1
|
Yi Y, Chen M, Coldea TE, Yang H, Zhao H. Soy protein hydrolysates induce menaquinone-7 biosynthesis by enhancing the biofilm formation of Bacillus subtilis natto. Food Microbiol 2024; 124:104599. [PMID: 39244358 DOI: 10.1016/j.fm.2024.104599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 09/09/2024]
Abstract
Menaquinone-7 (MK-7) is a form of vitamin K2 with health-beneficial effects. A novel fermentation strategy based on combining soy protein hydrolysates (SPHs) with biofilm-based fermentation was investigated to enhance menaquinone-7 (MK-7) biosynthesis by Bacillus subtilis natto. Results showed the SPHs increased MK-7 yield by 199.4% in two-stage aeration fermentation as compared to the SP-based medium in submerged fermentation, which was related to the formation of robust biofilm with wrinkles and the enhancement of cell viability. Moreover, there was a significant correlation between key genes related to MK-7 and biofilm synthesis, and the quorum sensing (QS) related genes, Spo0A and SinR, were downregulated by 0.64-fold and 0.39-fold respectively, which promoted biofilm matrix synthesis. Meanwhile, SPHs also enhanced the MK-7 precursor, isoprene side chain, supply, and MK-7 assembly efficiency. Improved fermentation performances of bacterial cells during fermentation were attributed to abundant oligopeptides (Mw < 1 kDa) and moderate amino acids, particularly Arg, Asp, and Phe in SPHs. All these results revealed that SPHs were a potential and superior nitrogen source for MK-7 production by Bacillus subtilis natto.
Collapse
Affiliation(s)
- Yunxin Yi
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, 400372, Romania
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, 610041, China
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou, 510640, China.
| |
Collapse
|
2
|
Zhang QH, Wang Z, Wang YQ, Zhao YL, Su HJ. Colorimetric screening model for identification of menaquinone-7 (MK-7) producing strains. 3 Biotech 2024; 14:244. [PMID: 39328501 PMCID: PMC11422327 DOI: 10.1007/s13205-024-04097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
In this study, a novel colorimetric screening method for identifying menaquinone-7 (MK-7) producing strains was established using potassium permanganate. To our knowledge, this method represents the first direct screening methodology for the identification of MK-7 producing strains. Utilizing this screening method, a new MK-7 producing strain, Bacillus subtilis GSA-184, was identified from the soil of the Tibetan Plateau. Under the optimized fermentation medium (50 g/L glycerol, 30 g/L yeast extract powder, 100 g/L soybean peptone, 1 g/L KH2PO4, and 1 g/L MnSO4), the production of MK-7 was increased to 25.7 mg/L. Additionally, the maximum production of MK-7 reached 36.46 mg/L after 48 h in a 5-L fermenter. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04097-1.
Collapse
Affiliation(s)
- Qiu-Hua Zhang
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
| | - Zheng Wang
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
| | - Yao-Qiang Wang
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
| | - Yi-Lin Zhao
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
| | - Hai-Jia Su
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
| |
Collapse
|
3
|
Liao C, Cui J, Gao M, Wang B, Ito K, Guo Y, Zhang B. Dual-sgRNA CRISPRa System for Enhanced MK-7 Production and Salmonella Infection Mitigation in Bacillus subtilis natto Applied to Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4301-4316. [PMID: 38344988 DOI: 10.1021/acs.jafc.3c08866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
This study optimized the menaquinone-7 (MK-7) synthetic pathways in Bacillus subtilis (B. subtilis) natto NB205, a strain that originated from natto, to enhance its MK-7 production. Utilizing mutation breeding, we developed NBMK308, a mutant strain that demonstrated a significant 117.23% increase in MK-7 production. A comprehensive transcriptome analysis identified two key genes, ispA and ispE, as being critical in MK-7 synthesis. The dual-sgRNA CRISPRa system was utilized to achieve precise regulation of ispA and ispE in the newly engineered strain, A3E3. This strategic modulation resulted in a significant enhancement of MK-7 production, achieving increases of 20.02% and 201.41% compared to traditional overexpression systems and the original strain NB205, respectively. Furthermore, the fermentation supernatant from A3E3 notably inhibited Salmonella invasion in Caco-2 cells, showcasing its potential for combating such infections. The safety of the dual-sgRNA CRISPRa system was confirmed through cell assays. The utilization of the dual-sgRNA CRISPRa system in this study was crucial for the precise regulation of key genes in MK-7 synthesis, leading to a remarkable increase in production and demonstrating additional therapeutic potential in inhibiting pathogenic infections. This approach effectively combined the advantages of microbial fermentation and biotechnology, addressing health and nutritional challenges.
Collapse
Affiliation(s)
- Chaoyong Liao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Jian Cui
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Mingkun Gao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Bo Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Koichi Ito
- Department of Food and Physiological Models, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki 113-8654, Japan
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| |
Collapse
|
4
|
Liu Y, Wang J, Huang JB, Li XF, Chen Y, Liu K, Zhao M, Huang XL, Gao XL, Luo YN, Tao W, Wu J, Xue ZL. Advances in regulating vitamin K 2 production through metabolic engineering strategies. World J Microbiol Biotechnol 2023; 40:8. [PMID: 37938463 DOI: 10.1007/s11274-023-03828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
Vitamin K2 (menaquinone, VK2, MK) is an essential lipid-soluble vitamin that plays critical roles in inhibiting cell ferroptosis, improving blood clotting, and preventing osteoporosis. The increased global demand for VK2 has inspired interest in novel production strategies. In this review, various novel metabolic regulation strategies, including static and dynamic metabolic regulation, are summarized and discussed. Furthermore, the advantages and disadvantages of both strategies are analyzed in-depth to highlight the bottlenecks facing microbial VK2 production on an industrial scale. Finally, advanced metabolic engineering biotechnology for future microbial VK2 production will also be discussed. In summary, this review provides in-depth information and offers an outlook on metabolic engineering strategies for VK2 production.
Collapse
Affiliation(s)
- Yan Liu
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China.
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China.
| | - Jian Wang
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Jun-Bao Huang
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Xiang-Fei Li
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China
| | - Yu Chen
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China
| | - Kun Liu
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China
| | - Ming Zhao
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China.
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China.
| | - Xi-Lin Huang
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Xu-Li Gao
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Ya-Ni Luo
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Wei Tao
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Jing Wu
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Zheng-Lian Xue
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China
| |
Collapse
|
5
|
Paprotny Ł, Szewczak D, Bryshten I, Wianowska D. Development, Validation, and Two-Year Application of Rapid and Simple LC-MS/MS-Based Method for the Determination of K2MK-7 in Blood Samples. Molecules 2023; 28:6523. [PMID: 37764299 PMCID: PMC10535264 DOI: 10.3390/molecules28186523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Biological properties of menaquinone-7, one of the vitamin K2 vitamers (K2MK-7), both those proven and those that remain to be investigated, arouse extensive interest that goes beyond the strictly scientific framework. The most important of them is the prevention of age-related diseases, considering that we live in the times identified as the era of aging societies and many people are exposed to the vitamin K2MK-7 deficiency. Therefore, an effective analytical protocol that can be adopted as a diagnostic and preventive analytics tool is needed. Herein, a simple sample preparation method followed by the liquid chromatography-tandem mass spectrometry-based method (LC-MS/MS), was used for the selective and sensitive determination of K2MK-7 in serum samples. Under the optimized conditions, using 500 µL of serum and the same amount of n-hexane, the reproducibility and the accuracy were obtained in the ranges of 89-97% and 86-110%, respectively, and the limit of detection value was 0.01 ng/mL. This method was used for the routine analysis. Statistical interpretation of the data from 518 samples obtained during 2 years of practice allowed for obtaining information on the content and distribution of K2MK-7 in the Polish population, broken down by the sex and age groups.
Collapse
Affiliation(s)
- Łukasz Paprotny
- ALAB Laboratories, Research and Development Centre, ul. Ceramiczna 1, 20-150 Lublin, Poland (D.S.)
| | - Dorota Szewczak
- ALAB Laboratories, Research and Development Centre, ul. Ceramiczna 1, 20-150 Lublin, Poland (D.S.)
| | - Iryna Bryshten
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Pl. Maria Curie-Skłodowska 3, 20-031 Lublin, Poland
| | - Dorota Wianowska
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Pl. Maria Curie-Skłodowska 3, 20-031 Lublin, Poland
| |
Collapse
|
6
|
Xu J, Chen C, Gan S, Liao Y, Fu R, Hou C, Yang S, Zheng Z, Chen W. The Potential Value of Probiotics after Dental Implant Placement. Microorganisms 2023; 11:1845. [PMID: 37513016 PMCID: PMC10383117 DOI: 10.3390/microorganisms11071845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Dental implantation is currently the optimal solution for tooth loss. However, the health and stability of dental implants have emerged as global public health concerns. Dental implant placement, healing of the surgical site, osseointegration, stability of bone tissues, and prevention of peri-implant diseases are challenges faced in achieving the long-term health and stability of implants. These have been ongoing concerns in the field of oral implantation. Probiotics, as beneficial microorganisms, play a significant role in the body by inhibiting pathogens, promoting bone tissue homeostasis, and facilitating tissue regeneration, modulating immune-inflammatory levels. This review explores the potential of probiotics in addressing post-implantation challenges. We summarize the existing research regarding the importance of probiotics in managing dental implant health and advocate for further research into their potential applications.
Collapse
Affiliation(s)
- Jia Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenfeng Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yihan Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijie Fu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chuping Hou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuhan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Buhaș MC, Candrea R, Gavrilaș LI, Miere D, Tătaru A, Boca A, Cătinean A. Transforming Psoriasis Care: Probiotics and Prebiotics as Novel Therapeutic Approaches. Int J Mol Sci 2023; 24:11225. [PMID: 37446403 DOI: 10.3390/ijms241311225] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease with autoimmune pathological characteristics. Recent research has found a link between psoriasis, inflammation, and gut microbiota dysbiosis, and that probiotics and prebiotics provide benefits to patients. This 12-week open-label, single-center clinical trial evaluated the efficacy of probiotics (Bacillus indicus (HU36), Bacillus subtilis (HU58), Bacillus coagulans (SC208), Bacillus licheniformis (SL307), and Bacillus clausii (SC109)) and precision prebiotics (fructooligosaccharides, xylooligosaccharides, and galactooligosaccharides) in patients with psoriasis receiving topical therapy, with an emphasis on potential metabolic, immunological, and gut microbiota changes. In total, 63 patients were evaluated, with the first 42 enrolled patients assigned to the intervention group and the next 21 assigned to the control group (2:1 ratio; non-randomized). There were between-group differences in several patient characteristics at baseline, including age, psoriasis severity (the incidence of severe psoriasis was greater in the intervention group than in the control group), the presence of nail psoriasis, and psoriatic arthritis, though it is not clear whether or how these differences may have affected the study findings. Patients with psoriasis receiving anti-psoriatic local therapy and probiotic and prebiotic supplementation performed better in measures of disease activity, including Psoriasis Area and Severity Index, Dermatology Life Quality Index, inflammatory markers, and skin thickness compared with those not receiving supplementation. Furthermore, in the 15/42 patients in the intervention group who received gut microbiota analysis, the gut microbiota changed favorably following 12 weeks of probiotic and prebiotic supplementation, with a shift towards an anti-inflammatory profile.
Collapse
Affiliation(s)
- Mihaela Cristina Buhaș
- Department of Dermatology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400423 Cluj-Napoca, Romania
| | - Rareș Candrea
- Master Program in Nutrition and Quality of Life, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400423 Cluj-Napoca, Romania
| | - Laura Ioana Gavrilaș
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Alexandru Tătaru
- Department of Dermatology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400423 Cluj-Napoca, Romania
| | - Andreea Boca
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Adrian Cătinean
- Department of Internal Medicine, Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Phamacy, 400423 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Linden M, Flegler A, Feuereisen MM, Weber F, Lipski A, Schieber A. Effects of flavonoids on membrane adaptation of food-associated bacteria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184137. [PMID: 36746312 DOI: 10.1016/j.bbamem.2023.184137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
The effects of naringenin and the biflavonoids amentoflavone and tetrahydroamentoflavone on select bacterial lipids (carotenoids, fatty acids, and menaquinones) and membrane fluidity based on Laurdan generalized polarization were investigated. For this purpose, the pigment-forming food-associated microorganisms Staphylococcus xylosus (DSM 20266T and J70), Staphylococcus carnosus DSM 20501T, and Micrococcus luteus (ATCC 9341 and J3) were studied. The results suggest an envelope stress response by microorganisms due to flavonoids and an employment of adaptive mechanisms using carotenoids, fatty acids, and menaquinones. The flavonoid monomer naringenin impacted carotenoids, fatty acids, menaquinones, and membrane fluidity. Naringenin significantly influenced the carotenoid profile, particularly by an increase in the relative proportion of 4,4'-diaponeurosporenoic acid in Staphylococcus xylosus. Amentoflavone caused changes mainly in the membrane of Micrococcus luteus and decreased the menaquinone content. Tetrahydroamentoflavone mainly affected the carotenoids in the investigated strains. The noticeably different CCS value of tetrahydroamentoflavone compared to naringenin and amentoflavone revealed further insights into the structure-dependent effects of flavonoids. This study provides valuable insights into the response of pigment-forming food-associated microorganisms to naringenin, amentoflavone, and tetrahydroamentoflavone, which is important for the targeted and safe application of the latter as natural preservatives and useful for further research on the mechanisms of action.
Collapse
Affiliation(s)
- Maria Linden
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany
| | - Alexander Flegler
- Institute of Nutritional and Food Sciences, Food Microbiology and Hygiene, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany
| | - Michelle M Feuereisen
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany
| | - Fabian Weber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany
| | - André Lipski
- Institute of Nutritional and Food Sciences, Food Microbiology and Hygiene, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany
| | - Andreas Schieber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany.
| |
Collapse
|
9
|
Lal N, Seifan M, Berenjian A. Optimisation of the fermentation media to enhance the production of the bioactive isomer of vitamin menaquinone-7. Bioprocess Biosyst Eng 2022; 45:1371-1390. [PMID: 35864383 PMCID: PMC9302956 DOI: 10.1007/s00449-022-02752-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
Menaquinone-7 (MK-7) offers significant health benefits; however, only the all-trans form is biologically active. MK-7 produced through fermentation can occur as all-trans and cis isomers, and the therapeutic value of the resulting MK-7 is exclusively determined by the quantity of the all-trans isomer. Therefore, this study aimed to investigate the effect of the media composition on the isomer profile obtained from fermentation and determine the optimum media combination to increase the concentration of the all-trans isomer and diminish the production of cis MK-7. For this purpose, design of experiments (DOE) was used to screen the most effective nutrients, and a central composite face-centred design (CCF) was employed to optimise the media components. The optimum media consisted of 1% (w/v) glucose, 2% (w/v) yeast extract, 2% (w/v) soy peptone, 2% (w/v) tryptone, and 0.1% (w/v) CaCl2. This composition resulted in an average all-trans and cis isomer concentration of 36.366 mg/L and 1.225 mg/L, respectively. In addition, the optimised media enabled an all-trans isomer concentration 12.2-fold greater and a cis isomer concentration 2.9-fold less than the unoptimised media. This study was the first to consider the development of an optimised fermentation media to enhance the production of the bioactive isomer of MK-7 and minimise the concentration of the inactive isomer. Furthermore, this media is commercially promising, as it will improve the process productivity and reduce the costs associated with the industrial fermentation of the vitamin.
Collapse
Affiliation(s)
- Neha Lal
- School of Engineering, The University of Waikato, Hamilton, 3240, New Zealand
| | - Mostafa Seifan
- School of Engineering, The University of Waikato, Hamilton, 3240, New Zealand
| | - Aydin Berenjian
- School of Engineering, The University of Waikato, Hamilton, 3240, New Zealand.
- Department of Agricultural and Biological Engineering, Pennsylvania State University, 221 Agricultural Engineering Building, University Park, PA, 16802, USA.
| |
Collapse
|
10
|
Al KF, Chmiel JA, Stuivenberg GA, Reid G, Burton JP. Long-Duration Space Travel Support Must Consider Wider Influences to Conserve Microbiota Composition and Function. Life (Basel) 2022; 12:1163. [PMID: 36013342 PMCID: PMC9409767 DOI: 10.3390/life12081163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/03/2022] Open
Abstract
The microbiota is important for immune modulation, nutrient acquisition, vitamin production, and other aspects for long-term human health. Isolated model organisms can lose microbial diversity over time and humans are likely the same. Decreasing microbial diversity and the subsequent loss of function may accelerate disease progression on Earth, and to an even greater degree in space. For this reason, maintaining a healthy microbiome during spaceflight has recently garnered consideration. Diet, lifestyle, and consumption of beneficial microbes can shape the microbiota, but the replenishment we attain from environmental exposure to microbes is important too. Probiotics, prebiotics, fermented foods, fecal microbiota transplantation (FMT), and other methods of microbiota modulation currently available may be of benefit for shorter trips, but may not be viable options to overcome the unique challenges faced in long-term space travel. Novel fermented food products with particular impact on gut health, immune modulation, and other space-targeted health outcomes are worthy of exploration. Further consideration of potential microbial replenishment to humans, including from environmental sources to maintain a healthy microbiome, may also be required.
Collapse
Affiliation(s)
- Kait F. Al
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
| | - John A. Chmiel
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
| | - Gerrit A. Stuivenberg
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
| | - Gregor Reid
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
- Department of Surgery, University of Western Ontario, London, ON N6A 4V2, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - Jeremy P. Burton
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
- Department of Surgery, University of Western Ontario, London, ON N6A 4V2, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| |
Collapse
|
11
|
Sojan JM, Gioacchini G, Giorgini E, Orlando P, Tiano L, Maradonna F, Carnevali O. Zebrafish caudal fin as a model to investigate the role of probiotics in bone regeneration. Sci Rep 2022; 12:8057. [PMID: 35577882 PMCID: PMC9110718 DOI: 10.1038/s41598-022-12138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/25/2022] [Indexed: 12/03/2022] Open
Abstract
Probiotics are live microorganisms that confer several beneficial effects to the host, including enhancement of bone mineralization. However, probiotic action on bone regeneration is not well studied and therefore we analysed various effects of probiotic treatment on the caudal fin regeneration of zebrafish. Morphological analysis revealed an increased regenerated area with shorter and thicker lepidotrichia segments after probiotic treatment. Fourier transform infrared spectroscopy imaging analysis highlighted the distribution of phosphate groups in the regenerated fins and probiotic group showed higher amounts of well-crystallized hydroxyapatite. At the midpoint (5 days post amputation) of regeneration, probiotics were able to modulate various stages of osteoblast differentiation as confirmed by the upregulation of some key marker genes such as runx2b, sp7, col10a1a, spp1 and bglap, besides suppressing osteoclast activity as evidenced from the downregulation of ctsk. Probiotics also caused an enhanced cell cycle by regulating the expression of genes involved in Retinoic acid (rarga, cyp26b1) and Wnt/β-catenin (ctnnb1, ccnd1, axin2, sost) signaling pathways, and also modulated phosphate homeostasis by increasing the entpd5a levels. These findings provide new outlooks for the use of probiotics as a prophylactic treatment in accelerating bone regeneration and improving skeletal health in both aquaculture and biomedical fields.
Collapse
Affiliation(s)
- Jerry Maria Sojan
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
- Biostructures and Biosystems National Institute-Interuniversity Consortium, Viale delle Medaglie d'Oro 305, 00136, Rome, Italy.
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
- Biostructures and Biosystems National Institute-Interuniversity Consortium, Viale delle Medaglie d'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
12
|
Production of Vitamin K by Wild-Type and Engineered Microorganisms. Microorganisms 2022; 10:microorganisms10030554. [PMID: 35336129 PMCID: PMC8954062 DOI: 10.3390/microorganisms10030554] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
Vitamin K is a fat-soluble vitamin that mainly exists as phylloquinone or menaquinone in nature. Vitamin K plays an important role in blood clotting and bone health in humans. For use as a nutraceutical, vitamin K is produced by natural extraction, chemical synthesis, and microbial fermentation. Natural extraction and chemical synthesis methods for vitamin K production have limitations, such as low yield of products and environmental concerns. Microbial fermentation is a more sustainable process for industrial production of natural vitamin K than two other methods. Recent advanced genetic technology facilitates industrial production of vitamin K by increasing the yield and productivity of microbial host strains. This review covers (i) general information about vitamin K and microbial host, (ii) current titers of vitamin K produced by wild-type microorganisms, and (iii) vitamin K production by engineered microorganisms, including the details of strain engineering strategies. Finally, current limitations and future directions for microbial production of vitamin K are also discussed.
Collapse
|
13
|
Bus K, Sitkowski J, Bocian W, Zmysłowski A, Ofiara K, Szterk A. Separation of menaquinone-7 geometric isomers by semipreparative high-performance liquid chromatography with silver complexation and identification by nuclear magnetic resonance. Food Chem 2022; 368:130890. [PMID: 34438182 DOI: 10.1016/j.foodchem.2021.130890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/21/2021] [Accepted: 08/14/2021] [Indexed: 11/04/2022]
Abstract
Dietary supplements containing vitamin K2 are often used to prevent osteoporosis, vascular calcification and coronary heart disease. It has been shown that some of these products contain a mixture of menaquinone-7 geometric isomers. Since the geometric shape may influence biological activity, there was a need for a semipreparative method to isolate single compounds for further studies. Here, we present an argentation chromatographic method for the separation of menaquinone-7 isomers and an nuclear magnetic resonance (NMR) methodology for the configuration assignment of isoprenoid side chain. The DFT calculations were performed to determine more energetically favorable complexes between the cis or trans menaquinone-7 isomers and the silver cation. Seventeen components were resolved, and fractions were collected and subjected to NMR study. Structures and chemical shifts for thirteen new compounds were assigned, and the identity of three known compounds was confirmed.
Collapse
Affiliation(s)
- Katarzyna Bus
- National Medicines Institute, Department of Spectrometric Methods, 30/34 Chełmska, 00-725 Warsaw, Poland
| | - Jerzy Sitkowski
- National Medicines Institute, Counterfeit Medicinal Products and Designer Drugs Department, 30/34 Chełmska, 00-725 Warsaw, Poland
| | - Wojciech Bocian
- National Medicines Institute, Counterfeit Medicinal Products and Designer Drugs Department, 30/34 Chełmska, 00-725 Warsaw, Poland
| | - Adam Zmysłowski
- National Medicines Institute, Department of Spectrometric Methods, 30/34 Chełmska, 00-725 Warsaw, Poland
| | - Karol Ofiara
- National Medicines Institute, Department of Spectrometric Methods, 30/34 Chełmska, 00-725 Warsaw, Poland
| | - Arkadiusz Szterk
- Center for Translationale Medicine Warsaw University for Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland; Instytut Innowacji Przemysłowych MAT, 3/63 Rabindranatha Tagore, 02-647 Warsaw, Poland. %
| |
Collapse
|
14
|
Bus K, Szterk A. Relationship between Structure and Biological Activity of Various Vitamin K Forms. Foods 2021; 10:foods10123136. [PMID: 34945687 PMCID: PMC8701896 DOI: 10.3390/foods10123136] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/06/2023] Open
Abstract
Vitamin K is involved many biological processes, such as the regulation of blood coagulation, prevention of vascular calcification, bone metabolism and modulation of cell proliferation. Menaquinones (MK) and phylloquinone vary in biological activity, showing different bioavailability, half-life and transport mechanisms. Vitamin K1 and MK-4 remain present in the plasma for 8–24 h, whereas long-chain menaquinones can be detected up to 96 h after administration. Geometric structure is also an important factor that conditions their properties. Cis-phylloquinone shows nearly no biological activity. An equivalent study for menaquinone is not available. The effective dose to decrease uncarboxylated osteocalcin was six times lower for MK-7 than for MK-4. Similarly, MK-7 affected blood coagulation system at dose three to four times lower than vitamin K1. Both vitamin K1 and MK-7 inhibited the decline in bone mineral density, however benefits for the occurrence of cardiovascular diseases have been observed only for long-chain menaquinones. There are currently no guidelines for the recommended doses and forms of vitamin K in the prevention of osteoporosis, atherosclerosis and other cardiovascular disorders. Due to the presence of isomers with unknown biological properties in some dietary supplements, quality and safety of that products may be questioned.
Collapse
Affiliation(s)
- Katarzyna Bus
- Department of Spectrometric Methods, National Medicines Institute, 30/34 Chełmska, 00-725 Warsaw, Poland
- Correspondence:
| | - Arkadiusz Szterk
- Center for Translational Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland;
- Transfer of Science Sp. z o.o., Strzygłowska 15, 04-866 Warsaw, Poland
| |
Collapse
|
15
|
Arias-Cartin R, Uzel A, Seduk F, Gerbaud G, Pierrel F, Broc M, Lebrun R, Guigliarelli B, Magalon A, Grimaldi S, Walburger A. Identification and characterization of a non-canonical menaquinone-linked formate dehydrogenase. J Biol Chem 2021; 298:101384. [PMID: 34748728 PMCID: PMC8808070 DOI: 10.1016/j.jbc.2021.101384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 10/25/2022] Open
Abstract
The Molybdenum/Tungsten-bispyranopterin guanine dinucleotides (Mo/W-bisPGD) family of Formate Dehydrogenases (FDHs) plays roles in several metabolic pathways ranging from carbon fixation to energy harvesting owing to their reaction with a wide variety of redox partners. Indeed, this metabolic plasticity results from the diverse structures, cofactor content, and substrates employed by partner subunits interacting with the catalytic hub. Here, we unveiled two non-canonical FDHs in Bacillus subtilis which are organized into two-subunit complexes with unique features, ForCE1 and ForCE2. We show that the ForC catalytic subunit interacts with an unprecedented partner subunit, ForE, and that its amino acid sequence within the active site deviates from the consensus residues typically associated with FDH activity, as a histidine residue is naturally substituted with a glutamine. The ForE essential subunit mediates the utilization of menaquinone as an electron acceptor as shown by the formate:menadione oxidoreductase activity of both enzymes, their copurification with menaquinone, and the distinctive detection of a protein-bound neutral menasemiquinone radical by multifrequency electron paramagnetic resonance (EPR) experiments on the purified enzymes. Moreover, EPR characterization of both FDHs reveals the presence of several [Fe-S] clusters with distinct relaxation properties and a weakly anisotropic Mo(V) EPR signature, consistent with the characteristic Mo/bisPGD cofactor of this enzyme family. Altogether, this work enlarges our knowledge of the FDH family by identifying a non-canonical FDH, which differs in terms of architecture, amino acid conservation around the Mo cofactor, and reactivity.
Collapse
Affiliation(s)
- Rodrigo Arias-Cartin
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France; Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France.
| | - Alexandre Uzel
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France
| | - Farida Seduk
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France
| | - Guillaume Gerbaud
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France
| | - Fabien Pierrel
- Grenoble Alpes Université, CNRS, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Marianne Broc
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France
| | - Régine Lebrun
- Aix Marseille Université, CNRS, Plateforme Protéomique de l'IMM, IM2B Marseille Protéomique (MaP), 13009 Marseille, France
| | - Bruno Guigliarelli
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France
| | - Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France
| | - Stéphane Grimaldi
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France.
| | - Anne Walburger
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France.
| |
Collapse
|
16
|
Zhang Z, Liu L, Liu C, Sun Y, Zhang D. New aspects of microbial vitamin K2 production by expanding the product spectrum. Microb Cell Fact 2021; 20:84. [PMID: 33849534 PMCID: PMC8042841 DOI: 10.1186/s12934-021-01574-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/02/2021] [Indexed: 12/21/2022] Open
Abstract
Vitamin K2 (menaquinone, MK) is an essential lipid-soluble vitamin with critical roles in blood coagulation and bone metabolism. Chemically, the term vitamin K2 encompasses a group of small molecules that contain a common naphthoquinone head group and a polyisoprenyl side chain of variable length. Among them, menaquinone-7 (MK-7) is the most potent form. Here, the biosynthetic pathways of vitamin K2 and different types of MK produced by microorganisms are briefly introduced. Further, we provide a new aspect of MK-7 production, which shares a common naphthoquinone ring and polyisoprene biosynthesis pathway, by analyzing strategies for expanding the product spectrum. We review the findings of metabolic engineering strategies targeting the shikimate pathway, polyisoprene pathway, and menaquinone pathway, as well as membrane engineering, which provide comprehensive insights for enhancing the yield of MK-7. Finally, the current limitations and perspectives of microbial menaquinone production are also discussed. This article provides in-depth information on metabolic engineering strategies for vitamin K2 production by expanding the product spectrum.
Collapse
Affiliation(s)
- Zimeng Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Linxia Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Chuan Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yumei Sun
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Dawei Zhang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Mok WK, Tan YX, Chen WN. Evaluating the potential of Bacillus subtilis fermented okara as a functional food ingredient through in vitro digestion and fermentation. FOOD BIOTECHNOL 2021. [DOI: 10.1080/08905436.2021.1909615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Wai Kit Mok
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yong Xing Tan
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
18
|
The effect of aeration and mixing in developing a dairy-based functional food rich in menaquinone-7. Bioprocess Biosyst Eng 2020; 43:1773-1780. [PMID: 32377942 DOI: 10.1007/s00449-020-02366-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
Abstract
Vitamin menaquinone-7 (MK-7) supplementation improves bone health and reduces the incidence of osteoporosis. Despite the recent developments in MK-7 fermentation using Bacillus subtilis natto, low fermentation yields, as well as complicated downstream processing steps, are still the main reasons for the expensive final product. To overcome these issues, developing a fermented dairy-based product rich in MK-7 by avoiding costly downstream steps and optimising the fermentation operating conditions to enhance the MK-7 concentration would be an alternative approach. The present study, therefore, aims to evaluate the role of agitation and aeration as the key operating conditions on MK-7 production by Bacillus subtilis natto using a milk media. The agitation and aeration rates of 525 RPM and 5 VVM were found to be the optimum levels leading to the production of 3.54 mg/L of MK-7. Further, the sensory evaluation was performed to compare the sensory properties of the freeze-dried fermented samples with non-fermented milk samples. The results illustrated that the fermented samples had a significant saltiness with intense aroma resulting in the less acceptability of them by the panellists.
Collapse
|
19
|
Cao S, Du X, Li P, Yuan G, Chen S, Chen W, Song X, Kuang B. A chemical screening method for menaquinone-producing strains based on HPLC-UV technology. J Microbiol Methods 2020; 172:105907. [PMID: 32240706 DOI: 10.1016/j.mimet.2020.105907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/02/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
Despite menaquinones (MKs)-4 and - 7 being known to have extensive biological activities and applications, less attention has been paid to the other MKs. Thus, to obtain a range of MKs to further explore their pharmacological activities, structure-activity relationships, and applications, a chemical screening method for MK-producing strains was established based on high-performance liquid chromatography-ultraviolet (HPLC-UV) technology. Considering that Bacillus strains have proven to be an important MK-producing bioresource, twenty-nine putative Bacillus isolates previously sought from a fermented soybean sample were used for the validation of the chemical screening method, which ultimately led to the discovery of sixteen MK-producing strains. Among them, Bacillus subtilis DC-1 presented excellent ability to produce MKs. Another, a purchased strain of B. amyloliquefaciens was discovered to be an MK-producing strain. These results indicated this screening method was simple and highly efficient for the discovery of MK-producing strains, especially those producing a range of MK structures.
Collapse
Affiliation(s)
- Sheng Cao
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xia Du
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Pingyi Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ganjun Yuan
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Shanjun Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Weiping Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoyuan Song
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bingdi Kuang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
20
|
Zhang C, Wu D, Ren H. Economical production of vitamin K 2 using crude glycerol from the by-product of biodiesel. Sci Rep 2020; 10:5959. [PMID: 32249809 PMCID: PMC7136243 DOI: 10.1038/s41598-020-62737-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/16/2020] [Indexed: 11/11/2022] Open
Abstract
Industrial waste, such as crude glycerol, was used for vitamin K2 by B. subtilis Z-15. Crude glycerol could be used instead of pure glycerin for vitamin K2 production. The combination of soybean peptone and yeast extract was more conducive to the synthesis of vitamin K2. The optimal composition of medium was obtained by response surface methodology. The results indicated that the optimal medium was as follows: 6.3% crude glycerol, 3.0% soybean peptone concentration and 5.1 g/L yeast extract. Under the optimal culture medium, vitamin K2 production was increased to 45.11 ± 0.62 mg/L. The fermentor test further proved that the use of crude glycerol affected neither the synthesis of vitamin K2 nor the growth of B. subtilis. These investigations could lay a foundation for reducing the pollution of crude glycerol, exploring a late model for vitamin K2 cleaner production.
Collapse
Affiliation(s)
- Chao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, JiNan, 250101, China.,Co-Innovation Center of Green Building, JiNan, 250101, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, JiNan, 250101, China. .,Co-Innovation Center of Green Building, JiNan, 250101, China.
| | - Huixue Ren
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, JiNan, 250101, China.,Co-Innovation Center of Green Building, JiNan, 250101, China
| |
Collapse
|
21
|
Vitamin K as a Diet Supplement with Impact in Human Health: Current Evidence in Age-Related Diseases. Nutrients 2020; 12:nu12010138. [PMID: 31947821 PMCID: PMC7019739 DOI: 10.3390/nu12010138] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022] Open
Abstract
Vitamin K health benefits have been recently widely shown to extend beyond blood homeostasis and implicated in chronic low-grade inflammatory diseases such as cardiovascular disease, osteoarthritis, dementia, cognitive impairment, mobility disability, and frailty. Novel and more efficient nutritional and therapeutic options are urgently needed to lower the burden and the associated health care costs of these age-related diseases. Naturally occurring vitamin K comprise the phylloquinone (vitamin K1), and a series of menaquinones broadly designated as vitamin K2 that differ in source, absorption rates, tissue distribution, bioavailability, and target activity. Although vitamin K1 and K2 sources are mainly dietary, consumer preference for diet supplements is growing, especially when derived from marine resources. The aim of this review is to update the reader regarding the specific contribution and effect of each K1 and K2 vitamers in human health, identify potential methods for its sustainable and cost-efficient production, and novel natural sources of vitamin K and formulations to improve absorption and bioavailability. This new information will contribute to foster the use of vitamin K as a health-promoting supplement, which meets the increasing consumer demand. Simultaneously, relevant information on the clinical context and direct health consequences of vitamin K deficiency focusing in aging and age-related diseases will be discussed.
Collapse
|
22
|
Mahdinia E, Demirci A, Berenjian A. Evaluation of vitamin K (menaquinone-7) stability and secretion in glucose and glycerol-based media by Bacillus subtilis natto. ACTA ALIMENTARIA 2019. [DOI: 10.1556/066.2019.48.4.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- E. Mahdinia
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA, 16802. USA
| | - A. Demirci
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA, 16802. USA
| | - A. Berenjian
- Faculty of Science and Engineering, The University of Waikato, Hamilton, 3240. New Zealand
| |
Collapse
|
23
|
Microbial production of vitamin K2: current status and future prospects. Biotechnol Adv 2019; 39:107453. [PMID: 31629792 DOI: 10.1016/j.biotechadv.2019.107453] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/24/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022]
Abstract
Vitamin K2, also called menaquinone, is an essential lipid-soluble vitamin that plays a critical role in blood clotting and prevention of osteoporosis. It has become a focus of research in recent years and has been widely used in the food and pharmaceutical industries. This review will briefly introduce the functions and applications of vitamin K2 first, after which the biosynthesis pathways and enzymes will be analyzed in-depth to highlight the bottlenecks facing the microbial vitamin K2 production on the industrial scale. Then, various strategies, including strain mutagenesis and genetic modification, different cultivation modes, fermentation and separation processes, will be summarized and discussed. The future prospects and perspectives of microbial menaquinone production will also be discussed finally.
Collapse
|
24
|
Xiang H, Sun-Waterhouse D, Waterhouse GI, Cui C, Ruan Z. Fermentation-enabled wellness foods: A fresh perspective. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Ma Y, Tang PTP, McClure DD, Valtchev P, Ashton JF, Dehghani F, Kavanagh JM. Development of a menaquinone-7 enriched functional food. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Yang S, Wang Y, Cai Z, Zhang G, Song H. Metabolic engineering ofBacillus subtilisfor high‐titer production of menaquinone‐7. AIChE J 2019. [DOI: 10.1002/aic.16754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shaomei Yang
- Department of Biological Engineering School of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Yongping Wang
- Department of Biological Engineering School of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Zhigang Cai
- Chifeng Pharmaceutical Company Limited, Chifeng Inner Mongolia China
| | - Guoyin Zhang
- Chifeng Pharmaceutical Company Limited, Chifeng Inner Mongolia China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology, Tianjin University Tianjin China
| |
Collapse
|
27
|
Fang Z, Wang L, Zhao G, Liu H, Wei H, Wang H, Ni W, Zheng Z, Wang P. A simple and efficient preparative procedure for menaquinone-7 from Bacillus subtilis (natto) using two-stage extraction followed by microporous resins. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Du Y, Xu Z, Yu G, Liu W, Zhou Q, Yang D, Li J, Chen L, Zhang Y, Xue C, Cao Y. A Newly Isolated Bacillus subtilis Strain Named WS-1 Inhibited Diarrhea and Death Caused by Pathogenic Escherichia coli in Newborn Piglets. Front Microbiol 2019; 10:1248. [PMID: 31249559 PMCID: PMC6582243 DOI: 10.3389/fmicb.2019.01248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/20/2019] [Indexed: 01/31/2023] Open
Abstract
Bacillus subtilis is recognized as a safe and reliable human and animal probiotic and is associated with bioactivities such as production of vitamin and immune stimulation. Additionally, it has great potential to be used as an alternative to antimicrobial drugs, which is significant in the context of antibiotic abuse in food animal production. In this study, we isolated one strain of B. subtilis, named WS-1, from apparently healthy pigs growing with sick cohorts on one Escherichia coli endemic commercial pig farm in Guangdong, China. WS-1 can strongly inhibit the growth of pathogenic E. coli in vitro. The B. subtilis strain WS-1 showed typical Bacillus characteristics by endospore staining, biochemical test, enzyme activity analysis, and 16S rRNA sequence analysis. Genomic analysis showed that the B. subtilis strain WS-1 shares 100% genomic synteny with B. subtilis with a size of 4,088,167 bp. Importantly, inoculation of newborn piglets with 1.5 × 1010 CFU of B. subtilis strain WS-1 by oral feeding was able to clearly inhibit diarrhea (p < 0.05) and death (p < 0.05) caused by pathogenic E. coli in piglets. Furthermore, histopathological results showed that the WS-1 strain could protect small intestine from lesions caused by E. coli infection. Collectively, these findings suggest that the probiotic B. subtilis strain WS-1 acts as a potential biocontrol agent protecting pigs from pathogenic E. coli infection. Importance: In this work, one B. subtilis strain (WS-1) was successfully isolated from apparently healthy pigs growing with sick cohorts on one E. coli endemic commercial pig farm in Guangdong, China. The B. subtilis strain WS-1 was identified to inhibit the growth of pathogenic E. coli both in vitro and in vivo, indicating its potential application in protecting newborn piglets from diarrhea caused by E. coli infections. The isolation and characterization will help better understand this bacterium, and the strain WS-1 can be further explored as an alternative to antimicrobial drugs to protect human and animal health.
Collapse
Affiliation(s)
- Yunping Du
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Zhichao Xu
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Guolian Yu
- Animal Disease Laboratory, Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xingning, China
| | - Wei Liu
- Animal Disease Laboratory, Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xingning, China
| | - Qingfeng Zhou
- Animal Disease Laboratory, Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xingning, China
| | - Dehong Yang
- Animal Disease Laboratory, Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xingning, China
| | - Jie Li
- Department of Biological Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou, China
| | - Li Chen
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yun Zhang
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Chunyi Xue
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yongchang Cao
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Mahdinia E, Demirci A, Berenjian A. Biofilm reactors as a promising method for vitamin K (menaquinone-7) production. Appl Microbiol Biotechnol 2019; 103:5583-5592. [PMID: 31152205 DOI: 10.1007/s00253-019-09913-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
Abstract
Menaquinone-7 (MK-7) is the most potent subtype of vitamin K with extraordinarily high half-life in the circulatory system. Therefore, MK-7 plays a critical role in promoting human wellbeing today. Studies on MK-7 every year show more and more magnificent benefits of it in preventing cardiovascular diseases and osteoporosis to battling cancer cells, Alzheimer's and Parkinson's diseases. Thus, it needs to be supplemented to daily diet for accumulative and long-term benefits. Chemical synthesis of MK-7 produces a significant cis-isomer form of it, which has no biological activity. Fortunately, due to its key role in electron transfer in bacteria, trans-MK-7 is biosynthesized by especially Gram-positive strains mainly Bacillus genus. Concordantly, MK-7 could be produced via solid or liquid state fermentation strategies. In either regime, when static fermentation is applied in the absence of agitation and aeration, operational issues arise such as heat and mass transfer inefficiencies. Thus, scaling up the process becomes a challenge. On the other hand, studies have indicated that biofilm and pellicle formation that occur in static fermentations are key characteristics for extracellular MK-7 secretion. Therefore, this review covers the most recent discoveries of the therapeutic properties of MK-7 and optimization attempts at increasing its biosynthesis in different media compositions and effective growth parameters as well as the cutting-edge use of biofilm reactors where B. subtilis cells have the infrastructures to form mature biofilm formations on plastic composite supports. Biofilm reactors therefore can provide robust extracellular MK-7 secretion while simultaneously enduring high agitation and aeration rates, which then address the scale-up and operational issues associated with static fermentation strategies.
Collapse
Affiliation(s)
- Ehsan Mahdinia
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, State College, PA, USA
| | - Ali Demirci
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, State College, PA, USA. .,The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Aydin Berenjian
- Faculty of Science and Engineering, The University of Waikato, Hamilton, 3240, New Zealand
| |
Collapse
|
30
|
Brudzynski K, Flick R. Accumulation of soluble menaquinones MK-7 in honey coincides with death of Bacillus spp. present in honey. Food Chem X 2019; 1:100008. [PMID: 31432008 PMCID: PMC6694848 DOI: 10.1016/j.fochx.2019.100008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/21/2019] [Accepted: 02/13/2019] [Indexed: 11/30/2022] Open
Abstract
Long-chain menaquinones (MK) are of bacterial origin. We investigated the possibility that MKs observed in honey are also the products of bacteria present in honey. The bacterial composition of honey was analyzed using culture-dependent methods. 16S rRNA gene sequencing and MALDI-TOF showed prevalence of the members of Bacillus subtilis and Bacillus cereus groups. The dominant menaquinones in both bacteria and honey were menaquinones MK-7 and MK-8 as indicated by UHPLC-ESI-MS/MS coupled to quadrupole orbitrap. The EICs showed alignment of mass ions of MK-7 and MK-8 from culture supernatants with that of honey. The unique MS/MS fragmentation pattern indicated that fragment ions were arising from the same menaquinone present in both samples. During Bacillus growth, the accumulation of MK-7 in supernatants occurred in a stationary phase and coincided with cell death. These novel findings suggest that the soluble MKs in honey originate from shedding of cell membranes of dead vegetative cells.
Collapse
Affiliation(s)
- Katrina Brudzynski
- Department of Drug Discovery and Development, Bee-Biomedicals Inc., St. Catharines, Ontario L2S 3A1, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, BioZone, 200 Collage Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
31
|
Tarvainen M, Fabritius M, Yang B. Determination of vitamin K composition of fermented food. Food Chem 2019; 275:515-522. [DOI: 10.1016/j.foodchem.2018.09.136] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 09/08/2018] [Accepted: 09/22/2018] [Indexed: 12/13/2022]
|
32
|
Intracellular response of Bacillus natto in response to different oxygen supply and its influence on menaquinone-7 biosynthesis. Bioprocess Biosyst Eng 2019; 42:817-827. [DOI: 10.1007/s00449-019-02085-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/27/2019] [Indexed: 10/27/2022]
|
33
|
Mahdinia E, Demirci A, Berenjian A. Effects of medium components in a glycerol-based medium on vitamin K (menaquinone-7) production by Bacillus subtilis natto in biofilm reactors. Bioprocess Biosyst Eng 2018; 42:223-232. [PMID: 30368608 DOI: 10.1007/s00449-018-2027-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/17/2018] [Indexed: 12/29/2022]
Abstract
Menaquinone-7 (MK-7) as the most important form of Vitamin K has been reported to have miraculous benefits such as preventing cardiovascular diseases and osteoporosis along with antitumor effects. Therefore, there have been numerous studies in the past decades to improve MK-7 production via microbial fermentation. Unfortunately, both solid and liquid state fermentation strategies that are utilized for MK-7 production, face fundamental operational and scale-up issues as well as intense heat and mass transfer problems during fermentation. In this regard, biofilm reactors seem to be a practical solution to overcome these issues and enhance the production in agitated liquid fermentation. Therefore, this study was undertaken to utilize biofilm reactors in investigating and optimizing different media components in a glycerol-based medium. Using response surface methodology, the effects of glycerol, yeast extract, and soytone were studied in the fermentation medium on MK-7 production in biofilm reactor. With a composition of 48.2 g/L of glycerol, 8.1 g/L of yeast extracts, 13.6 g/L of soytone and 0.06 g/L of K2HPO4, MK-7 concentrations could reach 14.7 ± 1.4 mg/L in biofilm reactors, which was 57% higher compared to the MK-7 concentration achieved in suspended-cell reactors under similar conditions, while glycerol was depleted by the end of the fifth day in biofilm reactors, but glycerol was never depleted in suspended-cell reactors. Evidently, biofilm reactors present a reliable strategy to address the operational issues that occur during MK-7 biosynthesis on an industrial scale production.
Collapse
Affiliation(s)
- Ehsan Mahdinia
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ali Demirci
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Aydin Berenjian
- Faculty of Science and Engineering, The University of Waikato, Hamilton, 3240, New Zealand
| |
Collapse
|
34
|
Barcelos MCS, Lupki FB, Campolina GA, Nelson DL, Molina G. The colors of biotechnology: general overview and developments of white, green and blue areas. FEMS Microbiol Lett 2018; 365:5106815. [DOI: 10.1093/femsle/fny239] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/22/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Mayara C S Barcelos
- Graduate program in Food Science and Technology (PPGCTA), Institute of Science and Technology, UFVJM, Diamantina, Minas Gerais, Brazil
| | - Fernanda B Lupki
- Graduate program in Food Science and Technology (PPGCTA), Institute of Science and Technology, UFVJM, Diamantina, Minas Gerais, Brazil
| | - Gabriela A Campolina
- Graduate program in Food Science and Technology (PPGCTA), Institute of Science and Technology, UFVJM, Diamantina, Minas Gerais, Brazil
| | - David Lee Nelson
- Graduate program in Food Science and Technology (PPGCTA), Institute of Science and Technology, UFVJM, Diamantina, Minas Gerais, Brazil
| | - Gustavo Molina
- Graduate program in Food Science and Technology (PPGCTA), Institute of Science and Technology, UFVJM, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
35
|
Chatake T, Yanagisawa Y, Inoue R, Sugiyama M, Matsuo T, Fujiwara S, Ohsugi T, Sumi H. Purification and structural characterization of water‐soluble menaquinone‐7 produced by
Bacillus subtilis natto. J Food Biochem 2018. [DOI: 10.1111/jfbc.12630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | | | - Rintaro Inoue
- Research Reactor Institute, Kyoto University Osaka Japan
| | | | - Tatsuhito Matsuo
- Quantum Beam Science Research DirectorateNational Institutes for Quantum and Radiological Science and Technology Tokai Japan
| | - Satoru Fujiwara
- Quantum Beam Science Research DirectorateNational Institutes for Quantum and Radiological Science and Technology Tokai Japan
| | - Tadanori Ohsugi
- Department of Life ScienceKurashiki University of Science and the Arts Kurashiki Japan
| | - Hiroyuki Sumi
- Department of Life ScienceKurashiki University of Science and the Arts Kurashiki Japan
| |
Collapse
|
36
|
Szterk A, Bus K, Zmysłowski A, Ofiara K. Analysis of Menaquinone-7 Content and Impurities in Oil and Non-Oil Dietary Supplements. Molecules 2018; 23:molecules23051056. [PMID: 29724016 PMCID: PMC6102598 DOI: 10.3390/molecules23051056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/24/2018] [Accepted: 04/28/2018] [Indexed: 12/12/2022] Open
Abstract
Rapid, global technological development has caused the food industry to use concentrated food component sources like dietary supplements ever more commonly as part of the human diet. This study analysed the menaquinone-7 (MK-7) content of dietary supplements in oil capsule and hard tablet forms. A novel method for separating and measuring geometric isomers of MK-7 in dietary supplements was developed and validated. Eleven different isomers of cis/trans- menaquinone-7 were identified. Identification of cis/trans isomers was performed by combination of HPLC, UPLC and HRMS-QTOF detection, whereas their quantities were determined by DAD detection. The content of menaquinone impurities was ascertained, including cis/trans- menaquinone-6 isomers (5.5–16.9 µg per tablet/capsule) and cis/trans-menaquinone-7 isomers (70.9–218.7 µg tablet/capsule), which were most likely formed during the chemical synthesis of the menaquinone-7. The all-trans MK-7 content was lower than the isomeric form and often lower than what the labels declared. A new method of quantification, developed and validated for menaquinones in oil capsules, provided on average 90% recovery and a limit of quantification (LOQ) of approximately 1 µg mL−1.
Collapse
Affiliation(s)
- Arkadiusz Szterk
- Department of Spectrometric Methods, National Medicines Institute, 30/34 Chełmska, 00-725 Warsaw, Poland.
| | - Katarzyna Bus
- Department of Spectrometric Methods, National Medicines Institute, 30/34 Chełmska, 00-725 Warsaw, Poland.
| | - Adam Zmysłowski
- Department of Spectrometric Methods, National Medicines Institute, 30/34 Chełmska, 00-725 Warsaw, Poland.
| | - Karol Ofiara
- Department of Spectrometric Methods, National Medicines Institute, 30/34 Chełmska, 00-725 Warsaw, Poland.
| |
Collapse
|
37
|
Xu JZ, Zhang WG. Menaquinone-7 production from maize meal hydrolysate by Bacillus isolates with diphenylamine and analogue resistance. J Zhejiang Univ Sci B 2018; 18:462-473. [PMID: 28585422 DOI: 10.1631/jzus.b1600127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A menaquinone-7 (MK-7) high-producing strain needs to be isolated to increase MK-7 production, in order to meet a requirement of MK-7 given the low MK-7 content in food products. This article focuses on developing MK-7 high-producing strains via screening and mutagenesis by an atmospheric and room temperature plasma (ARTP) mutation breeding system. We isolated an MK-7-producing strain Y-2 and identified it as Bacillus amyloliquefaciens, which produced (7.1±0.5) mg/L of MK-7 with maize meal hydrolysate as carbon source. Then, an MK-7 high-producing strain B. amyloliquefaciens H.β.D.R.-5 with resistance to 1-hydroxy-2-naphthoic acid, β-2-thienylalanine, and diphenylamine was obtained from the mutation of the strain Y-2 using an ARTP mutation breeding system. Using strain H.β.D.R.-5, efficient production of MK-7 was achieved ((30.2±2.7) mg/L). In addition, the effects of nitrogen sources, prenyl alcohols, and MgSO4 on MK-7 production were investigated, suggesting that soymeal extract combined with yeast extract, isopentenol, and MgSO4 was beneficial. Under the optimized condition, the MK-7 production and biomass-specific yield reached (61.3±5.2) mg/L and 2.59 mg/L per OD600 unit respectively in a 7-L fermenter. These results demonstrated that strain H.β.D.R.-5 has the capacity to produce MK-7 from maize meal hydrolysate, which could reduce the substrate cost.
Collapse
Affiliation(s)
- Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
38
|
Identification of cis / trans isomers of menaquinone-7 in food as exemplified by dietary supplements. Food Chem 2018; 243:403-409. [DOI: 10.1016/j.foodchem.2017.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/11/2017] [Accepted: 10/02/2017] [Indexed: 01/07/2023]
|
39
|
Mahdinia E, Demirci A, Berenjian A. Utilization of glucose-based medium and optimization of Bacillus subtilis natto growth parameters for vitamin K (menaquinone-7) production in biofilm reactors. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2017.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Bioconversion of farnesol and 1,4-dihydroxy-2-naphthoate to menaquinone by an immobilized whole-cell biocatalyst using engineered Elizabethkingia meningoseptica. World J Microbiol Biotechnol 2017; 33:215. [PMID: 29181599 DOI: 10.1007/s11274-017-2382-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Abstract
Menaquinone (MK) has important applications in the pharmaceutical and food industries. To increase the production rate (QP) of MK-4, we developed a straightforward biotransformation method for MK-4 synthesis directly from its precursors 1,4-dihydroxy-2-naphthoate (DHNA) and farnesol using whole cells of genetically engineered Elizabethkingia meningoseptica. Results showed that MK-4 can be produced directly from farnesol and DHNA using both free and immobilized FM-D198 cells. MK-4 yield peaked at 29.85 ± 0.36 mg/L in the organic phase and 24.08 ± 0.33 mg/g DCW after 12 h of bioconversion using free cells in a two-phase conversion system. MK-4 yield reached 26.34 ± 1.35 mg/L and 17.44 ± 1.05 mg/g DCW after 8 h using immobilized cells. Although this yield was lower than that using free cells, immobilized cells can be re-used for MK-4 production via repeated-batch culture. After ten batch cultures, efficient MK-4 production was maintained at a yield of more than 20 mg/L. After optimizing the catalysis system, the MK-4 yield reached 26.91 ± 1.27 mg/L using the immobilized cells and had molar conversion rates of 58.56 and 76.90% for DHNA and farnesol, respectively.
Collapse
|
41
|
Optimization of Bacillus subtilis natto growth parameters in glycerol-based medium for vitamin K (Menaquinone-7) production in biofilm reactors. Bioprocess Biosyst Eng 2017; 41:195-204. [PMID: 29119323 DOI: 10.1007/s00449-017-1857-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/16/2017] [Indexed: 01/07/2023]
Abstract
Menaquinone-7 (MK-7) is the key form of vitamin K used as a dietary supplement and its production revolves around Bacillus subtilis natto. Current fermentation strategies, which suggest static fermentations without aeration and agitation, can be problematic for large scale MK-7 production due to biofilm formation. The use of biofilm reactors, therefore, is proposed in the present study, which could utilize both agitation and aeration without interrupting MK-7 secretion. In this study, biofilm reactors were constructed using the selected plastic composite support (PCS) and B. subtilis natto strain for MK-7 production. Using response surface methodology (RSM), optimum growth parameters including temperature, pH, and agitation were determined in a glycerol-based medium. Results were presented in a statistical model (R 2 = 0.90), leading to optimum growth conditions of temperature (35 °C), agitation (200 rpm) and pH (6.58). Model-predicted MK-7 concentration was validated and MK-7 concentration of 12.09 mg/L was produced in the biofilm reactor. The obtained concentration was 58% higher as compared to the suspended-cell culture (7.67 mg/L). The results of this study will provide a critical step towards improved industrial scale production of MK-7.
Collapse
|
42
|
Wei H, Zhao G, Liu H, Wang H, Ni W, Wang P, Zheng Z. A simple and efficient method for the extraction and separation of menaquinone homologs from wet biomass of Flavobacterium. Bioprocess Biosyst Eng 2017; 41:107-113. [DOI: 10.1007/s00449-017-1851-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
|
43
|
Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A. Impact of 3-Aminopropyltriethoxysilane-Coated Iron Oxide Nanoparticles on Menaquinone-7 Production Using B. subtilis. NANOMATERIALS 2017; 7:nano7110350. [PMID: 29072586 PMCID: PMC5707567 DOI: 10.3390/nano7110350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 01/07/2023]
Abstract
One of the major issues associated with industrial production of menaquinone-7 (MK–7) is the low fermentation yield. In this study, we investigated the effect of iron oxide nanoparticles coated with 3–aminopropyltriethoxysilane (IONs@APTES) on the production of MK–7 using B. subtilis (ATCC 6633). Decoration of B. subtilis cells with IONs@APTES significantly enhanced both MK–7 production and yield. An approximately two-fold increase in MK–7 production (41 mg/L) was observed in the presence of 500 µg/mL IONs@APTES, as compared to MK–7 production using untreated bacteria (22 mg/L). This paper, therefore, illustrates the immense biotechnological potential of IONs@APTES in increasing MK–7 concentration using B. subtilis, and its future role in bioprocess engineering.
Collapse
Affiliation(s)
- Dinali Ranmadugala
- Faculty of Science and Engineering, University of Waikato, Hamilton 3216, New Zealand.
| | - Alireza Ebrahiminezhad
- Department of Medical Biotechnology, School of Medicine and Noncommunicable Diseases Research Centre, Fasa University of Medical Sciences, Fasa 74615, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| | - Merilyn Manley-Harris
- Faculty of Science and Engineering, University of Waikato, Hamilton 3216, New Zealand.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| | - Aydin Berenjian
- Faculty of Science and Engineering, University of Waikato, Hamilton 3216, New Zealand.
| |
Collapse
|
44
|
Li Z, Zhao G, Liu H, Guo Y, Wu H, Sun X, Wu X, Zheng Z. Biotransformation of menadione to its prenylated derivative MK-3 using recombinant Pichia pastoris. ACTA ACUST UNITED AC 2017; 44:973-985. [DOI: 10.1007/s10295-017-1931-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/23/2017] [Indexed: 12/17/2022]
Abstract
Abstract
Prenylated quinones, especially menaquinones, have significant physiological activities, but are arduous to synthesize efficiently. Due to the relaxed aromatic substrate specificity and prenylation regiospecificity at the ortho- site of the phenolic hydroxyl group, the aromatic prenyltransferase NovQ from Streptomyces may be useful in menaquinone synthesis from menadione. In this study, NovQ was overexpressed in Pichia pastoris. After fermentation optimization, NovQ production increased by 1617%. Then the different effects of metal ions, detergents and pH on the activity of purified NovQ were investigated to optimize the prenylation reaction. Finally, purified NovQ and cells containing NovQ were used for menadione prenylation in vitro and in vivo, respectively. Menaquinone-1 (MK-1) was detected as the only product in vitro with γ,γ-dimethylallyl pyrophosphate and menadione hydroquinol substrates. MK-3 at a concentration of 90.53 mg/L was detected as the major product of whole cell catalysis with 3-methyl-2-buten-1-ol and menadione hydroquinol substrates. This study realized whole cell catalysis converting menadione to menaquinones.
Collapse
Affiliation(s)
- Zhemin Li
- grid.454811.d 0000 0004 1792 7603 Institute of Technical Biology and Agriculture Engineering, Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science Chinese Academy of Sciences and Anhui Province 230031 Hefei Anhui People’s Republic of China
| | - Genhai Zhao
- grid.454811.d 0000 0004 1792 7603 Institute of Technical Biology and Agriculture Engineering, Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science Chinese Academy of Sciences and Anhui Province 230031 Hefei Anhui People’s Republic of China
| | - Hui Liu
- grid.454811.d 0000 0004 1792 7603 Institute of Technical Biology and Agriculture Engineering, Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science Chinese Academy of Sciences and Anhui Province 230031 Hefei Anhui People’s Republic of China
| | - Yugang Guo
- 0000000121679639 grid.59053.3a The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Biology, School of Life Sciences University of Science and Technology of China 230026 Hefei People’s Republic of China
| | - Hefang Wu
- grid.454811.d 0000 0004 1792 7603 Institute of Technical Biology and Agriculture Engineering, Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science Chinese Academy of Sciences and Anhui Province 230031 Hefei Anhui People’s Republic of China
| | - Xiaowen Sun
- grid.454811.d 0000 0004 1792 7603 Institute of Technical Biology and Agriculture Engineering, Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science Chinese Academy of Sciences and Anhui Province 230031 Hefei Anhui People’s Republic of China
| | - Xihua Wu
- grid.454811.d 0000 0004 1792 7603 Institute of Technical Biology and Agriculture Engineering, Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science Chinese Academy of Sciences and Anhui Province 230031 Hefei Anhui People’s Republic of China
| | - Zhiming Zheng
- grid.454811.d 0000 0004 1792 7603 Institute of Technical Biology and Agriculture Engineering, Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science Chinese Academy of Sciences and Anhui Province 230031 Hefei Anhui People’s Republic of China
| |
Collapse
|
45
|
Strain and plastic composite support (PCS) selection for vitamin K (Menaquinone-7) production in biofilm reactors. Bioprocess Biosyst Eng 2017; 40:1507-1517. [DOI: 10.1007/s00449-017-1807-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/20/2017] [Indexed: 01/07/2023]
|
46
|
Xu JZ, Yan WL, Zhang WG. Enhancing menaquinone-7 production in recombinant Bacillus amyloliquefaciens by metabolic pathway engineering. RSC Adv 2017. [DOI: 10.1039/c7ra03388e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Six key enzymes are vital for MK-7 production, but the same enzyme has different effect on MK-7 production in different cultivating methods. Thus, the high enzyme activity and high-traffic biosynthetic pathway are beneficial to synthesize MK-7.
Collapse
Affiliation(s)
- Jian-Zhong Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Wei-Liu Yan
- The Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
47
|
Jedynak Ł, Jedynak M, Kossykowska M, Zagrodzka J. A novel method for the determination of chemical purity and assay of menaquinone-7. Comparison with the methods from the official USP monograph. J Pharm Biomed Anal 2016; 135:116-125. [PMID: 28024259 DOI: 10.1016/j.jpba.2016.11.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/25/2016] [Accepted: 11/28/2016] [Indexed: 01/07/2023]
Abstract
An HPLC method with UV detection and separation with the use of a C30 reversed phase analytical column for the determination of chemical purity and assay of menaquinone-7 (MK7) in one chromatographic run was developed. The method is superior to the methods published in the USP Monograph in terms of selectivity, sensitivity and accuracy, as well as time, solvent and sample consumption. The developed methodology was applied to MK7 samples of active pharmaceutical ingredient (API) purity, MK7 samples of lower quality and crude MK7 samples before purification. The comparison of the results revealed that the use of USP methodology could lead to serious overestimation (up to a few percent) of both purity and MK7 assay in menaquinone-7 samples.
Collapse
Affiliation(s)
- Łukasz Jedynak
- Pharmaceutical Research Institute, R&D Analytical Chemistry Department, Rydygiera 8, 01-793 Warsaw, Poland.
| | - Maria Jedynak
- Pharmaceutical Research Institute, R&D Analytical Chemistry Department, Rydygiera 8, 01-793 Warsaw, Poland
| | - Magdalena Kossykowska
- Pharmaceutical Research Institute, R&D Analytical Chemistry Department, Rydygiera 8, 01-793 Warsaw, Poland
| | - Joanna Zagrodzka
- Pharmaceutical Research Institute, R&D Analytical Chemistry Department, Rydygiera 8, 01-793 Warsaw, Poland
| |
Collapse
|
48
|
Mahdinia E, Demirci A, Berenjian A. Production and application of menaquinone-7 (vitamin K2): a new perspective. World J Microbiol Biotechnol 2016; 33:2. [DOI: 10.1007/s11274-016-2169-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/27/2016] [Indexed: 01/07/2023]
|
49
|
Wu WJ, Kim MS, Ahn BY. The inhibitory effect of vitamin K on RANKL-induced osteoclast differentiation and bone resorption. Food Funct 2016; 6:3351-8. [PMID: 26267519 DOI: 10.1039/c5fo00544b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To further understand the correlation between vitamin K and bone metabolism, the effects of vitamins K1, menaquinone-4 (MK-4), and menaquinone-7 (MK-7) on RANKL-induced osteoclast differentiation and bone resorption were comparatively investigated. Vitamin K2 groups (MK-4 and MK-7) were found to significantly inhibit RANKL-medicated osteoclast cell formation of bone marrow macrophages (BMMs) in a dose-dependent manner, without any evidence of cytotoxicity. The mRNA expression of specific osteoclast differentiation markers, such as c-Fos, NFATc1, OSCAR, and TRAP, as well as NFATc1 protein expression and TRAP activity in RANKL-treated BMMs were inhibited by vitamin K2, although MK-4 exhibited a significantly greater efficiency compared to MK-7. In contrast, the same dose of vitamin K1 had no inhibitory effect on RANKL-induced osteoclast cell formation, but increased the expression of major osteoclastogenic genes. Interestingly, vitamins K1, MK-4 and MK-7 all strongly inhibited osteoclastic bone resorption (p < 0.01) in a dose dependent manner. These results suggest that vitamins K1, MK-4 and MK-7 have anti-osteoporotic properties, while their regulation effects on osteoclastogenesis are somewhat different.
Collapse
Affiliation(s)
- Wei-Jie Wu
- Institute of food science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | | | | |
Collapse
|
50
|
Southee R, Haroon S, Ebrahiminezad A, Ghasemi Y, Berenjian A. Novel functional fermented dairy product rich in menaquinone-7. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|