1
|
Sobering AK, Li D, Beighley JS, Carey JC, Donald T, Elsea SH, Figueroa KP, Gerdts J, Hamlet A, Mirzaa GM, Nelson B, Pulst SM, Smith JL, Tassone F, Toriello HV, Walker RH, Yearwood KR, Bhoj EJ. Experiences with offering pro bono medical genetics services in the West Indies: Benefits to patients, physicians, and the community. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2020; 184:1030-1041. [PMID: 33274544 PMCID: PMC8683562 DOI: 10.1002/ajmg.c.31871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022]
Abstract
We describe our experiences with organizing pro bono medical genetics and neurology outreach programs on several different resource-limited islands in the West Indies. Due to geographic isolation, small population sizes, and socioeconomic disparities, most Caribbean islands lack medical services for managing, diagnosing, and counseling individuals with genetic disorders. From 2015 to 2019, we organized 2-3 clinics per year on various islands in the Caribbean. We also organized a week-long clinic to provide evaluations for children suspected of having autism spectrum disorder. Consultations for over 100 different individuals with suspected genetic disorders were performed in clinics or during home visits following referral by locally registered physicians. When possible, follow-up visits were attempted. When available and appropriate, clinical samples were shipped to collaborating laboratories for molecular analysis. Laboratory tests included karyotyping, cytogenomic microarray analysis, exome sequencing, triplet repeat expansion testing, blood amino acid level determination, biochemical assaying, and metabolomic profiling. We believe that significant contributions to healthcare by genetics professionals can be made even if availability is limited. Visiting geneticists may help by providing continuing medical education seminars. Clinical teaching rounds help to inform local physicians regarding the management of genetic disorders with the aim of generating awareness of genetic conditions. Even when only periodically available, a visiting geneticist may benefit affected individuals, their families, their local physicians, and the community at large.
Collapse
Affiliation(s)
- Andrew K. Sobering
- Department of Biochemistry, St. George's University School of Medicine, St. George's, Grenada
- Windward Islands Research and Education Foundation, True Blue, St. George's, Grenada
| | - Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jennifer S. Beighley
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington
| | - John C. Carey
- Department of Pediatrics, University of Utah Health, Salt Lake City, Utah
| | - Tyhiesia Donald
- Grenada General Hospital, Pediatrics Ward, St. George's, Grenada
- Clinical Teaching Unit, St. George's University School of Medicine, St. George's, Grenada
| | - Sarah H. Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Jennifer Gerdts
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington
| | - Andre Hamlet
- Grenada General Hospital, Pediatrics Ward, St. George's, Grenada
- Clinical Teaching Unit, St. George's University School of Medicine, St. George's, Grenada
| | - Ghayda M. Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
| | - Beverly Nelson
- Clinical Teaching Unit, St. George's University School of Medicine, St. George's, Grenada
| | - Stefan M. Pulst
- Department of Neurology, University of Utah, Salt Lake City, Utah
| | - Janice L. Smith
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, California
- MIND Institute, University of California Davis Medical Center, Sacramento, California
| | - Helga V. Toriello
- Department of Pediatrics/Human Development College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Ruth H. Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, New York
- Department of Neurology, Mount Sinai School of Medicine, New York City, New York
| | | | - Elizabeth J. Bhoj
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Ramanathan G, Elumalai R, Periyasamy S, Lakkakula BVKS. Renin gene rs1464816 polymorphism contributes to chronic kidney disease progression in ADPKD. J Biomed Sci 2016; 23:1. [PMID: 26753721 PMCID: PMC4710007 DOI: 10.1186/s12929-015-0217-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 12/28/2015] [Indexed: 01/02/2023] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic disorder and is a common genetic cause of chronic renal failure in children and adults. The enzyme renin plays a key role in the RAAS cascade and an important role in the development of hypertension and progression of renal disease in ADPKD. The present study is aimed to investigate the potential modifier effect of REN gene polymorphisms on the progression of chronic kidney disease (CKD) in ADPKD. Methods We analyzed 102 ADPKD patients and 106 healthy controls from the same geographic area. FRET-based KASPar single-nucleotide polymorphism (SNP) genotyping assays for REN gene tag-SNPs (rs2887284, rs2368564, rs1464816, rs7521667, rs10900555, rs6693954, rs6676670 and rs11571078) were performed. Cochran-Armitage trend test was used to assess the potential associations between these polymorphisms and CKD stages. Haplotype frequencies and LD measures were estimated by using the software Haploview. Mantel-Haenszel stratified analysis was used to explore confounding and interaction effects of these polymorphisms. Results Of the eight tag-SNPs genotyped, the rs10900555 polymorphism deviated from the Hardy-Weinberg equilibrium in controls. The presence of ADPKD in general was not significantly associated with the REN tag-SNPs included in this study. Linkage disequilibrium analysis yielded three haplotype blocks and the haplotypes of the respective blocks are not statistically different between ADPKD and controls. In multivariate analysis, the rs1464816 TG genotype showed a significant association with the advancement of CKD in ADPKD (OR = 4.80; 95 % CI = 1.30–17.82; p = 0.019). Conclusions The present study provides evidence that the rs1464816 polymorphism in REN is associated with CKD progression in ADPKD. Electronic supplementary material The online version of this article (doi:10.1186/s12929-015-0217-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Bhaskar V K S Lakkakula
- Department of Biomedical Sciences, Sri Ramachandra University, Chennai, India. .,Genetic Lab, Department of Biochemistry, Sickle Cell Institute Chhattisgarh, Pt. JNM Medical College, Raipur, 492001, CG, India.
| |
Collapse
|
3
|
Choi R, Park HC, Lee K, Lee MG, Kim JW, Ki CS, Hwang YH, Ahn C. Identification of novel PKD1 and PKD2 mutations in Korean patients with autosomal dominant polycystic kidney disease. BMC MEDICAL GENETICS 2014; 15:129. [PMID: 25491204 PMCID: PMC4411869 DOI: 10.1186/s12881-014-0129-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/20/2014] [Indexed: 01/23/2023]
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disorder. It is caused by mutations in the PKD1 and PKD2 genes, and manifests as progressive cyst growth and renal enlargement, resulting in renal failure. Although there have been a few studies on the frequency and spectrum of mutations in PKD1 and PKD2 in Korean patients with ADPKD, only exons 36–46, excluding the duplicated region, were analyzed, which makes it difficult to determine accurate mutation frequencies and mutation spectra. Methods We performed sequence analysis of 20 consecutive unrelated ADPKD patients using long-range polymerase chain reaction (PCR) to avoid pseudogene amplification, followed by exon-specific PCR and sequencing of the all exons of these two genes. Multiplex ligation-dependent probe amplification was performed in patients in whom pathogenic mutations in PKD1 or PKD2 were not identified by LR-PCR and direct sequencing to detect large genomic rearrangements. Results All patients met the diagnostic criteria of ADPKD, and pathogenic mutations were found in 18 patients (90.0%), comprising 15 mutations in PKD1 and three in PKD2. Among 10 novel mutations, eight mutations were found in the PKD1 gene while two mutations were found in the PKD2 gene. Eight of 14 PKD1 mutations (57.1%) were located in the duplicated region. Conclusions This study expands the spectra of mutations in the PKD1 and PKD2 genes and shows that the mutation frequencies of these genes in Korean ADPKD patients are similar to those reported in other ethnicities. Sequence analysis, including analysis of the duplicated region, is essential for molecular diagnosis of ADPKD.
Collapse
Affiliation(s)
- Rihwa Choi
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, (135-710) 81 Irwon-Ro Gangnam-gu, Seoul, South Korea.
| | - Hayne Cho Park
- Department of Internal Medicine, Seoul National University College of Medicine, (110-744) 28 Yeongeon-dong, Jongno-gu, Seoul, South Korea.
| | - Kyunghoon Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, (135-710) 81 Irwon-Ro Gangnam-gu, Seoul, South Korea.
| | - Myoung-Gun Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, (135-710) 81 Irwon-Ro Gangnam-gu, Seoul, South Korea.
| | - Jong-Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, (135-710) 81 Irwon-Ro Gangnam-gu, Seoul, South Korea.
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, (135-710) 81 Irwon-Ro Gangnam-gu, Seoul, South Korea.
| | - Young-Hwan Hwang
- Department of Internal Medicine, Eulji General Hospital, (139-872), 1306 Dunsan 2(i)-dong, Seo-gu, Daejeon, Seoul, South Korea.
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, (110-744) 28 Yeongeon-dong, Jongno-gu, Seoul, South Korea.
| |
Collapse
|
4
|
Audrézet MP, Cornec-Le Gall E, Chen JM, Redon S, Quéré I, Creff J, Bénech C, Maestri S, Le Meur Y, Férec C. Autosomal dominant polycystic kidney disease: comprehensive mutation analysis of PKD1 and PKD2 in 700 unrelated patients. Hum Mutat 2012; 33:1239-50. [PMID: 22508176 DOI: 10.1002/humu.22103] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/02/2012] [Indexed: 11/06/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited kidney disorder, is caused by mutations in PKD1 or PKD2. The molecular diagnosis of ADPKD is complicated by extensive allelic heterogeneity and particularly by the presence of six highly homologous sequences of PKD1 exons 1-33. Here, we screened PKD1 and PKD2 for both conventional mutations and gross genomic rearrangements in up to 700 unrelated ADPKD patients--the largest patient cohort to date--by means of direct sequencing, followed by quantitative fluorescent multiplex polymerase chain reaction or array-comparative genomic hybridization. This resulted in the identification of the largest number of new pathogenic mutations (n = 351) in a single publication, expanded the spectrum of known ADPKD pathogenic mutations by 41.8% for PKD1 and by 23.8% for PKD2, and provided new insights into several issues, such as the population-dependent distribution of recurrent mutations compared with founder mutations and the relative paucity of pathogenic missense mutations in the PKD2 gene. Our study, together with others, highlights the importance of developing novel approaches for both mutation detection and functional validation of nondefinite pathogenic mutations to increase the diagnostic value of molecular testing for ADPKD.
Collapse
|
5
|
Ding L, Zhang S, Qiu W, Xiao C, Wu S, Zhang G, Cheng L, Zhang S. Novel mutations of PKD1 gene in Chinese patients with autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 2002; 17:75-80. [PMID: 11773467 DOI: 10.1093/ndt/17.1.75] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a common disease in China. The major gene responsible for ADPKD, PKD1, has been fully characterized and shown to encode an integral membrane protein, polycystin 1, which is thought to be involved in cell-cell and cell-matrix interaction. Until now, 82 mutations of PKD1 gene have been reported in European, American, and Asian populations. However, there has been no report on mutations of the PKD1 gene in a Chinese population. METHODS Eighty Chinese patients in 60 families with ADPKD were screened for mutations in the 3' region of the PKD1 gene using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA-sequencing techniques. RESULTS Three mutations were found. The first mutation is a 12593delA frameshift mutation in exon 45, and the polycystin change is 4129WfsX4197, 107 amino acids shorter than the normal polycystin (4302aa). The second mutation is a 12470InsA frameshift mutation in exon 45, producing 4088DfsX4156, and the predicted protein is 148 amino acids shorter than the normal. The third one is a 11151C-->T transition in exon 37 converting Pro3648 to Leu. In addition, nine DNA variants, including IVS44delG, were identified. CONCLUSIONS Three mutations in Chinese ADPKD patients are described and all of them are de novo mutations. Data obtained from mutation analysis also suggests that the mutation rate of the 3' single-copy region of PKD1 in Chinese ADPKD patients is very low, and there are no mutation hot spots in the PKD1 gene. Mutations found in Chinese ADPKD patients, including nucleotide substitution and minor frameshift, are similar to the findings reported by other researchers. Many mutations of the PKD1 gene probably exist in the duplicated region, promoter region, and the introns of PKD1.
Collapse
Affiliation(s)
- Lan Ding
- Department of Medical Genetics, West China Medical Center, Sichuan University, Sichuan Province, Chengdu 610041, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Tsuchiya K, Komeda M, Takahashi M, Yamashita N, Cigira M, Suzuki T, Suzuki K, Nihei H, Mochizuki T. Mutational analysis within the 3' region of the PKD1 gene in Japanese families. Mutat Res 2001; 458:77-84. [PMID: 11691639 DOI: 10.1016/s0027-5107(01)00226-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a widespread genetic disease that causes renal failure. One of the genes that is responsible for this disease, PKD1, has been identified and characterized. Many mutations of the PKD1 gene have been identified in the Caucasian population. We investigated the occurrence of mutations in this gene in the Japanese population. We analyzed each exon in the 3' single copy region of the gene between exons 35 and 46 in genomic DNA obtained from 69 patients, using a PCR-based direct sequencing method. Four missense mutations (T3509M, G3559R, R3718Q, R3752W), one deletion mutation (11307del61bp) and one polymorphism (L3753L) were identified, and their presence confirmed by allele-specific oligonucleotide (ASO) hybridization. These were novel mutations, except for R3752W, and three of them were identified in more than two families. Mutation analysis of the PKD1 gene in the Japanese population is being reported for the first time.
Collapse
Affiliation(s)
- K Tsuchiya
- Department of Medicine IV, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bogdanova N, McCluskey M, Sikmann K, Markoff A, Todorov V, Dimitrakov D, Schiavello T, Thomas M, Kalaydjieva L, Dworniczak B, Horst J. Screening the 3' region of the polycystic kidney disease 1 (PKD1) gene in 41 Bulgarian and Australian kindreds reveals a prevalence of protein truncating mutations. Hum Mutat 2000; 16:166-74. [PMID: 10923038 DOI: 10.1002/1098-1004(200008)16:2<166::aid-humu9>3.0.co;2-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Screening for disease-causing mutations in the unique region of the polycystic kidney disease 1 (PKD1) gene was performed in 41 unrelated individuals with autosomal dominant polycystic kidney disease. Exons 34-41 and 43-46 were assayed using PCR amplification and SSCP analysis followed by direct sequencing of amplicons presenting variant SSCP patterns. We have identified seven disease-causing mutations of which five are novel [c.10634-10656del; c.11587delG; IVS37-10C>A; c.11669-11674del; c.13069-13070ins39] and two have been reported previously [Q4010X; Q4041X]. Defects in this part of the gene thus account for 17% of our group of patients. Five of the seven sequence alterations detected are protein-truncating which is in agreement with mutation screening data for this part of the gene by other groups. The two other mutations are in-frame deletions or insertions which could destroy important functional properties of polycystin 1. These findings suggest that the first step toward cyst formation in PKD1 patients is the loss of one functional copy of polycystin 1, which indirectly supports the "two-hit" model of cystogenesis where a second somatic mutation inactivating the normal allele is necessary to occur for development of the disease condition.
Collapse
Affiliation(s)
- N Bogdanova
- Institut für Humangenetik, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|