1
|
Gul A, Rao AQ, Ahmed M, Latif A, Bakhsh A, Iftikhar S. The Increased aspartate levels in transgenic cotton (Gossypium hirsutum L.) lead to improved tolerance against whitefly (Bemisia tabaci, Gennadius). PHYSIOLOGIA PLANTARUM 2024; 176:e14491. [PMID: 39171614 DOI: 10.1111/ppl.14491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/07/2024] [Indexed: 08/23/2024]
Abstract
The whitefly, a polyphagous insect pest feeding on nearly 1328 plant species, is a major threat to global cotton production and incurs up to 50% yield losses in cotton production in Pakistan. We investigated whether increased aspartate in phloem sap imparts whitefly toxicity and protects cotton plants from intense damage. The enzymatic step for aspartate production is carried through aspartate aminotransferase (AAT). In this study, we constitutively overexpressed the Oryza sativa cytoplasmic AAT (OsAAT2) under the CaMV35S promoter in Gossypium hirsutum cv. CIM-482. Real-time PCR analysis of the AAT transcripts revealed a 2.85- to 31.7-fold increase in mRNA levels between the different cotton lines. A substantial increase in the free-amino acid content of the major N-assimilation and transport amino acids (aspartate, glutamate, asparagine, and glutamine) was seen in the phloem sap of the transgenic cotton lines. The bioassay revealed that the two transgenic cotton lines with the highest free aspartate content in the phloem sap exhibited 97 and 94% mortality in the adult whitefly population and a 98 and 96% decline in subsequent nymph populations, respectively. There was also a significant change in the physiological behaviour of the transgenic cotton lines, with an increased net assimilation (A), gaseous exchange (Gs) and rate of transpiration (E). Improved morphological characteristics like plant height, total number of bolls and fiber yield were recorded in transgenic cotton lines. The AAT gene shows promise in mitigating whitefly infestations and enhancing the overall health and yield of cotton plants.
Collapse
Affiliation(s)
- Ambreen Gul
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Abdul Qayyum Rao
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Mukhtar Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ayesha Latif
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
2
|
Yuan F, Yin X, Zhao K, Lan X. Transcriptome and Metabolome Analyses of Codonopsis convolvulacea Kurz Tuber, Stem, and Leaf Reveal the Presence of Important Metabolites and Key Pathways Controlling Their Biosynthesis. Front Genet 2022; 13:884224. [PMID: 35957691 PMCID: PMC9359469 DOI: 10.3389/fgene.2022.884224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Codonopsisconvolvulacea Kurz. var. vinciflora (Kom.) L.T. Shen is a member of Campanulaceae, which is used in traditional Chinese medicine. However, apart from a few Codonopsis species, no detailed knowledge is available on the metabolite composition and respective transcriptome signatures. We performed a combined transcriptome and metabolome analysis of the tuber, stem, and leaf of C. convolvulacea and found 1,144 metabolites and 231,840 unigenes in three experimental groups. The analysis revealed considerable variations in the three tissues. Tubers were rich in amino acids and derivatives, flavonoids, and organic acids, whereas the stems and leaves were rich in alkaloids and flavonoids, respectively. Transcriptome sequencing revealed candidate genes being involved in flavonoid, tryptophan, and alkaloid biosyntheses. In particular, we indicated that the variation in the isoflavone content is linked to the expressions of CHI, CYP73A, C3′H, F3H, CYP75B1, anthocyanidin synthase, and FLS. In a similar way, the levels of indole, L-tyrosine, and tryptamine were also consistent with the expressions of TDC/DDCs in the respective tissues. In addition, the expression levels of ASP5, ARO8, GOT, and AOC3 indicated that L-tryptophan is being converted to downstream metabolites. Overall, our datasets present a useful resource for future research on the uses of this medicinal plant and put forward many research questions.
Collapse
|
3
|
Han M, Xu X, Li X, Xu M, Hu M, Xiong Y, Feng J, Wu H, Zhu H, Su T. New Insight into Aspartate Metabolic Pathways in Populus: Linking the Root Responsive Isoenzymes with Amino Acid Biosynthesis during Incompatible Interactions of Fusarium solani. Int J Mol Sci 2022; 23:ijms23126368. [PMID: 35742809 PMCID: PMC9224274 DOI: 10.3390/ijms23126368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 01/10/2023] Open
Abstract
Integrating amino acid metabolic pathways into plant defense and immune systems provides the building block for stress acclimation and host-pathogen interactions. Recent progress in L-aspartate (Asp) and its deployed metabolic pathways highlighted profound roles in plant growth and defense modulation. Nevertheless, much remains unknown concerning the multiple isoenzyme families involved in Asp metabolic pathways in Populus trichocarpa, a model tree species. Here, we present comprehensive features of 11 critical isoenzyme families, representing biological significance in plant development and stress adaptation. The in silico prediction of the molecular and genetic patterns, including phylogenies, genomic structures, and chromosomal distribution, identify 44 putative isoenzymes in the Populus genome. Inspection of the tissue-specific expression demonstrated that approximately 26 isogenes were expressed, predominantly in roots. Based on the transcriptomic atlas in time-course experiments, the dynamic changes of the genes transcript were explored in Populus roots challenged with soil-borne pathogenic Fusarium solani (Fs). Quantitative expression evaluation prompted 12 isoenzyme genes (PtGS2/6, PtGOGAT2/3, PtAspAT2/5/10, PtAS2, PtAspg2, PtAlaAT1, PtAK1, and PtAlaAT4) to show significant induction responding to the Fs infection. Using high-performance liquid chromatography (HPLC) and non-target metabolomics assay, the concurrent perturbation on levels of Asp-related metabolites led to findings of free amino acids and derivatives (e.g., Glutamate, Asp, Asparagine, Alanine, Proline, and α-/γ-aminobutyric acid), showing marked differences. The multi-omics integration of the responsive isoenzymes and differential amino acids examined facilitates Asp as a cross-talk mediator involved in metabolite biosynthesis and defense regulation. Our research provides theoretical clues for the in-depth unveiling of the defense mechanisms underlying the synergistic effect of fine-tuned Asp pathway enzymes and the linked metabolite flux in Populus.
Collapse
Affiliation(s)
- Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
| | - Xianglei Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Xue Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Mingyue Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
| | - Mei Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yuan Xiong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Junhu Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
| | - Hao Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-1589-598-3381
| |
Collapse
|
4
|
Genome-Wide Characterization of AspATs in Populus: Gene Expression Variation and Enzyme Activities in Response to Nitrogen Perturbations. FORESTS 2019. [DOI: 10.3390/f10050449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aspartate aminotransferase (AspAT) catalyzes a reversible transamination reaction between glutamate and oxaloacetate to yield aspartate and 2-oxoglutarate, exerting a primary role in amino acid biosynthesis and homeostasis of nitrogen (N) and carbon metabolism within all cellular organisms. While progress in biochemical characterization of AspAT has been made for decades, the molecular and physiological characteristics of different members of the AspAT gene family remain poorly known particularly in forest trees. Here, extensive genome-wide survey of AspAT encoding genes was implemented in black cottonwood (Populus trichocarpa Torr. & A. Gray), a model species of woody plants. Thorough inspection of the phylogenies, gene structures, chromosomal distribution, cis-elements, conserved motifs, and subcellular targeting resulted in the identification of 10 AspAT isogenes (PtAspAT1-10) in the Populus genome. RNA-seq along with quantitative real-time polymerase chain reaction (qRT-PCR) validation revealed that PtAspATs displayed diverse patterns of tissue-specific expression. Spatiotemporal expressions of homologous AspATs in the poplar hybrid clone ‘Nanlin895’ were further evaluated, showing that gene expressions varied depending on source-sink dynamics. The impact on AspAT transcripts upon N starvation and seasonal senescence showed the upregulation of five AspAT in leaves concurrent with drastic downregulation of six or more AspATs in roots. Additionally, marked reductions of many more AspATs transcripts were observed in roots upon N excess. Accordingly, AspAT activities were significantly suppressed upon N starvation by an in-gel assay, prompting the argument that enzyme activity was a more direct indicator of the growth morphology under a N stress regime. Taken together, the expression profiling and enzyme activities upon stress cues provide a theoretical basis for unraveling the physiological significance of specific gene(s) in regulation of N acquisition and remobilization in woody plants.
Collapse
|
5
|
E Y, Yuan J, Yang F, Wang L, Ma J, Li J, Pu X, Raza W, Huang Q, Shen Q. PGPR strain Paenibacillus polymyxa SQR-21 potentially benefits watermelon growth by re-shaping root protein expression. AMB Express 2017; 7:104. [PMID: 28549372 PMCID: PMC5445060 DOI: 10.1186/s13568-017-0403-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/11/2017] [Indexed: 12/02/2022] Open
Abstract
Paenibacillus polymyxa (SQR-21) is not only a plant growth-promoting rhizobacteria, but also an effective biocontrol agent against Fusarium wilt disease of watermelon. For the better understanding and clarifying the potential mechanisms of SQR-21 to improve watermelon growth and disease resistance, a split-root methodology in hydroponic and LC-MS technology with the label free method was used to analyze the key root proteins involved in watermelon metabolism and disease resistance after the inoculation of SQR-21. Out of 623 identified proteins, 119 proteins were differentially expressed when treatment (SQR-21 inoculation) and control (no bacterial inoculation) were compared. Among those, 57 and 62 proteins were up-regulated and down-regulated, respectively. These differentially expressed proteins were identified to be involved in signal transduction (ADP-ribosylation factor, phospholipase D), transport (aspartate amino-transferase), carbohydratemetabolic (glucose-6-phosphate dehydrogenase, UDP-glucose pyrophosphorylase), defense and response to stress (glutathione S-transferase, Ubiquitin-activating enzyme E1), and oxidation-reduction process (thioredoxin peroxidase, ascorbate peroxidase). The results of this study indicated that SQR-21 inoculation on the watermelon roots benefits plant by inducing the expression of several proteins involved in growth, photosynthesis, and other metabolic and physiological activities.
Collapse
Affiliation(s)
- Yaoyao E
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization and Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization, and National Engineering Research Center for Organic-based Fertilizer, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jun Yuan
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization and Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization, and National Engineering Research Center for Organic-based Fertilizer, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fang Yang
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization and Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization, and National Engineering Research Center for Organic-based Fertilizer, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lei Wang
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization and Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization, and National Engineering Research Center for Organic-based Fertilizer, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jinghua Ma
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization and Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization, and National Engineering Research Center for Organic-based Fertilizer, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jing Li
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization and Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization, and National Engineering Research Center for Organic-based Fertilizer, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaowei Pu
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization and Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization, and National Engineering Research Center for Organic-based Fertilizer, Nanjing Agricultural University, Nanjing, 210095 China
| | - Waseem Raza
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization and Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization, and National Engineering Research Center for Organic-based Fertilizer, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qiwei Huang
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization and Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization, and National Engineering Research Center for Organic-based Fertilizer, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization and Jiangsu Collaborative Innovation Center for Organic Solid Waste Utilization, and National Engineering Research Center for Organic-based Fertilizer, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
6
|
Zhang D, Lü H, Chu S, Zhang H, Zhang H, Yang Y, Li H, Yu D. The genetic architecture of water-soluble protein content and its genetic relationship to total protein content in soybean. Sci Rep 2017; 7:5053. [PMID: 28698580 PMCID: PMC5506034 DOI: 10.1038/s41598-017-04685-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/18/2017] [Indexed: 12/03/2022] Open
Abstract
Water-soluble protein content (WSPC) is a critical factor in both soybean protein quality and functionality. However, the underlying genetic determinants are unclear. Here, we used 219 soybean accessions and 152 recombinant inbred lines genotyped with high-density markers and phenotyped in multi-environments to dissect the genetic architectures of WSPC and protein content (PC) using single- and multi-locus genome-wide association studies. In the result, a total of 32 significant loci, including 10 novel loci, significantly associated with WSPC and PC across multi-environments were identified, which were subsequently validated by linkage mapping. Among these loci, only four exhibited pleiotropic effects for PC and WSPC, explaining the low correlation coefficient between the two traits. The largest-effect WSPC-specific loci, GqWSPC8, was stably identified across all six environments and tagged to a linkage disequilibrium block comprising two promising candidate genes AAP8 and 2 S albumin, which might contribute to the high level of WSPC in some soybean varieties. In addition, two genes, Glyma.13G123500 and Glyma.13G194400 with relatively high expression levels at seed development stage compared with other tissues were regarded as promising candidates associated with the PC and WSPC, respectively. Our results provide new insights into the genetic basis of WSPC affecting soybean protein quality and yield.
Collapse
Affiliation(s)
- Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Haiyan Lü
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huairen Zhang
- The Institute of Genetics and Developmental Biology (IGDB) of the Chinese Academy of Sciences, Beijing, 100101, China
| | - Hengyou Zhang
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Yuming Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongyan Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Li H, Hu B, Chu C. Nitrogen use efficiency in crops: lessons from Arabidopsis and rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2477-2488. [PMID: 28419301 DOI: 10.1093/jxb/erx101] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Application of chemical fertilizers, especially nitrogen (N), to crops has increased dramatically in the last half century and therefore developing crop varieties with improved N use efficiency (NUE) is urgent for sustainable agriculture. N utilization procedures generally can be divided into uptake, transport, and assimilation. Transporters for nitrate or ammonium acquisition and enzymes for assimilation are among the essential components determining NUE, and many transcription factors also play a pivotal role in regulating N use-associated genes, thereby contributing to NUE. Although some efforts in improving NUE have been made in various plants, the regulatory mechanisms underlying NUE are still elusive, and NUE improvement in crop breeding is very limited. In this review, the crucial components involved in N utilization and the candidates with the potential for NUE improvement in dicot Arabidopsis and monocot rice are summarized. In addition, strategies based on new techniques which can be used for dissecting regulatory mechanisms of NUE and also the possible ways in which NUE can be improved in crops are discussed.
Collapse
Affiliation(s)
- Hua Li
- State Key Laboratory of Plant Genomics and CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Bin Hu
- State Key Laboratory of Plant Genomics and CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Gaufichon L, Rothstein SJ, Suzuki A. Asparagine Metabolic Pathways in Arabidopsis. PLANT & CELL PHYSIOLOGY 2016; 57:675-89. [PMID: 26628609 DOI: 10.1093/pcp/pcv184] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/18/2015] [Indexed: 05/03/2023]
Abstract
Inorganic nitrogen in the form of ammonium is assimilated into asparagine via multiple steps involving glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AspAT) and asparagine synthetase (AS) in Arabidopsis. The asparagine amide group is liberated by the reaction catalyzed by asparaginase (ASPG) and also the amino group of asparagine is released by asparagine aminotransferase (AsnAT) for use in the biosynthesis of amino acids. Asparagine plays a primary role in nitrogen recycling, storage and transport in developing and germinating seeds, as well as in vegetative and senescence organs. A small multigene family encodes isoenzymes of each step of asparagine metabolism in Arabidopsis, except for asparagine aminotransferase encoded by a single gene. The aim of this study is to highlight the structure of the genes and encoded enzyme proteins involved in asparagine metabolic pathways; the regulation and role of different isogenes; and kinetic and physiological properties of encoded enzymes in different tissues and developmental stages.
Collapse
Affiliation(s)
- Laure Gaufichon
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| | - Steven J Rothstein
- University of Guelph, Department of Molecular and Cellular Biology, Guelph, Ontario, Canada N1G 2W1
| | - Akira Suzuki
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| |
Collapse
|
9
|
Bruch EM, Thomine S, Tabares LC, Un S. Variations in Mn(II) speciation among organisms: what makes D. radiodurans different. Metallomics 2014; 7:136-44. [PMID: 25407388 DOI: 10.1039/c4mt00265b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The manganese(II) speciation in intact cells of D. radiodurans, E. coli, S. cerevisiae and Arabidopsis thaliana seeds was measured using high-field electron paramagnetic resonance techniques. The majority of the Mn(II) ions in these organisms were six-coordinate, bound predominately by water, phosphates and nitrogen-based molecules. The relative distribution of the different phosphates in bacteria and S. cerevisiae was the same and dominated by monophosphate monoesters. Mn(II) was also found bound to the phosphate backbone of nucleic acids in these organisms. Phosphate ligation in Arabidopsis seeds was dominated by phytate. The extent of nitrogen ligation in the four organisms was also determined. On average, the Mn(II) in D. radiodurans had the most nitrogen ligands followed by E. coli. This was attributed to higher concentrations of Mn(II) bound to proteins in these species. Although constitutively expressed in all four organisms, MnSOD was only detected in D. radiodurans. As previously reported, D. radiodurans also accumulates a second abundant Mn containing protein species. The high concentration of proteinaceous Mn(II) is a unique feature of D. radiodurans.
Collapse
Affiliation(s)
- E M Bruch
- Service de Bioénergétique, Biologie Structurale et Mécanismes (CNRS UMR-8221), Institut de Biologie et de Technologies de Saclay, CEA-Saclay, F-91191 Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
10
|
Rothstein SJ, Bi YM, Coneva V, Han M, Good A. The challenges of commercializing second-generation transgenic crop traits necessitate the development of international public sector research infrastructure. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5673-5682. [PMID: 24948680 DOI: 10.1093/jxb/eru236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
It has been 30 years since the first transformation of a gene into a plant species, and since that time a number of biotechnology products have been developed, with the most important being insect- and herbicide-resistant crops. The development of second-generation products, including nutrient use efficiency and tolerance to important environmental stressors such as drought, has, up to this time, been less successful. This is in part due to the inherent complexities of these traits and in part due to limitations in research infrastructure necessary for public sector researchers to test their best ideas. Here we discuss lessons from previous work in the generation of the first-generation traits, as well as work from our labs and others on identifying genes for nitrogen use efficiency. We then describe some of the issues that have impeded rapid progress in this area. Finally, we propose the type of public sector organization that we feel is necessary to make advances in important second-generation traits such as nitrogen use efficiency.
Collapse
Affiliation(s)
- Steven J Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Yong-Mei Bi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Viktoriya Coneva
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Mei Han
- Department of Biological Sciences, University of Alberta, Edmonton AB T6G 2E9, Canada
| | - Allen Good
- Department of Biological Sciences, University of Alberta, Edmonton AB T6G 2E9, Canada
| |
Collapse
|
11
|
de la Torre F, Cañas RA, Pascual MB, Avila C, Cánovas FM. Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5527-34. [PMID: 24902885 DOI: 10.1093/jxb/eru240] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In the chloroplasts and in non-green plastids of plants, aspartate is the precursor for the biosynthesis of different amino acids and derived metabolites that play distinct and important roles in plant growth, reproduction, development or defence. Aspartate biosynthesis is mediated by the enzyme aspartate aminotransferase (EC 2.6.1.1), which catalyses the reversible transamination between glutamate and oxaloacetate to generate aspartate and 2-oxoglutarate. Plastids contain two aspartate aminotransferases: a eukaryotic-type and a prokaryotic-type bifunctional enzyme displaying aspartate and prephenate aminotransferase activities. A general overview of the biochemistry, regulation, functional significance, and phylogenetic origin of both enzymes is presented. The roles of these plastidic aminotransferases in the biosynthesis of essential amino acids are discussed.
Collapse
Affiliation(s)
- Fernando de la Torre
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Rafael A Cañas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - M Belén Pascual
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Concepción Avila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| |
Collapse
|
12
|
Tamaoki D, Karahara I, Nishiuchi T, Wakasugi T, Yamada K, Kamisaka S. Effects of hypergravity stimulus on global gene expression during reproductive growth in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:179-186. [PMID: 24373015 DOI: 10.1111/plb.12124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 09/27/2013] [Indexed: 06/03/2023]
Abstract
The life cycle of higher plants consists of successive vegetative and reproductive growth phases. Understanding effects of altered gravity conditions on the reproductive growth is essential, not only to elucidate how higher plants evolved under gravitational condition on Earth but also to approach toward realization of agriculture in space. In the present study, a comprehensive analysis of global gene expression of floral buds under hypergravity was carried out to understand effects of altered gravity on reproductive growth at molecular level. Arabidopsis plants grown for 20-26 days were exposed to hypergravity of 300 g for 24 h. Total RNA was extracted from flower buds and microarray (44 K) analysis performed. As a result, hypergravity up-regulated expression of a gene related to β-1,3-glucanase involved in pectin modification, and down-regulated β-galactosidase and amino acid transport, which supports a previous study reporting inhibition of pollen development and germination under hypergravity. With regard to genes related to seed storage accumulation, hypergravity up-regulated expression of genes of aspartate aminotransferase, and down-regulated those related to cell wall invertase and sugar transporter, supporting a previous study reporting promotion of protein body development and inhibition of starch accumulation under hypergravity, respectively. In addition, hypergravity up-regulated expression of G6PDH and GPGDH, which supports a previous study reporting promotion of lipid deposition under hypergravity. In addition, analysis of the metabolic pathway revealed that hypergravity substantially changed expression of genes involved in the biosynthesis of phytohormones such as abscisic acid and auxin.
Collapse
Affiliation(s)
- D Tamaoki
- Department of Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | | | | | | | | | | |
Collapse
|
13
|
McAllister CH, Beatty PH, Good AG. Engineering nitrogen use efficient crop plants: the current status. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:1011-25. [PMID: 22607381 DOI: 10.1111/j.1467-7652.2012.00700.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the last 40 years the amount of synthetic nitrogen (N) applied to crops has risen drastically, resulting in significant increases in yield but with considerable impacts on the environment. A requirement for crops that require decreased N fertilizer levels has been recognized in the call for a 'Second Green Revolution' and research in the field of nitrogen use efficiency (NUE) has continued to grow. This has prompted a search to identify genes that improve the NUE of crop plants, with candidate NUE genes existing in pathways relating to N uptake, assimilation, amino acid biosynthesis, C/N storage and metabolism, signalling and regulation of N metabolism and translocation, remobilization and senescence. Herein is a review of the approaches taken to determine possible NUE candidate genes, an overview of experimental study of these genes as effectors of NUE in both cereal and non-cereal plants and the processes of commercialization of enhanced NUE crop plants. Patents issued regarding increased NUE in plants as well as gene pyramiding studies are also discussed as well as future directions of NUE research.
Collapse
|
14
|
Zhou Y, Cai H, Xiao J, Li X, Zhang Q, Lian X. Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:1381-90. [PMID: 19259642 DOI: 10.1007/s00122-009-0988-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 02/04/2009] [Indexed: 05/20/2023]
Abstract
Aspartate aminotransferase (AAT) is a key enzyme in the synthesis of amino acids. It plays an important role in regulating carbon and nitrogen metabolism in almost all organisms. In this study, we over-expressed in rice separately all three AAT genes from rice (OsAAT1~3) and one AAT gene from Escherichia coli (EcAAT). Over-expression was driven by the CaMV 35S promoter and constructs were introduced into rice by Agrobacterium tumefaciens-mediated transformation. Compared with control plants, the transformants showed significantly increased leaf AAT activity and greater seed amino acid and protein contents. No other phenotypic changes were observed. The total leaf AAT activities in plants over-expressing OsAAT1, OsAAT2, and EcAAT were 26.6, 23.6, and 19.6 A min(-1) mg(-1) FW (A: units of activity, defined as increase of absorbency per min per mg; FW: fresh weight), which were significantly higher than that in the wild-type control (17.7 A min(-1) mg(-1) FW). The amino acid content in seeds of transgenic plants over-expressing OsAAT1, OsAAT2, and EcAAT was 119.36, 115.36, and 113.72 mg g(-1), respectively, which were 16.1, 12.0, and 5.4% higher, respectively, than that in the control plants. The transgenic plants over-expressing OsAAT1, OsAAT2, and EcAAT had significantly higher protein contents (increased 22.2, 21.1, and 11.1%, respectively) than wild-type plants. No significant changes were found in leaf AAT activity, seed amino acid content or protein content in OsAAT3 over-expressed plants. The expression patterns of the three OsAAT genes and their different functions are also discussed.
Collapse
Affiliation(s)
- Ying Zhou
- National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | |
Collapse
|