Cortés-Eslava J, Gómez-Arroyo S, Villalobos-Pietrini R, Espinosa-Aguirre JJ. Metabolic activation of three arylamines and two organophosphorus insecticides by coriander (Coriandrum sativum) a common edible vegetable.
Toxicol Lett 2001;
125:39-49. [PMID:
11701221 DOI:
10.1016/s0378-4274(01)00414-3]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Organophosphorus insecticides and arylamines, widely distributed in the environment, can be activated into mutagens by plants. Plant activation of three aromatic amines, 4-nitro-o-phenylenediamine (NOP), m-phenylenediamine (m-PDA) and 2-aminofluorene (2AF), and two organophosphorus insecticides, dimethoate and methyl parathion has been the focus of this study. The plant cell/microbe coincubation assay was used employing coriander (Coriandrum sativum) suspended cell cultures as the activating system. Interestingly, this vegetable is included in the Mexican diet and ingested generally uncooked and could have epidemiological consequences. As a genetic end point, the Salmonella typhimurium tester strain TA98 was used. Protein contents, as well as peroxidase activity and peroxidase activity inhibited by diethyldithiocarbamate (DEDTC) of coriander cultures were determined after the coculture. Coriander cells highly activated three aromatic amines, NOP, m-PDA and 2-AF to mutagenic products detected in Salmonella. On the other hand, insecticides were only lightly activated, probably because peroxidase activity of coriander cells was inhibited, corroborated by DEDTC peroxidase inhibition. In all the assays, NOP was the more potent mutagenic compound. The results demonstrated that coriander cells were metabolically competent and suitable for a plant cell microbe coincubation assay, developed to analyze the promutagen activation by plant systems and can be used as a indicator of potential genetic effects.
Collapse