS AND METHODS The whole plant extract of E. hirta was characterized by analysis of flavonoids (HPLC: HPLC, UV, IR, MS and 1HNMR). GERD model was induced surgically in Wistar rats under pentobarbitone sodium anesthesia (50 mg/kg, i.p.) and the tissue esophagus and stomach were removed. The tissues were washed with physiological saline and were examined for GERD. The whole plant extract of E. hirta in doses of 50, 100, and 200 mg/kg were administered orally twice daily at 10:00 and 16:00 hours, respectively, for 5 days and kaempferol (100 mg/kg) or omeprazole (OMZ) in the dose of 30 mg/kg 1 hour prior to the induction of GERD. Control groups received suspension of 1% carboxymethyl cellulose in distilled water (10 mL/kg). RESULTS The levels of gastric wall mucus increased and of plasma histamine and H+, K+ ATPase significantly decreased in groups treated by both the plant extract and flavonoids. Both the plant extract and flavonoids reduced the lipid peroxidation and superoxide dismutase and increased the levels of catalase and reduced glutathione. CONCLUSIONS The whole plant extract of E. hirta is attributed to its antisecretory, gastroprotective, and antioxidant potential as that of quercetin, rutin, kaempferol, and proton pump blocker (omeprazole) to treat GERD. SUMMARY The aqueous extract of whole plant of Euphorbia hirta revealed the presence of kaempferol (0.0256%), quercetin (0.0557%), and rutin (0.0151%), and the ethyl acetate fraction of whole plant of E. hirta possesses kaempferol (0.0487%), quercetin (0.0789%), and rutin (0.0184%).The levels of gastric wall mucus increased and of plasma histamine and H+-K+-ATPase significantly decreased in rats groups treated by both the whole plant extract of E. hirta and flavonoids.Both the whole plant extract of E. hirta and flavonoids reduced the lipid peroxidation and superoxide dismutase and increased the levels of catalase and reduced glutathione in rats groups. Abbreviation used: 1HNMR: Proton Nuclear Magnetic Resonance Spectroscopy, CAT: Catalase, EHAE: Aqueous extract of Euphorbia hirta, EHEF: Ethyl Acetate Fractions of Euphorbia hirta, GERD: Gastroesophageal reflux disease, GSH: Reduced Glutathione, HPLC: High performance liquid chromatography, IR: Infrared spectroscopy, LPO: Lipid Peroxidase, MDA: Malondialdehyde, MS: Mass Spectroscopy, OMZ: Omeprazole, ROS: Reactive Oxygen Species, SOD: Superoxide dismutase, TBHQ: tert-Butylhydroquinone, TLC: Thin Layer Chromatography, UV: Ultraviolet, UV: Ultraviolet-Visible Spectroscopy.
Collapse
Affiliation(s)
- Shyam Sundar Gupta
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Uttar Pradesh, India
| | - Lubna Azmi
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Uttar Pradesh, India
| | - P K Mohapatra
- Department of Botany, Ravenshaw University, Cuttack, Orissa, India
| | - Ch V Rao
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Uttar Pradesh, India
| |
Collapse
|
38
|
Arroyo-Currás N, Rosas-García VM, Videa M. Substituent Inductive Effects on the Electrochemical Oxidation of Flavonoids Studied by Square Wave Voltammetry and Ab Initio Calculations. Molecules 2016; 21:molecules21111422. [PMID: 27801813 PMCID: PMC6273123 DOI: 10.3390/molecules21111422] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 11/21/2022] Open
Abstract
Flavonoids are natural products commonly found in the human diet that show antioxidant, anti-inflammatory and anti-hepatotoxic activities. These nutraceutical properties may relate to the electrochemical activity of flavonoids. To increase the understanding of structure–electrochemical activity relations and the inductive effects that OH substituents have on the redox potential of flavonoids, we carried out square-wave voltammetry experiments and ab initio calculations of eight flavonoids selected following a systematic variation in the number of hydroxyl substituents and their location on the flavan backbone: three flavonols, three anthocyanidins, one anthocyanin and the flavonoid backbone flavone. We compared the effect that the number of –OH groups in the ring B of flavan has on the oxidation potential of the flavonoids considered, finding linear correlations for both flavonols and anthocyanidins (R2=0.98). We analyzed the effects that position and number of –OH substituents have on electron density distributions via ab initio quantum chemical calculations. We present direct correlations between structural features and oxidation potentials that provide a deeper insight into the redox chemistry of these molecules.
Collapse
Affiliation(s)
| | - Víctor M Rosas-García
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S-N Cd. Universitaria, San Nicolás De Los Garza 66451, N.L., Mexico.
| | - Marcelo Videa
- Departament of Chemistry, Tecnológico de Monterrey, Av. E. Garza Sada 2501 Sur, Monterrey 64849, N.L., Mexico.
- School of Engineering and Science, Tecnológico de Monterrey, Av. E. Garza Sada 2501 Sur, Monterrey 64849, N.L., Mexico.
| |
Collapse
|
39
|
Kimura Y, Kato R, Oyama KI, Kondo T, Yoshida K. Efficient Preparation of Various O-Methylquercetins by Selective Demethylation. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
penta-O-Methylquercetin (2) was prepared by permethylation of quercetin (1). Selective demethylation of 2 using either BBr3 or BCl3/TBAI ( tetra-butylammonium iodide) gave five O-methylquercetins (3-6), with satisfactory yields. The reaction can be easily scaled-up. We established an efficient and large-scale preparation of O-methylquercetins.
Collapse
Affiliation(s)
- Yuki Kimura
- Graduate School of Information Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Ryo Kato
- Graduate School of Information Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Kin-ichi Oyama
- Chemical Instrumentation Facility, Research Center for Materials Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Tadao Kondo
- Graduate School of Information Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Kumi Yoshida
- Graduate School of Information Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
40
|
Yorulmaz O O, Ertug PU, Karabulut E, Kumcu EK, Singirik E, Secilmis MA. Dose-dependent Differential Mechanism of Quercetin-induced
Vasodilatations in Isolated Perfused Rat Mesenteric Vascular Bed. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.379.386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Abstract
For more than half a century free radical-induced alterations at cellular and organ levels have
been investigated as a probable underlying mechanism of a number of adverse health conditions. Consequently,
significant research efforts have been spent for discovering more effective and potent antioxidants /
free radical scavengers for treatment of these adverse conditions. Being by far the most used antioxidants
among natural and synthetic compounds, mono- and polyphenols have been the focus of both experimental
and computational research on mechanisms of free radical scavenging. Quantum chemical studies have provided
a significant amount of data on mechanisms of reactions between phenolic compounds and free radicals outlining a
number of properties with a key role for the radical scavenging activity and capacity of phenolics. The obtained quantum
chemical parameters together with other molecular descriptors have been used in quantitative structure-activity relationship
(QSAR) analyses for the design of new more effective phenolic antioxidants and for identification of the most useful
natural antioxidant phenolics. This review aims at presenting the state of the art in quantum chemical and QSAR studies
of phenolic antioxidants and at analysing the trends observed in the field in the last decade.
Collapse
Affiliation(s)
- Petko Alov
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences. 105 Acad. G. Bonchev St., 1113 Sofia, Bulgaria.
| | | | | |
Collapse
|
42
|
BEKDESER B, ÖZYÜREK M, AKYÜZ E, APAK R. A Novel Spectrofluorometric Probe for the Determination of Peroxynitrite Anion Scavenging Activity of Biothiols and Amino Acids. ANAL SCI 2016; 32:1315-1320. [DOI: 10.2116/analsci.32.1315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Burcu BEKDESER
- Department of Chemistry, Faculty of Engineering, Istanbul University
- Istanbul University-Application & Research Center for the Measurement of Food Antioxidants, Istanbul University
| | - Mustafa ÖZYÜREK
- Department of Chemistry, Faculty of Engineering, Istanbul University
| | - Esin AKYÜZ
- Department of Chemistry, Faculty of Engineering, Istanbul University
| | - Resat APAK
- Department of Chemistry, Faculty of Engineering, Istanbul University
- Istanbul University-Application & Research Center for the Measurement of Food Antioxidants, Istanbul University
| |
Collapse
|
43
|
Pereira A, Bester M, Soundy P, Apostolides Z. Activity-guided isolation and identification of the major antioxidant and anticancer compounds from a commercial Pelargonium sidoides tincture. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1425-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Tesakova MV, Semeikin AS, Parfenyuk VI. Electrochemical properties and antioxidant activity of tetraphenylporphyrin derivatives. RUSS J ELECTROCHEM+ 2015. [DOI: 10.1134/s1023193515070095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Kolodziejczyk-Czepas J, Nowak P, Moniuszko-Szajwaj B, Kowalska I, Stochmal A. Free radical scavenging actions of three Trifolium species in the protection of blood plasma antioxidant capacity in vitro. PHARMACEUTICAL BIOLOGY 2015; 53:1277-1284. [PMID: 25856697 DOI: 10.3109/13880209.2014.974064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Three clover [Trifolium L. (Leguminosae)] species were selected on the basis of data from traditional medicine, phytochemical profiles, and agricultural significance. OBJECTIVE The in vitro evaluations of free radical scavenging properties, ferric reducing abilities, and antioxidant effects of extracts from T. pratense L. (crude extract and phenolic fraction), T. pallidum L., and T. scabrum L. (phenolic fractions) were performed. MATERIALS AND METHODS Activities of the Trifolium extracts were determined at their final concentrations of 1.5-50 µg/ml. Free radical scavenging properties of methanol extract solutions were estimated by the reduction of DPPH(•) and ABTS(•) radicals. Measurements of the total antioxidant capacity (TAC) were carried out to assess the antioxidant activities of the extracts in human blood plasma under conditions of oxidative stress, induced by 200 μM peroxynitrite. RESULTS The phenolic fraction of T. pratense displayed the strongest ABTS(•) and DPPH(•) radical scavenging effects (EC50 value of 21.69 and 12.27 µg/ml, respectively). The EC50 value for T. pallidum extract attained 29.77 and 30.06 µg/ml. The two remaining extracts were less potent scavengers (EC50 value higher than 50 µg/ml). Similar differences were obtained during evaluation of the ferric reducing abilities. Analysis of antioxidant properties of the extracts in blood plasma did not provide such evident differences in their actions, however, it indicated that the T. pratense phenolic fraction displayed the strongest effect. CONCLUSIONS The examined Trifolium extracts partly protected blood plasma and enhanced its non-enzymatic antioxidant defense against harmful action of peroxynitrite in vitro.
Collapse
Affiliation(s)
- Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz , Lodz , Poland and
| | | | | | | | | |
Collapse
|
46
|
Protection against peroxynitrite reactions by flavonoids. Food Chem 2014; 164:228-33. [DOI: 10.1016/j.foodchem.2014.04.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/16/2014] [Accepted: 04/28/2014] [Indexed: 01/28/2023]
|
47
|
Kim SJ, Matsushita Y, Fukushima K, Aoki D, Yagami S, Yuk HG, Lee SC. Antioxidant activity of a hydrothermal extract from watermelons. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.04.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Czepas J, Gwoździński K. The flavonoid quercetin: possible solution for anthracycline-induced cardiotoxicity and multidrug resistance. Biomed Pharmacother 2014; 68:1149-59. [PMID: 25458790 DOI: 10.1016/j.biopha.2014.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023] Open
Abstract
Anthracycline chemotherapy is often used in the treatment of various malignancies. Its application, however, encounters several limitations due to development of serious side effects, mainly cardiotoxicity and may be ineffective due to multidrug resistance (MDR). Many different compounds have been evaluated as poorly effective in the protection against anthracycline side effects and in the prevention from MDR. Thus, continuous investigational efforts are necessary to find valuable protectants and the flavonoid quercetin (Q) seems to be a promising candidate. It is present in relatively high amounts in a human diet and the lack of its toxicity, including genotoxicity has been confirmed. The structure of Q favours its high antioxidant activity, the potential to inhibit the activity of oxidative enzymes and to interact with membrane transporter proteins responsible for development of MDR, e.g. P-glycoprotein. Furthermore, Q can influence cellular signalling and gene expression, and thus, alter response to exogenous genotoxicants and oxidative stress in normal cells. It accounts for its chemopreventive and anticancer properties. Overall, these properties might indicate the possibility of application of Q as cardioprotectant during anthracycline chemotherapy. Moreover, numerous biological properties displayed by Q might possibly result in the reversal of MDR in tumour cells and improve the efficacy of chemotherapy. However, these beneficial effects towards anthracycline-induced complications of chemotherapy have to be further explored and confirmed both in animal and clinical studies. Concurrently, investigations aimed at improvement of the bioavailability of Q and further elucidation of its metabolism after application in combination with anthracyclines are needed.
Collapse
Affiliation(s)
- Jan Czepas
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland.
| | - Krzysztof Gwoździński
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
49
|
Kolodziejczyk-Czepas J, Nowak P, Kowalska I, Stochmal A. Biological activity of clovers - free radical scavenging ability and antioxidant action of six Trifolium species. PHARMACEUTICAL BIOLOGY 2014; 52:1308-1314. [PMID: 25026336 DOI: 10.3109/13880209.2014.891042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Clovers were chosen on the basis of traditional medicine recommendations, agricultural value, or available information on their promising chemical profiles. OBJECTIVE This study evaluates and compares free radical scavenging and antioxidant properties of six clover species: Trifolium alexandrinum L. (Leguminosae), Trifolium fragiferum L., Trifolium hybridum L., Trifolium incarnatum L., Trifolium resupinatum var. majus Boiss., and Trifolium resupinatum var. resupinatum L. MATERIALS AND METHODS Free radical scavenging activity of the extracts (1.5-50 µg/ml) was estimated by reduction of 1,1-diphenyl-2-picrylhydrazyl (DPPH(•)) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic) acid (ABTS(•)) radicals. The Trifolium extract effects on total antioxidant capacity of blood plasma were determined by the reduction of ABTS(•+) and DPPH(•) radicals, as well as with the use of the ferric reducing ability of plasma (FRAP) assay. RESULTS The UPLC analysis of chemical profiles of the examined extracts showed the presence of three or four groups of phenolic substances, including phenolic acids, clovamides, isoflavones, and other flavonoids. The measurements of free radical scavenging and ferric reducing ability of the examined clover extracts revealed the strongest effect for T. alexandrinum. Furthermore, antioxidant activity assays in human plasma have shown protective effects of all extracts against peroxynitrite-induced reduction of total antioxidant capacity. CONCLUSIONS Trifolium plants may be a rich source of bioactive substances with antioxidant properties. The examined extracts displayed free radical scavenging action and partly protected blood plasma against peroxynitrite-induced oxidative stress; however, the beneficial effects of T. alexandrinum and T. incarnatum seem to be slightly higher.
Collapse
Affiliation(s)
- Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz , Lodz , Poland and
| | | | | | | |
Collapse
|
50
|
Zielinsky P, Busato S. Prenatal effects of maternal consumption of polyphenol-rich foods in late pregnancy upon fetal ductus arteriosus. ACTA ACUST UNITED AC 2014; 99:256-74. [PMID: 24339037 PMCID: PMC4065350 DOI: 10.1002/bdrc.21051] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 10/24/2013] [Indexed: 12/13/2022]
Abstract
Fetal circulation has characteristic features, being morphologically and functionally different from extrauterine circulation. The ductus arteriosus plays a fundamental role in directing the blood flow to fetal inferior body parts. Basically, the ductus arteriosus directs 80-85% of the right ventricular output arising from the superior vena cava, coronary sinus, and a small part from the inferior vena cava to descending aorta. Its histological structure is made up predominantly by a thick muscular layer, differently from the aorta and the pulmonary artery, which increases with gestational age. The fibers have a circumferential orientation, especially at the external layers, facilitating and making effective ductal constriction. These factors may generate lumen alterations which may cause fetal and neonatal complications, such as heart failure, hydrops, neonatal pulmonary hypertension, and even death. Classically, maternal administration of indomethacin and/or other antiinflammatory drugs interfere in prostaglandins metabolism, causing ductal constriction. However, many cases of fetal ductal constriction, as well as of persistent neonatal pulmonary artery hypertension, remain without an established etiology, being referred as "idiopathic." In recent years, a growing body of evidence has shown that herbs, fruits, nuts, and a wide diversity of substances commonly used in daily diets have definitive effects upon the metabolic pathway of inflammation, with consequent inhibition of prostaglandins synthesis. This antiinflammatory action, especially of polyphenols, when ingested during the third trimester of pregnancy, may influence the dynamics of fetal ductus arteriosus flow. The goal of this review is to present these new observations and findings, which may influence dietary orientation during pregnancy.
Collapse
Affiliation(s)
- Paulo Zielinsky
- are from the Fetal Cardiology Unit, Institute of Cardiology, Porto Alegre, Brazil
| | | |
Collapse
|