Mohktar MS, Redmond SJ, Antoniades NC, Rochford PD, Pretto JJ, Basilakis J, Lovell NH, McDonald CF. Predicting the risk of exacerbation in patients with chronic obstructive pulmonary disease using home telehealth measurement data.
Artif Intell Med 2014;
63:51-9. [PMID:
25704112 DOI:
10.1016/j.artmed.2014.12.003]
[Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND
The use of telehealth technologies to remotely monitor patients suffering chronic diseases may enable preemptive treatment of worsening health conditions before a significant deterioration in the subject's health status occurs, requiring hospital admission.
OBJECTIVE
The objective of this study was to develop and validate a classification algorithm for the early identification of patients, with a background of chronic obstructive pulmonary disease (COPD), who appear to be at high risk of an imminent exacerbation event. The algorithm attempts to predict the patient's condition one day in advance, based on a comparison of their current physiological measurements against the distribution of their measurements over the previous month.
METHOD
The proposed algorithm, which uses a classification and regression tree (CART), has been validated using telehealth measurement data recorded from patients with moderate/severe COPD living at home. The data were collected from February 2007 to January 2008, using a telehealth home monitoring unit.
RESULTS
The CART algorithm can classify home telehealth measurement data into either a 'low risk' or 'high risk' category with 71.8% accuracy, 80.4% specificity and 61.1% sensitivity. The algorithm was able to detect a 'high risk' condition one day prior to patients actually being observed as having a worsening in their COPD condition, as defined by symptom and medication records.
CONCLUSION
The CART analyses have shown that features extracted from three types of physiological measurements; forced expiratory volume in 1s (FEV1), arterial oxygen saturation (SPO2) and weight have the most predictive power in stratifying the patients condition. This CART algorithm for early detection could trigger the initiation of timely treatment, thereby potentially reducing exacerbation severity and recovery time and improving the patient's health. This study highlights the potential usefulness of automated analysis of home telehealth data in the early detection of exacerbation events among COPD patients.
Collapse