1
|
Lundström W, Gustafsson R. Human Herpesvirus 6A Is a Risk Factor for Multiple Sclerosis. Front Immunol 2022; 13:840753. [PMID: 35222435 PMCID: PMC8866567 DOI: 10.3389/fimmu.2022.840753] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
The role for human herpesvirus (HHV)-6A or HHV-6B in multiple sclerosis (MS) pathogenesis has been controversial. Possibly because the damage of the virus infection may occur before onset of clinical symptoms and because it has been difficult to detect active infection and separate serological responses to HHV-6A or 6B. Recent studies report that in MS patients the serological response against HHV-6A is increased whereas it is decreased against HHV-6B. This effect seems to be even more pronounced in MS patients prior to diagnosis and supports previous studies postulating a predomination for HHV-6A in MS disease and suggests that the infection is important at early stages of the disease. Furthermore, HHV-6A infection interacts with other factors suspected of modulating MS susceptibility and progression such as infection with Epstein-Barr virus (EBV) and Cytomegalovirus (CMV), tobacco smoking, HLA alleles, UV irradiation and vitamin D levels. The multifactorial nature of MS and pathophysiological role for HHV-6A in inflammation and autoimmunity are discussed.
Collapse
Affiliation(s)
- Wangko Lundström
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Rasmus Gustafsson
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Denner J, Bigley TM, Phan TL, Zimmermann C, Zhou X, Kaufer BB. Comparative Analysis of Roseoloviruses in Humans, Pigs, Mice, and Other Species. Viruses 2019; 11:E1108. [PMID: 31801268 PMCID: PMC6949924 DOI: 10.3390/v11121108] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Viruses of the genus Roseolovirus belong to the subfamily Betaherpesvirinae, family Herpesviridae. Roseoloviruses have been studied in humans, mice and pigs, but they are likely also present in other species. This is the first comparative analysis of roseoloviruses in humans and animals. The human roseoloviruses human herpesvirus 6A (HHV-6A), 6B (HHV-6B), and 7 (HHV-7) are relatively well characterized. In contrast, little is known about the murine roseolovirus (MRV), also known as murine thymic virus (MTV) or murine thymic lymphotrophic virus (MTLV), and the porcine roseolovirus (PRV), initially incorrectly named porcine cytomegalovirus (PCMV). Human roseoloviruses have gained attention because they can cause severe diseases including encephalitis in immunocompromised transplant and AIDS patients and febrile seizures in infants. They have been linked to a number of neurological diseases in the immunocompetent including multiple sclerosis (MS) and Alzheimer's. However, to prove the causality in the latter disease associations is challenging due to the high prevalence of these viruses in the human population. PCMV/PRV has attracted attention because it may be transmitted and pose a risk in xenotransplantation, e.g., the transplantation of pig organs into humans. Most importantly, all roseoloviruses are immunosuppressive, the humoral and cellular immune responses against these viruses are not well studied and vaccines as well as effective antivirals are not available.
Collapse
Affiliation(s)
- Joachim Denner
- Robert Koch Institute, Robert Koch Fellow, 13352 Berlin, Germany
| | - Tarin M. Bigley
- Division of Rheumatology, Department. of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Tuan L. Phan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70118, USA;
- HHV-6 Foundation, Santa Barbara, CA 93108, USA
| | - Cosima Zimmermann
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Xiaofeng Zhou
- Division of Pulmonary and Critical Care Medicine, Department. of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
3
|
Ongrádi J, Ablashi DV, Yoshikawa T, Stercz B, Ogata M. Roseolovirus-associated encephalitis in immunocompetent and immunocompromised individuals. J Neurovirol 2017; 23:1-19. [PMID: 27538995 PMCID: PMC5329081 DOI: 10.1007/s13365-016-0473-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/15/2016] [Accepted: 07/17/2016] [Indexed: 01/26/2023]
Abstract
The roseoloviruses, human herpesvirus (HHV)-6A, HHV-6B, and HHV-7, can cause severe encephalitis or encephalopathy. In immunocompetent children, primary HHV-6B infection is occasionally accompanied by diverse clinical forms of encephalitis. Roseolovirus coinfections with heterologous viruses and delayed primary HHV-7 infection in immunocompetent adults result in very severe neurological and generalized symptoms. Recovery from neurological sequelae is slow and sometimes incomplete. In immunocompromised patients with underlying hematological malignancies and transplantation, frequent single or simultaneous reactivation of roseoloviruses elicit severe, lethal organ dysfunctions, including damages in the limbic system, brain stem, and hippocampus. Most cases have been due to HHV-6B with HHV-6A accounting for 2-3%. The most severe manifestation of HHV-6B reactivation is post-transplantation limbic encephalitis. Seizures, cognitive problems, and abnormal EEG are common. Major risk factors for HHV-6B-associated encephalitis include unrelated cord blood cell transplantation and repeated hematopoietic stem cell transplantation. Rare genetic disorders, male gender, certain HLA constellation, and immune tolerance to replicating HHV-6 in persons carrying chromosomally integrated HHV-6 might also predispose an individual to roseolovirus-associated brain damage. At this time, little is known about the risk factors for HHV-7-associated encephalitis. Intrathecal glial cell destruction due to virus replication, overexpression of proinflammatory cytokines, and viral mimicry of chemokines all contribute to brain dysfunction. High virus load in the cerebrospinal fluid, hippocampal astrogliosis, and viral protein expression in HHV-6B-associated cases and multiple microscopic neuronal degeneration in HHV-7-associated cases are typical laboratory findings. Early empirical therapy with ganciclovir or foscarnet might save the life of a patient with roseolovirus-associated encephalitis.
Collapse
Affiliation(s)
- Joseph Ongrádi
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
| | - Dharam V Ablashi
- HHV-6 Foundation, 1482 East Valley Road, Santa Barbara, CA, 93101, USA
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98, Kotsukake-cho, Dengakugakolo, Toyoake, Aichi, 470-1192, Japan
| | - Balázs Stercz
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Masao Ogata
- Department of Medical Oncology and Hematology, Oita University Hospital, Hasama-machi, Yufu City, 879-5593, Japan
| |
Collapse
|
4
|
MyelStones: the executive roles of myelin basic protein in myelin assembly and destabilization in multiple sclerosis. Biochem J 2015; 472:17-32. [DOI: 10.1042/bj20150710] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The classic isoforms of myelin basic protein (MBP, 14–21.5 kDa) are essential to formation of the multilamellar myelin sheath of the mammalian central nervous system (CNS). The predominant 18.5-kDa isoform links together the cytosolic surfaces of oligodendrocytes, but additionally participates in cytoskeletal turnover and membrane extension, Fyn-mediated signalling pathways, sequestration of phosphoinositides and maintenance of calcium homoeostasis. All MBP isoforms are intrinsically disordered proteins (IDPs) that interact via molecular recognition fragments (MoRFs), which thereby undergo local disorder-to-order transitions. Their conformations and associations are modulated by environment and by a dynamic barcode of post-translational modifications, particularly phosphorylation by mitogen-activated and other protein kinases and deimination [a hallmark of demyelination in multiple sclerosis (MS)]. The MBPs are thus to myelin what basic histones are to chromatin. Originally thought to be merely structural proteins forming an inert spool, histones are now known to be dynamic entities involved in epigenetic regulation and diseases such as cancer. Analogously, the MBPs are not mere adhesives of compact myelin, but active participants in oligodendrocyte proliferation and in membrane process extension and stabilization during myelinogenesis. A central segment of these proteins is pivotal in membrane-anchoring and SH3 domain (Src homology 3) interaction. We discuss in the present review advances in our understanding of conformational conversions of this classic basic protein upon membrane association, including new thermodynamic analyses of transitions into different structural ensembles and how a shift in the pattern of its post-translational modifications is associated with the pathogenesis and potentially onset of demyelination in MS.
Collapse
|
5
|
Reynaud JM, Horvat B. Animal models for human herpesvirus 6 infection. Front Microbiol 2013; 4:174. [PMID: 23847599 PMCID: PMC3701164 DOI: 10.3389/fmicb.2013.00174] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/11/2013] [Indexed: 11/13/2022] Open
Abstract
Human herpesvirus (HHV)-6A and HHV-6B are two enveloped DNA viruses of β-herpesvirus family, infecting over 90% of the population and associated with several diseases, including exanthema subitum (for HHV-6B), multiple sclerosis and encephalitis, particularly in immunosuppressed patients. Animal models are highly important to better understand the pathogenesis of viral infections. Naturally developed neutralizing antibodies to HHV-6 or a related virus were found in different species of monkeys, suggesting their susceptibility to HHV-6 infection. Both HHV-6 DNA and infectious virus were detected in experimentally infected Cynomolgus and African green monkeys, although most animals remained clinically asymptomatic. Furthermore, HHV-6A infection was shown to accelerate the progression of AIDS (acquired immunodeficiency syndrome) in macaques and to lead to the development of neurological symptoms in the marmoset model. Humanized SCID (severe combined immunodeficiency) mice efficiently replicated HHV-6 and were also susceptible to coinfection with HHV-6 and HIV-1 (human immunodeficiency virus 1). As CD46 was identified as a receptor for HHV-6, transgenic mice expressing human CD46 may present a potentially interesting model for study certain aspects of HHV-6 infection and neuroinflammation.
Collapse
Affiliation(s)
- Joséphine M Reynaud
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, ENS Lyon, University of Lyon 1 Lyon, France
| | | |
Collapse
|
6
|
Isolation of cortical mouse oligodendrocyte precursor cells. J Neurosci Methods 2012; 209:219-26. [PMID: 22743801 DOI: 10.1016/j.jneumeth.2012.06.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 06/11/2012] [Accepted: 06/18/2012] [Indexed: 11/21/2022]
Abstract
The reliable isolation of primary oligodendrocyte progenitors cells (OPCs) holds promise as both a research tool and putative therapy for the study and treatment of central nervous system (CNS) disease and trauma. Stringently characterized primary mouse OPCs is of additional importance due to the power of transgenics to address mechanism(s) involving single genes. In this study, we developed and characterized a reproducible method for the primary culture of OPCs from postnatal day 5-7 mouse cerebral cortex. We enriched an O4(+) OPC population using Magnetic Activated Cell Sorting (MACS) technology. This technique resulted in an average yield of 3.68×10(5)OPCs/brain. Following isolation, OPCs were glial fibrillary acidic protein(-) (GFAP(-)) and O4(+). Following passage and with expansion, OPCs were O4(+), A2B5(+), and NG2(+). Demonstrating their bi-potentiality, mouse OPCs differentiated into either more complex, highly arborized O4(+) or O1(+) oligodendrocytes (OLs) or GFAP(+) astrocytes. This bi-potentiality is lost, however, in co-culture with rat embryonic day 15 derived dorsal root ganglia (DRG). Following 7-14 days of OPC/DRG co-culture, OPCs aligned with DRG neurites and differentiated into mature OLs as indicated by the presence of O1 and myelin basic protein (MBP) immunostaining. Addition of ciliary neurotrophic factor (CNTF) to conditioned media from OPC/DRG co-cultures improved OPC differentiation into mature O1(+) and MBP(+) OLs. This method allows for the study of primary mouse cortical OPC survival, maturation, and function without relying on oligosphere formation or the need for extensive passaging.
Collapse
|
7
|
Whitman L, Zhou H, Perlman S, Lane TE. IFN-gamma-mediated suppression of coronavirus replication in glial-committed progenitor cells. Virology 2008; 384:209-15. [PMID: 19059617 PMCID: PMC2779567 DOI: 10.1016/j.virol.2008.10.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/15/2008] [Accepted: 10/18/2008] [Indexed: 11/04/2022]
Abstract
The neurotropic JHM strain of mouse hepatitis virus (JHMV) replicates primarily within glial cells following intracranial inoculation of susceptible mice, with relative sparing of neurons. This study demonstrates that glial cells derived from neural progenitor cells are susceptible to JHMV infection and that treatment of infected cells with IFN-γ inhibits viral replication in a dose-dependent manner. Although type I IFN production is muted in JHMV-infected glial cultures, IFN-β is produced following IFN-γ-treatment of JHMV-infected cells. Also, direct treatment of infected glial cultures with recombinant mouse IFN-α or IFN-β inhibits viral replication. IFN-γ-mediated control of JHMV replication is dampened in glial cultures derived from the neural progenitor cells of type I receptor knock-out mice. These data indicate that JHMV is capable of infecting glial cells generated from neural progenitor cells and that IFN-γ-mediated control of viral replication is dependent, in part, on type I IFN secretion.
Collapse
Affiliation(s)
- Lucia Whitman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | | | | | | |
Collapse
|