1
|
Doan CT, Tran TN, Tran TPH, Nguyen TT, Nguyen HK, Tran TKT, Vu BT, Trinh THT, Nguyen AD, Wang SL. Chitosanase Production from the Liquid Fermentation of Squid Pens Waste by Paenibacillus elgii. Polymers (Basel) 2023; 15:3724. [PMID: 37765578 PMCID: PMC10537793 DOI: 10.3390/polym15183724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Chitosanases play a significant part in the hydrolysis of chitosan to form chitooligosaccharides (COS) that possess diverse biological activities. This study aimed to enhance the productivity of Paenibacillus elgii TKU051 chitosanase by fermentation from chitinous fishery wastes. The ideal parameters for achieving maximum chitosanase activity were determined: a squid pens powder amount of 5.278% (w/v), an initial pH value of 8.93, an incubation temperature of 38 °C, and an incubation duration of 5.73 days. The resulting chitosanase activity of the culture medium was 2.023 U/mL. A chitosanase with a molecular weight of 25 kDa was isolated from the culture medium of P. elgii TKU051 and was biochemically characterized. Liquid chromatography with tandem mass spectrometry analysis revealed that P. elgii TKU051 chitosanase exhibited a maximum amino acid identity of 43% with a chitosanase of Bacillus circulans belonging to the glycoside hydrolase (GH) family 46. P. elgii TKU051 chitosanase demonstrated optimal activity at pH 5.5 while displaying remarkable stability within the pH range of 5.0 to 9.0. The enzyme displayed maximum efficiency at 60 °C and demonstrated considerable stability at temperatures ≤40 °C. The presence of Mn2+ positively affected the activity of the enzyme, while the presence of Cu2+ had a negative effect. Thin-layer chromatography analysis demonstrated that P. elgii TKU051 chitosanase exhibited an endo-type cleavage pattern and hydrolyzed chitosan with 98% degree of deacetylation to yield (GlcN)2 and (GlcN)3. The enzymatic properties of P. elgii TKU051 chitosanase render it a promising candidate for application in the production of COS.
Collapse
Affiliation(s)
- Chien Thang Doan
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Ngoc Tran
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Phuong Hanh Tran
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Thanh Nguyen
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Huu Kien Nguyen
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Kim Thi Tran
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Bich Thuy Vu
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Huyen Trang Trinh
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| |
Collapse
|
2
|
Samrot AV, Shobana N, Suresh Kumar S, Narendrakumar G. Production, Optimization and Characterisation of Chitosanase of Bacillus sp. and its Applications in Nanotechnology. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01520-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Doan CT, Tran TN, Nguyen VB, Nguyen AD, Wang SL. Conversion of Squid Pens to Chitosanases and Proteases via Paenibacillus sp. TKU042. Mar Drugs 2018; 16:E83. [PMID: 29517987 PMCID: PMC5867627 DOI: 10.3390/md16030083] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 02/26/2018] [Accepted: 03/06/2018] [Indexed: 01/25/2023] Open
Abstract
Chitosanases and proteases have received much attention due to their wide range of applications. Four kinds of chitinous materials, squid pens, shrimp heads, demineralized shrimp shells and demineralized crab shells, were used as the sole carbon and nitrogen (C/N) source to produce chitosanases, proteases and α-glucosidase inhibitors (αGI) by four different strains of Paenibacillus. Chitosanase productivity was highest in the culture supernatants using squid pens as the sole C/N source. The maximum chitosanase activity of fermented squid pens (0.759 U/mL) was compared to that of fermented shrimp heads (0.397 U/mL), demineralized shrimp shells (0.201 U/mL) and demineralized crab shells (0.216 U/mL). A squid pen concentration of 0.5% was suitable for chitosanase, protease and αGI production via Paenibacillus sp. TKU042. Multi-purification, including ethanol precipitation and column chromatography of Macro-Prep High S as well as Macro-Prep DEAE (diethylaminoethyl), led to the isolation of Paenibacillus sp. TKU042 chitosanase and protease with molecular weights of 70 and 35 kDa, respectively. For comparison, 16 chitinolytic bacteria, including strains of Paenibacillus, were investigated for the production of chitinase, exochitinase, chitosanase, protease and αGI using two kinds of chitinous sources.
Collapse
Affiliation(s)
- Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot City 630000, Vietnam.
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot City 630000, Vietnam.
| | - Van Bon Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot City 630000, Vietnam.
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot City 630000, Vietnam.
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan.
| |
Collapse
|
4
|
de Araújo Padilha CE, Fortunato Dantas PV, de sousa FC, de Santana Souza DF, de Oliveira JA, de Macedo GR, dos Santos ES. Mathematical modeling of the whole expanded bed adsorption process to recover and purify chitosanases from the unclarified fermentation broth of Paenibacillus ehimensis. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1039:44-50. [DOI: 10.1016/j.jchromb.2016.10.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/17/2016] [Accepted: 10/23/2016] [Indexed: 12/25/2022]
|
5
|
Improvement in the thermostability of chitosanase from Bacillus ehimensis by introducing artificial disulfide bonds. Biotechnol Lett 2016; 38:1809-15. [DOI: 10.1007/s10529-016-2168-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/21/2016] [Indexed: 01/08/2023]
|
6
|
Synthesis and Biological Evaluation of New Imine- and Amino-Chitosan Derivatives. Polymers (Basel) 2015. [DOI: 10.3390/polym7121532] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
Yun C, Matsuda H, Kawamukai M. Directed Evolution to Enhance Secretion Efficiency and Thermostability of Chitosanase fromMitsuaria chitosanitabida3001. Biosci Biotechnol Biochem 2014; 70:559-63. [PMID: 16495682 DOI: 10.1271/bbb.70.559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chitosanase (ChoA) from Mitsuaria chitosanitabida 3001 was successfully evolved with secretion efficiency and thermal stability. The inactive ChoA mutant (G151D) gene was used to mutate by an error-prone PCR technique and mutant genes that restored chitosanase activity were isolated. Two desirable mutants, designated M5S and M7T, were isolated. Two amino acids, Leu74 and Val75, in the signal peptide of ChoA were changed to Gln and Ile respectively in the M7T mutant, in addition to the G151D mutation. The L74Q/V75I double ChoA mutant was 1.5-fold higher in specific activity than wild-type ChoA due to efficient secretion of ChoA. One amino acid Asn222 was changed to Ser in the M5S mutant in addition to the G151D mutation. The N222S single ChoA mutant was 1.2-fold higher in specific activity and showed a 17% increase in thermal stability at 50 degrees C as compared with wild-type ChoA. This is the first study to achieve an evolutional increase in enzyme capability among chitosanses.
Collapse
Affiliation(s)
- Choongsoo Yun
- Department of Applied Bioscience and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Japan
| | | | | |
Collapse
|
8
|
Takasuka TE, Bianchetti CM, Tobimatsu Y, Bergeman LF, Ralph J, Fox BG. Structure-guided analysis of catalytic specificity of the abundantly secreted chitosanase SACTE_5457 from Streptomyces
sp. SirexAA-E. Proteins 2014; 82:1245-57. [DOI: 10.1002/prot.24491] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Taichi E. Takasuka
- Department of Biochemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
- Great Lakes Bioenergy Research Center, College of Engineering; University of Wisconsin-Madison; Madison Wisconsin 53726
| | - Christopher M. Bianchetti
- Department of Biochemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
- Great Lakes Bioenergy Research Center, College of Engineering; University of Wisconsin-Madison; Madison Wisconsin 53726
| | - Yuki Tobimatsu
- Department of Biochemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
- Great Lakes Bioenergy Research Center, College of Engineering; University of Wisconsin-Madison; Madison Wisconsin 53726
| | - Lai F. Bergeman
- Department of Biochemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
- Great Lakes Bioenergy Research Center, College of Engineering; University of Wisconsin-Madison; Madison Wisconsin 53726
| | - John Ralph
- Department of Biochemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
- Great Lakes Bioenergy Research Center, College of Engineering; University of Wisconsin-Madison; Madison Wisconsin 53726
| | - Brian G. Fox
- Department of Biochemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
- Great Lakes Bioenergy Research Center, College of Engineering; University of Wisconsin-Madison; Madison Wisconsin 53726
| |
Collapse
|
9
|
Liu GL, Li Y, Zhou HX, Chi ZM, Madzak C. Over-expression of a bacterial chitosanase gene in Yarrowia lipolytica and chitosan hydrolysis by the recombinant chitosanase. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Wang SL, Chen TR, Liang TW, Wu PC. Conversion and degradation of shellfish wastes by Bacillus cereus TKU018 fermentation for the production of chitosanases and bioactive materials. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Lin YW, Hsiao YC, Chiang BH. Production of high degree polymerized chitooligosaccharides in a membrane reactor using purified chitosanase from Bacillus cereus. Food Res Int 2009. [DOI: 10.1016/j.foodres.2009.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Utilization of squid pen for the efficient production of chitosanase and antioxidants through prolonged autoclave treatment. Carbohydr Res 2009; 344:979-84. [DOI: 10.1016/j.carres.2009.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 03/10/2009] [Accepted: 03/12/2009] [Indexed: 10/21/2022]
|
13
|
Lacombe-Harvey ME, Fukamizo T, Gagnon J, Ghinet MG, Dennhart N, Letzel T, Brzezinski R. Accessory active site residues of Streptomyces sp. N174 chitosanase: variations on a common theme in the lysozyme superfamily. FEBS J 2009; 276:857-69. [PMID: 19143844 DOI: 10.1111/j.1742-4658.2008.06830.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chitosanase from Streptomyces sp. N174 (CsnN174) is an inverting glycoside hydrolase belonging to family 46. Previous studies identified Asp40 as the general base residue. Mutation of Asp40 into glycine revealed an unexpectedly high residual activity. D40G mutation did not affect the stereochemical mechanism of catalysis or the mode of interaction with substrate. To explain the D40G residual activity, putative accessory catalytic residues were examined. Mutation of Glu36 was highly deleterious in a D40G background. Possibly, the D40G mutation reconfigured the catalytic center in a way that allowed Glu36 to be positioned favorably to perform catalysis. Thr45 was also found to be essential. Thr45 is thought to orientate the nucleophilic water molecule in a position to attack the glycosidic link. The finding that expression of heterologous CsnN174 in Escherichia coli protects cells against the antimicrobial effect of chitosan, allowed the selection of active chitosanase variants after saturation mutagenesis. Thr45 could be replaced only by serine, indicating the importance of the hydroxyl group. The newly identified accessory catalytic residues, Glu36 and Thr45 are located on a three-strand beta sheet highly conserved in GH19, 22, 23, 24 and 46, all members of the 'lysozyme superfamily'. Structural comparisons reveal that each family has its catalytic residues located among a small number of critical positions in this beta sheet. The position of Glu36 in CsnN174 is equivalent to general base residue in GH19 chitinases, whereas Thr45 is located similarly to the catalytic residue Asp52 of GH22 lysozyme. These examples reinforce the evolutionary link among these five GH families.
Collapse
Affiliation(s)
- Marie-Eve Lacombe-Harvey
- Département de Biologie, Centre d'Etude et de Valorisation de la Diversité Microbienne, Université de Sherbrooke, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Purification and characterization of a chitosanase from a nattokinase producing strain Bacillus subtilis TKU007. Process Biochem 2008. [DOI: 10.1016/j.procbio.2007.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Zhang J, Sun Y. Molecular cloning, expression and characterization of a chitosanase from Microbacterium sp. Biotechnol Lett 2007; 29:1221-5. [PMID: 17563859 DOI: 10.1007/s10529-007-9373-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/08/2007] [Accepted: 03/09/2007] [Indexed: 11/27/2022]
Abstract
A gene encoding a chitosanase (mschito) was cloned from Microbacterium sp. OU01. The ORF consists of 801 bp which encoded a polypeptide of 266 amino acid residues. The deduced amino acid sequence shows 98% identity to that of the chitosanase reported in Pseudomonas sp. A-01. In addition, the fusion protein containing MSCHITO was expressed in E. coli and purified using Ni-NTA affinity chromatography. The purified rMSCHITO protein degraded the chitosan (the degree of deacetylation of 99%) and produced a mixture of chitooligosaccharides. The MSCHITO is thus an endo-chitosanase.
Collapse
Affiliation(s)
- Jiquan Zhang
- Key Laboratory of Marine Biotechnology of Jiangsu Province, Huaihai Institute of Technology, Lianyungang, 222005, P.R. China
| | | |
Collapse
|
16
|
Yun C, Amakata D, Matsuo Y, Matsuda H, Kawamukai M. New chitosan-degrading strains that produce chitosanases similar to ChoA of Mitsuaria chitosanitabida. Appl Environ Microbiol 2005; 71:5138-44. [PMID: 16151097 PMCID: PMC1214613 DOI: 10.1128/aem.71.9.5138-5144.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The betaproteobacterium Mitsuaria chitosanitabida (formerly Matsuebacter chitosanotabidus) 3001 produces a chitosanase (ChoA) that is classified in glycosyl hydrolase family 80. While many chitosanase genes have been isolated from various bacteria to date, they show limited homology to the M. chitosanitabida 3001 chitosanase gene (choA). To investigate the phylogenetic distribution of chitosanases analogous to ChoA in nature, we identified 67 chitosan-degrading strains by screening and investigated their physiological and biological characteristics. We then searched for similarities to ChoA by Western blotting and Southern hybridization and selected 11 strains whose chitosanases showed the most similarity to ChoA. PCR amplification and sequencing of the chitosanase genes from these strains revealed high deduced amino acid sequence similarities to ChoA ranging from 77% to 99%. Analysis of the 16S rRNA gene sequences of the 11 selected strains indicated that they are widely distributed in the beta and gamma subclasses of Proteobacteria and the Flavobacterium group. These observations suggest that the ChoA-like chitosanases that belong to family 80 occur widely in a broad variety of bacteria.
Collapse
Affiliation(s)
- ChoongSoo Yun
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | | | | | | | | |
Collapse
|
17
|
|
18
|
|
19
|
Yoon HG, Lee KH, Kim HY, Kim HK, Shin DH, Hong BS, Cho HY. Gene cloning and biochemical analysis of thermostable chitosanase (TCH-2) from Bacillus coagulans CK108. Biosci Biotechnol Biochem 2002; 66:986-95. [PMID: 12092850 DOI: 10.1271/bbb.66.986] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The DNA sequence of the thermostable chitosanase TCH-2 gene from Bacillus coagulans CK108 showed a 843-bp open reading frame that encodes a protein of 280 amino acids with a signal peptide corresponding to 32 kDa in size. The deduced amino acid sequence of the chitosanase from Bacillus coagulans CK108 has 61.6%, 48.0%, and 12.6% identities to those from Bacillus ehemensis, Bacillus circulans, and Bacillus subtilis, respectively. C-Terminal homology analysis shows that the enzyme belongs to the Cluster I group. The size of the gene was similar to those from mesophiles of the Cluster I group with regard to higher preference for codons ending in G or C. The recombinant chitosanase was electrophoretically purified to homogeneity by only two steps with column chromatography. The half-life of the enzyme was 40 min at 90 degrees C. The purified protein was also highly stable, retaining above 50% residual activities during treatment with denaturants such as urea (8 M) and guanidine x HCl (4 M) at 37 degrees C for 30 min. The enzyme had a useful reactivity and a high specific activity for producing functional oligosaccharides as well, producing the tetramer as a major product.
Collapse
Affiliation(s)
- Ho-Geun Yoon
- Department of Food and Biotechnology, Graduate School of Biotechnology, Korea University, Seoul
| | | | | | | | | | | | | |
Collapse
|
20
|
Rivas LA, Parro VC, Moreno-Paz M, Mellado RP. The Bacillus subtilis 168 csn gene encodes a chitosanase with similar properties to a streptomyces enzyme. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 11):2929-2936. [PMID: 11065371 DOI: 10.1099/00221287-146-11-2929] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Bacillus subtilis 168 csn gene encodes a chitosanase. It was found that transcription of the csn gene was temporally regulated and was not subject to metabolic repression. Chitosanase synthesis was abolished in a csn mutant strain. Csn was overproduced in B. subtilis, partially purified and characterized. The deduced amino acid sequence, K(m), and optimal pH and temperature of the B. subtilis enzyme were closer to those of a chitosanase from Streptomyces sp. N174 than to those of chitosanases from other Bacillus strains.
Collapse
Affiliation(s)
- Luis A Rivas
- Centro Nacional de Biotecnologı́a (CSIC), Campus de la Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain1
| | - Vı Ctor Parro
- Centro Nacional de Biotecnologı́a (CSIC), Campus de la Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain1
| | - Mercedes Moreno-Paz
- Centro Nacional de Biotecnologı́a (CSIC), Campus de la Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain1
| | - Rafael P Mellado
- Centro Nacional de Biotecnologı́a (CSIC), Campus de la Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain1
| |
Collapse
|
21
|
Yoon HG, Yang SW, Kim HY, Kim HK, Shin DH, Hong BS, Cho HY. Analysis of essential leucine residue for catalytic activity of novel thermostable chitosanase by site-directed mutagenesis. JOURNAL OF PROTEIN CHEMISTRY 2000; 19:621-30. [PMID: 11233177 DOI: 10.1023/a:1007147214796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bacterial chitosanases share weak amino acid sequence similarities at certain regions of each enzyme. These regions have been assumed to be important for catalytic activities of the enzyme. To verify this assumption, the functional importance of the conserved region in a novel thermostable chitosanase (TCH-2) from Bacillus coagulans CK108 was investigated. Each of the conserved amino acid residues (Leu64, Glu80, Glu94, Asp98, and Gly108) was changed to aspartate and glutamine or asparagine and glutamate by site-directed mutagenesis, respectively. Kinetic parameters for colloidal chitosan hydrolysis were determined with wild-type and 10 mutant chitosanases. The Leu64 --> Arg and Leu64 --> Gln mutations were essentially inactive and kinetic parameters such as Vmax and kcat were approximately 1/10(7) of those of the wild-type enzyme. The Asp98 --> Asn mutation did not affect the Km value significantly, but decreased kcat to 15% of that of wild-type chitosanase. On the other hand, the Asp98 --> Glu mutation affected neither Km nor kcat. The observation that approximately 15% of activity remained after the substitution of Asp98 by Asn indicated that the carboxyl side chain of Asp98 is not absolutely required for catalytic activity. These results indicate that the Leu64 residue is directly involved in the catalytic activity of TCH-2.
Collapse
Affiliation(s)
- H G Yoon
- Department of Food and Biotechnology, Graduate School of Biotechnology, Korea University, Seoul
| | | | | | | | | | | | | |
Collapse
|
22
|
Yoon HG, Kim HY, Lim YH, Kim HK, Shin DH, Hong BS, Cho HY. Thermostable chitosanase from Bacillus sp. Strain CK4: cloning and expression of the gene and characterization of the enzyme. Appl Environ Microbiol 2000; 66:3727-34. [PMID: 10966383 PMCID: PMC92213 DOI: 10.1128/aem.66.9.3727-3734.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A thermostable chitosanase gene from the environmental isolate Bacillus sp. strain CK4, which was identified on the basis of phylogenetic analysis of the 16S rRNA gene sequence and phenotypic analysis, was cloned, and its complete DNA sequence was determined. The thermostable chitosanase gene was composed of an 822-bp open reading frame which encodes a protein of 242 amino acids and a signal peptide corresponding to a 30-kDa enzyme. The deduced amino acid sequence of the chitosanase from Bacillus sp. strain CK4 exhibits 76.6, 15.3, and 14.2% similarities to those from Bacillus subtilis, Bacillus ehemensis, and Bacillus circulans, respectively. C-terminal homology analysis shows that Bacillus sp. strain CK4 belongs to cluster III with B. subtilis. The gene was similar in size to that of the mesophile B. subtilis but showed a higher preference for codons ending in G or C. The enzyme contains 2 additional cysteine residues at positions 49 and 211. The recombinant chitosanase has been purified to homogeneity by using only two steps with column chromatography. The half-life of the enzyme was 90 min at 80 degrees C, which indicates its usefulness for industrial applications. The enzyme had a useful reactivity and a high specific activity for producing functional oligosaccharides as well, with trimers through hexamers as the major products.
Collapse
Affiliation(s)
- H G Yoon
- Graduate School of Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhang XY, Dai AL, Zhang XK, Kuroiwa K, Kodaira R, Shimosaka M, Okazaki M. Purification and characterization of chitosanase and Exo-beta-D-glucosaminidase from a Koji mold, Aspergillus oryzae IAM2660. Biosci Biotechnol Biochem 2000; 64:1896-902. [PMID: 11055393 DOI: 10.1271/bbb.64.1896] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chitosan-degrading activity was detected in the culture fluid of Aspergillus oryzae, A. sojae, and A. flavus among various fungal strains belonging to the genus Aspergillus. One of the strong producers, A. oryzae IAM2660 had a higher level of chitosanolytic activity when N-acetylglucosamine (GlcNAc) was used as a carbon source. Two chitosanolytic enzymes, 40 kDa and 135 kDa in molecular masses, were purified from the culture fluid of A. oryzae IAM2660. Viscosimetric assay and an analysis of reaction products by thin-layer chromatography clearly indicated the endo- and exo-type cleavage manner for the 40-kDa and 135-kDa enzymes, respectively. The 40-kDa enzyme, designated chitosanase, catalyzed a hydrolysis of glucosamine (GlcN) oligomers larger than pentamer, glycol chitosan, and chitosan with a low degree of acetylation (0-30%). The 135-kDa exo-beta-D-glucosaminidase,enzyme,named released a single GlcN residue from the GlcN oligomers and chitosan, but did not release GlcNAc residues from either GlcNAc oligomer or colloidal chitin.
Collapse
Affiliation(s)
- X Y Zhang
- Department of Applied Biology, Faculty of Textile Science and Technology, and Shinshu University, Ueda, Nagano, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Omumasaba CA, Yoshida N, Sekiguchi Y, Kariya K, Ogawa K. Purification and some properties of a novel chitosanase from Bacillus subtilis KH1. J GEN APPL MICROBIOL 2000; 46:19-27. [PMID: 12483600 DOI: 10.2323/jgam.46.19] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
One of at least two chitosanases secreted in the culture filtrate of Bacillus subtilis KH1 was purified by two sequential DEAE Sepharose CL-6B chromatographies, followed by Sephacryl S-100 HR gel chromatography. The purified enzyme was homogenous as judged by SDS-PAGE. It showed an estimated molecular weight and pI of 28,000 and 8.3, respectively. The enzyme drastically reduced the viscosity of highly deacetylated chitosan substrates, with the subsequent formation of chitooligosaccharides [(GlcN)(n), n=2-6]. No activity toward carboxymethylcellulose (CMC), chitobiose (GlcN)(2), or chitotriose (GlcN)(3) was detected. Separation and quantification of products of hydrolysis of 10% (w/v) solutions of chitooligosaccharides, (GlcN)(n), n=2-6, by HPLC showed the splitting of (GlcN) (n), n=4-6, in an endo-splitting manner. Oligomers comprising higher units than the starting substrate were also detected, indicating transglycosylation activity. The amino terminal sequence of this enzyme (A-G-L-N-K-D-Q-K-R-R) is identical to that of the chitosanase derived from Bacillus pumilus BN262 and to the deduced amino terminal sequences of Bacillus subtilis 168 and Bacillus amyloliquefaciens UTK chitosanases.
Collapse
Affiliation(s)
- Crispinus A. Omumasaba
- Department of Biological Resource Sciences, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2155, Japan
| | | | | | | | | |
Collapse
|