1
|
Dodge AE, LeBlanc DPM, Zhou G, Williams A, Meier MJ, Van P, Lo FY, Valentine Iii CC, Salk JJ, Yauk CL, Marchetti F. Duplex sequencing provides detailed characterization of mutation frequencies and spectra in the bone marrow of MutaMouse males exposed to procarbazine hydrochloride. Arch Toxicol 2023; 97:2245-2259. [PMID: 37341741 PMCID: PMC10322784 DOI: 10.1007/s00204-023-03527-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/17/2023] [Indexed: 06/22/2023]
Abstract
Mutagenicity testing is an essential component of health safety assessment. Duplex Sequencing (DS), an emerging high-accuracy DNA sequencing technology, may provide substantial advantages over conventional mutagenicity assays. DS could be used to eliminate reliance on standalone reporter assays and provide mechanistic information alongside mutation frequency (MF) data. However, the performance of DS must be thoroughly assessed before it can be routinely implemented for standard testing. We used DS to study spontaneous and procarbazine (PRC)-induced mutations in the bone marrow (BM) of MutaMouse males across a panel of 20 diverse genomic targets. Mice were exposed to 0, 6.25, 12.5, or 25 mg/kg-bw/day for 28 days by oral gavage and BM sampled 42 days post-exposure. Results were compared with those obtained using the conventional lacZ viral plaque assay on the same samples. DS detected significant increases in mutation frequencies and changes to mutation spectra at all PRC doses. Low intra-group variability within DS samples allowed for detection of increases at lower doses than the lacZ assay. While the lacZ assay initially yielded a higher fold-change in mutant frequency than DS, inclusion of clonal mutations in DS mutation frequencies reduced this discrepancy. Power analyses suggested that three animals per dose group and 500 million duplex base pairs per sample is sufficient to detect a 1.5-fold increase in mutations with > 80% power. Overall, we demonstrate several advantages of DS over classical mutagenicity assays and provide data to support efforts to identify optimal study designs for the application of DS as a regulatory test.
Collapse
Affiliation(s)
- Annette E Dodge
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Danielle P M LeBlanc
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Gu Zhou
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Phu Van
- TwinStrand Biosciences Inc., Seattle, Washington, USA
| | - Fang Yin Lo
- TwinStrand Biosciences Inc., Seattle, Washington, USA
| | | | - Jesse J Salk
- TwinStrand Biosciences Inc., Seattle, Washington, USA
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
- Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
2
|
Douglas GR, Beevers C, Gollapudi B, Keig‐Shevlin Z, Kirkland D, O'Brien JM, van Benthem J, Yauk CL, Young RR, Marchetti F. Impact of sampling time on the detection of mutations in rapidly proliferating tissues using transgenic rodent gene mutation models: A review. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:376-388. [PMID: 36271823 PMCID: PMC10099936 DOI: 10.1002/em.22514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The OECD Test Guideline 488 (TG 488) for the Transgenic Rodent Gene Mutation Assay has undergone several revisions to update the recommended design for studying mutations in somatic tissues and male germ cells. The recently revised TG recommends a single sampling time of 28 days following 28 days of exposure (i.e., 28 + 28 days) for all tissues, irrespective of proliferation rates. An alternative design (i.e., 28 + 3 days) is appropriate when germ cell data is not required, nor considered. While the 28 + 28 days design is clearly preferable for slowly proliferating somatic tissues and germ cells, there is still uncertainty about the impact of extending the sampling time to 28 days for rapidly somatic tissues. Here, we searched the available literature for evidence supporting the applicability and utility of the 28 + 28 days design for rapidly proliferating tissues. A total of 79 tests were identified. When directly comparing results from both designs in the same study, there was no evidence that the 28 + 28 days regimen resulted in a qualitatively different outcome from the 28 + 3 days design. Studies with a diverse range of agents that employed only a 28 + 28 days protocol provide further evidence that this design is appropriate for rapidly proliferating tissues. Benchmark dose analyses demonstrate high quantitative concordance between the 28 + 3 and 28 + 28 days designs for rapidly proliferating tissues. Accordingly, our review confirms that the 28 + 28 days design is appropriate to assess mutagenicity in both slowly and rapidly proliferating somatic tissues, and germ cells, and provides further support for the recommended design in the recently adopted TG 488.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jan van Benthem
- National Institute for the Netherlands Public Health and the EnvironmentBilthovenThe Netherlands
| | | | | | | |
Collapse
|
3
|
Revollo JR, McKinzie PB, Robison TW, Dobrovolsky VN. Mutational signatures in T-lymphocytes of rats treated with N-propyl-N-nitrosourea and procarbazine. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:350-363. [PMID: 34117657 DOI: 10.1002/em.22448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/12/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
We have used whole genome sequencing (WGS) to determine mutational signatures induced in the T-cells of rats treated in vivo with N-propyl-N-nitrosourea (PNU) or procarbazine (PCZ). The signatures from the treated rats were different from the signature of background mutations. The main component of the spontaneous T-cell mutational signature was C➔T transition with all other single base substitutions evenly distributed. The PNU-induced mutational signature showed relatively equal contributions from C➔T and T➔C transitions, and T➔A transversions. The PCZ-induced signature was characterized by T➔C transitions, T➔A and, to a smaller extent, T➔G transversions. C➔G transversions were infrequent in either the PNU or PCZ signatures. WGS not only allowed mutational signature detection, but also measured quantitative responses to mutagen treatment: 10-40× increases in the number of mutations per clone were detected in T-cell clones from treated rats. The overall strand specificity of induced mutations for annotated rat genes was comparable to the strand specificity of mutations determined previously for the endogenous X-linked Pig-a gene. Our results provide valuable reference data for future applications of WGS in safety research and risk assessment.
Collapse
Affiliation(s)
- Javier R Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Page B McKinzie
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Timothy W Robison
- Division of Pulmonary, Allergy and Critical Care Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
4
|
Marchetti F, Zhou G, LeBlanc D, White PA, Williams A, Yauk CL, Douglas GR. The 28 + 28 day design is an effective sampling time for analyzing mutant frequencies in rapidly proliferating tissues of MutaMouse animals. Arch Toxicol 2021; 95:1103-1116. [PMID: 33506374 PMCID: PMC7904718 DOI: 10.1007/s00204-021-02977-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Abstract
The Organisation for Economic Co-Operation and Development Test Guideline 488 (TG 488) uses transgenic rodent models to generate in vivo mutagenesis data for regulatory submission. The recommended design in TG 488, 28 consecutive daily exposures with tissue sampling three days later (28 + 3d), is optimized for rapidly proliferating tissues such as bone marrow (BM). A sampling time of 28 days (28 + 28d) is considered more appropriate for slowly proliferating tissues (e.g., liver) and male germ cells. We evaluated the impact of the sampling time on mutant frequencies (MF) in the BM of MutaMouse males exposed for 28 days to benzo[a]pyrene (BaP), procarbazine (PRC), isopropyl methanesulfonate (iPMS), or triethylenemelamine (TEM) in dose-response studies. BM samples were collected + 3d, + 28d, + 42d or + 70d post exposure and MF quantified using the lacZ assay. All chemicals significantly increased MF with maximum fold increases at 28 + 3d of 162.9, 6.6, 4.7 and 2.8 for BaP, PRC, iPMS and TEM, respectively. MF were relatively stable over the time period investigated, although they were significantly increased only at 28 + 3d and 28 + 28d for TEM. Benchmark dose (BMD) modelling generated overlapping BMD confidence intervals among the four sampling times for each chemical. These results demonstrate that the sampling time does not affect the detection of mutations for strong mutagens. However, for mutagens that produce small increases in MF, sampling times greater than 28 days may produce false-negative results. Thus, the 28 + 28d protocol represents a unifying protocol for simultaneously assessing mutations in rapidly and slowly proliferating somatic tissues and male germ cells.
Collapse
Affiliation(s)
- Francesco Marchetti
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Gu Zhou
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Danielle LeBlanc
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Paul A White
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - George R Douglas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| |
Collapse
|
5
|
Revollo JR, Dad A, Pearce MG, Mittelstaedt RA, Casildo A, Lapidus RG, Robison TW, Dobrovolsky VN. CD59-deficient bone marrow erythroid cells from rats treated with procarbazine and propyl-nitrosourea have mutations in the Pig-a gene. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:797-806. [PMID: 32729949 DOI: 10.1002/em.22402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/09/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Procarbazine (PCZ) and N-propyl-N-nitrosourea (PNU) are rodent mutagens and carcinogens. Both induce GPI-anchored marker-deficient mutant-phenotype red blood cells (RBCs) in the flow cytometry-based rat RBC Pig-a assay. In the present study, we traced the origin of the RBC mutant phenotype by analyzing Pig-a mutations in the precursors of RBCs, bone marrow erythroid cells (BMEs). Rats were exposed to a total of 450 mg/kg PCZ hydrochloride or 300 mg/kg PNU, and bone marrow was collected 2, 7, and 10 weeks later. Using a flow cell sorter, we isolated CD59-deficient mutant-phenotype BMEs from PCZ- and PNU-treated rats and examined their endogenous X-linked Pig-a gene by next generation sequencing. Pig-a mutations consistent with the properties of PCZ and PNU were found in sorted mutant-phenotype BMEs. PCZ induced mainly A > T transversions with the mutated A on the nontranscribed strand of the Pig-a gene, while PNU induced mainly T > A transversions with the mutated T on the nontranscribed strand. The treatment-induced mutations were distributed across the protein coding sequence of the Pig-a gene. The causal relationship between BMEs and RBCs and the agent-specific mutational spectra in CD59-deicient BMEs indicate that the rat RBC Pig-a assay, scoring CD59-deficient mutant-phenotype RBCs in peripheral blood, detects Pig-a gene mutation.
Collapse
Affiliation(s)
- Javier R Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - Azra Dad
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - Mason G Pearce
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - Roberta A Mittelstaedt
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - Andrea Casildo
- Greenbaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rena G Lapidus
- Greenbaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Timothy W Robison
- Division of Pulmonary, Allergy and Critical Care Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
6
|
Multiple-endpoint genotoxicity assay for colon carcinogen 1,2-dimethylhydrazine. Mutat Res 2019; 849:503130. [PMID: 32087857 DOI: 10.1016/j.mrgentox.2019.503130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/15/2019] [Accepted: 12/23/2019] [Indexed: 11/23/2022]
Abstract
Human risk assessment of the toxic potency of chemicals typically includes genotoxicity assays for predicting carcinogenicity. Gene mutation frequency and chromosomal aberration are two major genotoxicity endpoints in standardized in vitro and in vivo assays. The weight-of-evidence approach in risk assessment is more focused on in vivo assay results; however, animal welfare considerations are aimed at the reduction, replacement, and refinement (3R's) of animal experiments, including a reduction in the number of experimental animals. Proposals to reduce experimental animals in genotoxicity testing include the incorporation of genotoxicity endpoint(s) into other toxicological studies and the combination of two or more assays detecting different genotoxicity endpoints in the same animals. In this study, we used 1,2-dimethylhydrazine as a model chemical of colon carcinogen to assess gene mutation frequency and chromosomal aberration in vivo simultaneously. Specifically, a gene mutation frequency assay was combined with a multiple-organ micronucleus test (peripheral blood, bone marrow, liver, and colon) in F344 gpt delta transgenic rats. Both gpt mutant frequency and micronucleated cell frequency significantly increased in colon and liver but not in bone marrow. Interestingly, we found that the colon carcinogen induced both gene mutations and micronuclei in the targeted colon tissue. Thus, we demonstrated that the mechanism of a carcinogen could be derived from an animal experiment using a lower number of experimental animals as currently recommended. Moreover, a significant increase in mutant frequency in colon and liver was already observed on the first day after treatment completion, as well as on the third day, which is the guideline-recommended period. Thus, this endpoint is compatible with other genotoxicity assays. We confirmed that performing the micronucleus assay in combination with a gene mutation assay in F344 gpt delta transgenic rats is useful to evaluate different genotoxic endpoints simultaneously in the same animals, which reduces the number of experimental animals.
Collapse
|
7
|
Maurice C, Dertinger SD, Yauk CL, Marchetti F. Integrated In Vivo Genotoxicity Assessment of Procarbazine Hydrochloride Demonstrates Induction of Pig-a and LacZ Mutations, and Micronuclei, in MutaMouse Hematopoietic Cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:505-512. [PMID: 30592561 PMCID: PMC6618172 DOI: 10.1002/em.22271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Procarbazine hydrochloride (PCH) is a DNA-reactive hematopoietic carcinogen with potent and well-characterized clastogenic activity. However, there is a paucity of in vivo mutagenesis data for PCH, and in vitro assays often fail to detect the genotoxic effects of PCH due to the complexity of its metabolic activation. We comprehensively evaluated the in vivo genotoxicity of PCH on hematopoietic cells of male MutaMouse transgenic rodents using a study design that facilitated assessments of micronuclei and Pig-a mutation in circulating erythrocytes, and lacZ mutant frequencies in bone marrow. Mice were orally exposed to PCH (0, 6.25, 12.5, and 25 mg/kg/day) for 28 consecutive days. Blood samples collected 2 days after cessation of treatment exhibited significant dose-related induction of micronuclei in both immature and mature erythrocytes. Bone marrow and blood collected 3 and 70 days after cessation of treatment also showed significantly elevated mutant frequencies in both the lacZ and Pig-a assays even at the lowest dose tested. PCH-induced lacZ and Pig-a (immature and mature erythrocytes) mutant frequencies were highly correlated, with R2 values ≥0.956, with the exception of lacZ vs. Pig-a mutants in mature erythrocytes at the 70-day time point (R2 = 0.902). These results show that PCH is genotoxic in vivo and demonstrate that the complex metabolism and resulting genotoxicity of PCH is best evaluated in intact animal models. Our results further support the concept that multiple biomarkers of genotoxicity, especially hematopoietic cell genotoxicity, can be readily combined into one study provided that adequate attention is given to manifestation times. Environ. Mol. Mutagen. 60:505-512, 2019. © 2018 Her Majesty the Queen in Right of Canada.
Collapse
Affiliation(s)
- Clotilde Maurice
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
| | | | - Carole L. Yauk
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
| | - Francesco Marchetti
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
| |
Collapse
|
8
|
Chen G, Wen H, Mao Z, Song J, Jiang H, Wang W, Yang Y, Miao Y, Wang C, Huang Z, Wang X. Assessment of the Pig-a, micronucleus, and comet assay endpoints in rats treated by acute or repeated dosing protocols with procarbazine hydrochloride and ethyl carbamate. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:56-71. [PMID: 30240497 DOI: 10.1002/em.22227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/12/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
The utility and sensitivity of the newly developed flow cytometric Pig-a gene mutation assay have become a great concern recently. In this study, we have examined the feasibility of integrating the Pig-a assay as well as micronucleus and Comet endpoints into acute and subchronic general toxicology studies. Male Sprague-Dawley rats were treated for 3 or 28 consecutive days by oral gavage with procarbazine hydrochloride (PCZ) or ethyl carbamate (EC) up to the maximum tolerated dose. The induction of CD59-negative reticulocytes and erythrocytes, micronucleated reticulocytes in peripheral blood, micronucleated polychromatic erythrocytes in bone marrow, and Comet responses in peripheral blood, liver, kidney, and lung were evaluated at one, two, or more timepoints. Both PCZ and EC produced positive responses at most analyzed timepoints in all tissue types, both with the 3-day and 28-day treatment regimens. Furthermore, comparison of the magnitude of the genotoxicity responses indicated that the micronucleus and Comet endpoints generally produced greater responses with the higher dose, short-term treatments in the 3-day study, while the Pig-a assay responded better to the cumulative effects of the lower dose, but repeated subchronic dosing in the 28-day study. Collectively, these results indicate that integration of several in vivo genotoxicity endpoints into a single routine toxicology study is feasible and that the Pig-a assay may be particularly suitable for integration into subchronic dose studies based on its ability to accumulate the mutations that result from repeated treatments. This characteristic may be especially important for assaying lower doses of relatively weak genotoxicants. Environ. Mol. Mutagen. 60:56-71, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gaofeng Chen
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
- Center of Safety Evaluation on New Drug, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hairuo Wen
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Zhihui Mao
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
- Center of Safety Evaluation on New Drug, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jie Song
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Hua Jiang
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Weifan Wang
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Ying Yang
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Yufa Miao
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Chao Wang
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Zhiying Huang
- Center of Safety Evaluation on New Drug, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xue Wang
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| |
Collapse
|
9
|
Marchetti F, Aardema MJ, Beevers C, van Benthem J, Godschalk R, Williams A, Yauk CL, Young R, Douglas GR. Identifying germ cell mutagens using OECD test guideline 488 (transgenic rodent somatic and germ cell gene mutation assays) and integration with somatic cell testing. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 832-833:7-18. [DOI: 10.1016/j.mrgentox.2018.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 01/15/2023]
|
10
|
Rencüzoğulları E, Aydın M. Genotoxic and mutagenic studies of teratogens in developing rat and mouse. Drug Chem Toxicol 2018; 42:409-429. [PMID: 29745766 DOI: 10.1080/01480545.2018.1465950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this review, genotoxic and mutagenic effects of teratogenic chemical agents in both rat and mouse have been reviewed. Of these chemicals, 97 are drugs and 33 are pesticides or belong to other groups. Large literature searches were conducted to determine the effects of chemicals on chromosome abnormalities, sister chromatid exchanges, and micronucleus formation in experimental animals such as rats and mice. In addition, studies that include unscheduled DNA synthesis, DNA adduct formations, and gene mutations, which help to determine the genotoxicity or mutagenicity of chemicals, have been reviewed. It has been estimated that 46.87% of teratogenic drugs and 48.48% of teratogenic pesticides are positive in all tests. So, all of the teratogens involved in this group have genotoxic and mutagenic effects. On the other hand, 36.45% of the drugs and 21.21% of the pesticides have been found to give negative results in at least one test, with the majority of the tests giving positive results. However, only 4.16% of the drugs and 18.18% of the pesticides were determined to give negative results in the majority of the tests. Among tests with major negative results, 12.50% of the teratogenic drugs and 12.12% of the teratogenic pesticides were negative in all conducted tests.
Collapse
Affiliation(s)
- Eyyüp Rencüzoğulları
- a Department of Biology, Faculty of Science and Letters , Adiyaman University , Adiyaman , Turkey
| | - Muhsin Aydın
- a Department of Biology, Faculty of Science and Letters , Adiyaman University , Adiyaman , Turkey
| |
Collapse
|
11
|
Revollo J, Bhalli JA, Tebbe C, Noteboom J, Thomas D, McKinzie P, Felton N, Pearce MG, Dobrovolsky VN. Spectrum of Pig-a mutations in T lymphocytes of rats treated with procarbazine. Mutagenesis 2017; 32:571-579. [DOI: 10.1093/mutage/gex032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/19/2017] [Indexed: 01/22/2023] Open
|
12
|
Phonethepswath S, Avlasevich SL, Torous DK, Mereness J, Bemis JC, Macgregor JT, Dertinger SD. Flow cytometric analysis of Pig-a gene mutation and chromosomal damage induced by procarbazine hydrochloride in CD-1 mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:294-298. [PMID: 23427001 DOI: 10.1002/em.21758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/13/2012] [Accepted: 12/12/2012] [Indexed: 06/01/2023]
Abstract
Procarbazine is a genotoxic carcinogen whose DNA-damaging activities are not reliably detected in vitro. We evaluated the in vivo genotoxic effects of procarbazine on hematopoietic cells of male CD-1 mice using a multi-endpoint study design that scored micronucleated reticulocyte (MN-RET) frequency and gene mutation at the Pig-a locus. CD-1 mice were treated for 3 days with procarbazine, up to 150 mg/kg/day. Blood samples collected on Day 3 exhibited robust induction of MN-RETs, with the high dose group exhibiting a mean 29-fold increase. Blood collected 15 and 30 days after treatment began was analyzed for Pig-a mutation with a dual labeling method that facilitated mutant cell frequency measurements in both total erythrocytes and the reticulocyte subpopulation. Procarbazine significantly increased mutant reticulocyte frequencies by Day 15. Mutant erythrocyte responses were also apparent, with a peak incidence observed for the high dose group on Day 30. These results demonstrate that the complex metabolism and resulting genotoxicity of procarbazine is best evaluated in intact animal models, and show that the flow cytometric methods employed offer a means to efficiently monitor both in vivo chromosomal damage and mutation.
Collapse
|
13
|
Glen CD, Smith AG, Dubrova YE. Single-molecule PCR analysis of germ line mutation induction by anticancer drugs in mice. Cancer Res 2008; 68:3630-6. [PMID: 18483245 DOI: 10.1158/0008-5472.can-08-0484] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding and estimating the genetic hazards of exposure to chemical mutagens and anticancer drugs in humans requires the development of efficient systems for monitoring germ line mutation. The suitability of a single-molecule PCR-based approach for monitoring mutation induction at the mouse expanded simple tandem repeat (ESTR) locus Ms6-hm by chemical mutagens and anticancer drugs has been validated. The frequency of ESTR mutation was evaluated in the germ line of male mice exposed to the well-characterized alkylating agent and mutagen, ethylnitrosourea, and four widely used anticancer drugs, bleomycin, cyclophosphamide, mitomycin C, and procarbazine. The dose-response of ethylnitrosourea-induced mutation was found to be very close to that previously established using a pedigree-based approach for ESTR mutation detection. Paternal exposure to the clinically relevant doses of bleomycin (15-30 mg/kg), cyclophosphamide (40-80 mg/kg), and mitomycin C (2.5-5 mg/kg) led to statistically significant, dose-dependent increases in ESTR mutation frequencies in the germ line of treated male mice. Exposure to procarbazine led to a maximal increase in mutation frequency at 50 mg/kg, with a plateau at the higher concentrations. The results of this study show that the single-molecule PCR technique provides a new and efficient experimental system for monitoring the genetic effects of anticancer drugs, capable of detecting increases in mutation rates at clinically relevant doses of exposure. In addition, this approach dramatically reduces the number of mice needed for the measurement of germ line mutation induction.
Collapse
Affiliation(s)
- Colin D Glen
- Department of Genetics and Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | | | | |
Collapse
|
14
|
Lambert IB, Singer TM, Boucher SE, Douglas GR. Detailed review of transgenic rodent mutation assays. Mutat Res 2005; 590:1-280. [PMID: 16081315 DOI: 10.1016/j.mrrev.2005.04.002] [Citation(s) in RCA: 252] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/04/2005] [Accepted: 04/12/2005] [Indexed: 11/17/2022]
Abstract
Induced chromosomal and gene mutations play a role in carcinogenesis and may be involved in the production of birth defects and other disease conditions. While it is widely accepted that in vivo mutation assays are more relevant to the human condition than are in vitro assays, our ability to evaluate mutagenesis in vivo in a broad range of tissues has historically been quite limited. The development of transgenic rodent (TGR) mutation models has given us the ability to detect, quantify, and sequence mutations in a range of somatic and germ cells. This document provides a comprehensive review of the TGR mutation assay literature and assesses the potential use of these assays in a regulatory context. The information is arranged as follows. (1) TGR mutagenicity models and their use for the analysis of gene and chromosomal mutation are fully described. (2) The principles underlying current OECD tests for the assessment of genotoxicity in vitro and in vivo, and also nontransgenic assays available for assessment of gene mutation, are described. (3) All available information pertaining to the conduct of TGR assays and important parameters of assay performance have been tabulated and analyzed. (4) The performance of TGR assays, both in isolation and as part of a battery of in vitro and in vivo short-term genotoxicity tests, in predicting carcinogenicity is described. (5) Recommendations are made regarding the experimental parameters for TGR assays, and the use of TGR assays in a regulatory context.
Collapse
Affiliation(s)
- Iain B Lambert
- Mutagenesis Section, Environmental Health Sciences Bureau, Healthy Environments and Consumer Safety Branch, 0803A, Health Canada, Ottawa, Ont., Canada K1A 0L2.
| | | | | | | |
Collapse
|
15
|
Wahnschaffe U, Bitsch A, Kielhorn J, Mangelsdorf I. Mutagenicity testing with transgenic mice. Part II: Comparison with the mouse spot test. J Carcinog 2005; 4:4. [PMID: 15676065 PMCID: PMC548508 DOI: 10.1186/1477-3163-4-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Accepted: 01/27/2005] [Indexed: 11/20/2022] Open
Abstract
The mouse spot test, an in vivo mutation assay, has been used to assess a number of chemicals. It is at present the only in vivo mammalian test system capable of detecting somatic gene mutations according to OECD guidelines (OECD guideline 484). It is however rather insensitive, animal consuming and expensive type of test. More recently several assays using transgenic animals have been developed. From data in the literature, the present study compares the results of in vivo testing of over twenty chemicals using the mouse spot test and compares them with results from the two transgenic mouse models with the best data base available, the lacI model (commercially available as the Big Blue(R) mouse), and the lacZ model (commercially available as the Mutatrade mark Mouse). There was agreement in the results from the majority of substances. No differences were found in the predictability of the transgenic animal assays and the mouse spot test for carcinogenicity. However, from the limited data available, it seems that the transgenic mouse assay has several advantages over the mouse spot test and may be a suitable test system replacing the mouse spot test for detection of gene but not chromosome mutations in vivo.
Collapse
Affiliation(s)
- Ulrich Wahnschaffe
- Fraunhofer Institute of Toxicology and Experimental Medicine ITEM, Department of Chemical Risk Assessment, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | - Annette Bitsch
- Fraunhofer Institute of Toxicology and Experimental Medicine ITEM, Department of Chemical Risk Assessment, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | - Janet Kielhorn
- Fraunhofer Institute of Toxicology and Experimental Medicine ITEM, Department of Chemical Risk Assessment, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | - Inge Mangelsdorf
- Fraunhofer Institute of Toxicology and Experimental Medicine ITEM, Department of Chemical Risk Assessment, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
16
|
Wahnschaffe U, Bitsch A, Kielhorn J, Mangelsdorf I. Mutagenicity testing with transgenic mice. Part I: Comparison with the mouse bone marrow micronucleus test. J Carcinog 2005; 4:3. [PMID: 15655069 PMCID: PMC548135 DOI: 10.1186/1477-3163-4-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 01/17/2005] [Indexed: 11/20/2022] Open
Abstract
As part of a larger literature study on transgenic animals in mutagenicity testing, test results from the transgenic mutagenicity assays (lacI model; commercially available as the Big Blue(R) mouse, and the lacZ model; commercially available as the Mutatrade markMouse), were compared with the results on the same substances in the more traditional mouse bone marrow micronucleus test. 39 substances were found which had been tested in the micronucleus assay and in the above transgenic mouse systems. Although, the transgenic animal mutation assay is not directly comparable with the micronucleus test, because different genetic endpoints are examined: chromosome aberration versus gene mutation, the results for the majority of substances were in agreement. Both test systems, the transgenic mouse assay and the mouse bone marrow micronucleus test, have advantages and they complement each other. However, the transgenic animal assay has some distinct advantages over the micronucleus test: it is not restricted to one target organ and detects systemic as well as local mutagenic effects.
Collapse
Affiliation(s)
- U Wahnschaffe
- Fraunhofer Institute of Toxicology and Experimental Medicine ITEM, Department of Chemical Risk Assessment, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | - A Bitsch
- Fraunhofer Institute of Toxicology and Experimental Medicine ITEM, Department of Chemical Risk Assessment, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | - J Kielhorn
- Fraunhofer Institute of Toxicology and Experimental Medicine ITEM, Department of Chemical Risk Assessment, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | - I Mangelsdorf
- Fraunhofer Institute of Toxicology and Experimental Medicine ITEM, Department of Chemical Risk Assessment, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
17
|
Ogawa K, Hiraku Y, Oikawa S, Murata M, Sugimura Y, Kawamura J, Kawanishi S. Molecular mechanisms of DNA damage induced by procarbazine in the presence of Cu(II). Mutat Res 2003; 539:145-55. [PMID: 12948823 DOI: 10.1016/s1383-5718(03)00157-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Procarbazine [N-isopropyl-alpha-(2-methylhydrazino)-p-toluamide], a hydrazine derivative, which has been shown to have effective antineoplastic activity, induces cancer in some experimental animals and humans. To clarify a new mechanism for its carcinogenic effect, we examined DNA damage induced by procarbazine in the presence of metal ion, using 32P-5'-end-labeled DNA fragments obtained from the human p53 tumor suppressor gene and the c-Ha-ras-1 protooncogene. Procarbazine plus Cu(II) induced piperidine-labile and formamidopyrimidine-DNA glycosylase-sensitive lesions at the 5'-ACG-3' sequence, complementary to a hotspot of the p53 gene, and the 5'-TG-3' sequence. Catalase partially inhibited DNA damage, suggesting that not only H(2)O(2) but also other reactive species are involved. Procarbazine plus Cu(II) significantly increased the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine, which was completely inhibited by calatase. Electron spin resonance spin-trapping experiments revealed that methyl radicals were generated from procarbazine and Cu(II). On the basis of these findings, it is considered that procarbazine causes DNA damage through non-enzymatic formation of the Cu(I)-hydroperoxo complex and methyl radicals. In conclusion, in addition to alkylation, oxidative DNA damage may play important roles in not only antitumor effects but also mutagenesis and carcinogenesis induced by procarbazine.
Collapse
Affiliation(s)
- Kazuhiko Ogawa
- Department of Environmental and Molecular Medicine, Mie University School of Medicine, Tsu, Mie 514-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The evolution of testing strategies and methods for identification of mutagenic agents is discussed, beginning with the concern over potential health and population effects of chemical mutagens in the late 1940s that led to the development of regulatory guidelines for mutagenicity testing in the 1970s and 1980s. Efforts to achieve international harmonization of mutagenicity testing guidelines are summarized, and current issues and needs in the field are discussed, including the need for quantitative methods of mutagenic risk assessment, dose-response thresholds, indirect mechanisms of mutagenicity, and the predictivity of mutagenicity assays for carcinogenicity in vivo. Speculation is offered about the future of mutagenicity testing, including possible near-term changes in standard test batteries and the longer-term roles of expression profiling of damage-response genes, in vivo mutagenicity testing methods, and models that better account for differences in metabolism between humans and laboratory model systems.
Collapse
Affiliation(s)
- J T MacGregor
- FDA Center for Drug Evaluation and Research, 5600 Fishers Lane, Rockville, MD 20857, USA.
| | | | | |
Collapse
|
19
|
Abstract
Transgenic mutation assays were developed to detect gene mutations in multiple organs of mice or rats. The assays permit (1) quantitative measurements of mutation frequencies in all tissues/organs including germ cells and (2) molecular analysis of induced and spontaneous mutations by DNA sequencing analysis. The protocols of recently developed selections in the lambda phage-based transgenic mutation assays, i.e. cII, Spi(-) and 6-thioguanine selections, are described, and a data set of transgenic mutation assays, including those using Big Blue and Muta Mouse, is presented.
Collapse
Affiliation(s)
- T Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, 158-8501, Tokyo, Japan.
| | | | | |
Collapse
|
20
|
Ohsawa K, Hirano N, Sugiura M, Nakagawa S, Kimura M. Genotoxicity of o-aminoazotoluene (AAT) determined by the Ames test, the in vitro chromosomal aberration test, and the transgenic mouse gene mutation assay. Mutat Res 2000; 471:113-26. [PMID: 11080667 DOI: 10.1016/s1383-5718(00)00120-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
o-Aminoazotoluene (AAT) has been evaluated as a possible human carcinogen (Class 2B) by the International Agency for Research on Cancer (IARC). The Ames test found it to be mutagenic in the presence of a metabolic activation system, whereas it has little clastogenicity either in vitro or in vivo in the chromosomal aberration assay. AAT is also carcinogenic in the lung or liver of mice and rats given long-term administrations. Therefore, metabolites generated in the liver etc. may have gene mutation activity, and carcinogenesis would occur. We examined the mutagenicity of AAT in a gene mutation assay, using lacZ transgenic mice (MutaMice) and a positive selection method. AAT showed positive results for organs with metabolic functions, such as liver and colon and other organs. Positive results were also seen in an Ames test in the presence of metabolic activation and negative results seen in a chromosomal aberration test. Therefore, AAT had the potential to cause gene mutation in the presence of metabolic activation systems in vitro and the same reaction was confirmed in vivo with organs with metabolic function, such as liver and colon, but little clastogenicity in vitro or in vivo. Thus, metabolites with gene mutation activity may be responsible for the carcinogenicity of AAT. The transgenic mouse mutation assay proved to be useful for concurrent assessment of in vivo mutagenicity in multiple organs and to supplement the standard in vivo genotoxicity tests, such as the micronucleus assay which is limited to bone marrow as the only target organ.
Collapse
Affiliation(s)
- K Ohsawa
- Toxicology Laboratory, Pharmaceutical Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Ohmiya-shi, Saitama 330-8530, Japan.
| | | | | | | | | |
Collapse
|