1
|
Damian A, Gozal D. Pediatric Obstructive Sleep Apnea: What’s in a Name? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1384:63-78. [PMID: 36217079 DOI: 10.1007/978-3-031-06413-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Obstructive sleep apnea is a highly prevalent disease across the lifespan and imposes substantial morbidities, some of which may become irreversible if the condition is not diagnosed and treated in a timely fashion. Here, we focus on the clinical and epidemiological characteristics of pediatric obstructive sleep apnea, describe some of the elements that by virtue of their presence facilitate the emergence of disrupted sleep and breathing and its downstream consequences, and also discuss the potential approaches to diagnosis in at-risk children.
Collapse
Affiliation(s)
- Allan Damian
- Departments of Neurology, University of Missouri School of Medicine, Columbia, MO, USA
- Comprehensive Sleep Medicine Program, University of Missouri School of Medicine, Columbia, MO, USA
| | - David Gozal
- Comprehensive Sleep Medicine Program, University of Missouri School of Medicine, Columbia, MO, USA.
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
2
|
Baddam P, Biancardi V, Roth DM, Eaton F, Thereza-Bussolaro C, Mandal R, Wishart DS, Barr A, MacLean J, Flores-Mir C, Pagliardini S, Graf D. Neural crest-specific deletion of Bmp7 leads to midfacial hypoplasia, nasal airway obstruction, and disordered breathing modelling Obstructive Sleep Apnea. Dis Model Mech 2021; 14:dmm.047738. [PMID: 33431521 PMCID: PMC7888714 DOI: 10.1242/dmm.047738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Pediatric obstructive sleep apnea (OSA), a relatively common sleep-related breathing disorder (SRBD) affecting approximately 1-5% of children, is often caused by anatomical obstruction and/or collapse of the nasal and/or pharyngeal airways. The resulting sleep disruption and intermittent hypoxia lead to various systemic morbidities. Predicting the development of OSA from craniofacial features alone is currently not possible and a controversy remains if upper airway obstruction facilitates reduced midfacial growth or vice-versa. Currently, there is no rodent model that recapitulates both the development of craniofacial abnormalities and upper airway obstruction to address these questions. Here, we describe that mice with a neural crest-specific deletion of Bmp7 (Bmp7ncko) present with shorter, more acute angled cranial base, midfacial hypoplasia, nasal septum deviation, turbinate swelling and branching defects, and nasal airway obstruction. Interestingly, several of these craniofacial features develop after birth during periods of rapid midfacial growth and precede the development of an upper airway obstruction. We identified that in this rodent model, no single feature appeared to predict upper airway obstruction, but the sum of those features resulted in a reduced breathing frequency, apneas and overall reduced oxygen consumption. Metabolomics analysis of serum from peripheral blood identified increased levels of hydroxyproline, a metabolite upregulated under hypoxic conditions. As this model recapitulates many features observed in OSA, it offers unique opportunities for studying how upper airway obstruction affects breathing physiology and leads to systemic morbidities.
Collapse
Affiliation(s)
- Pranidhi Baddam
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Vivian Biancardi
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Equal contributions
| | - Daniela M Roth
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Equal contributions
| | - Farah Eaton
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Claudine Thereza-Bussolaro
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Dentistry, Hospital dos Pinheiros, UNIFASIPE, Sinop, Mato Grosso, Brazil
| | - Rupasri Mandal
- The Metabolomics Innovation Centre, Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - David S Wishart
- The Metabolomics Innovation Centre, Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Amy Barr
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Joanna MacLean
- Department of Pediatrics and the Women & Children's Health Research Institute, Faculty of Medicine and Dentistry, University of Alberta
- Stollery Children's Hospital; Edmonton, AB, Canada
| | - Carlos Flores-Mir
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Silvia Pagliardini
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Bastianini S, Alvente S, Berteotti C, Bosi M, Lo Martire V, Silvani A, Valli A, Zoccoli G. Post-sigh sleep apneas in mice: Systematic review and data-driven definition. J Sleep Res 2019; 28:e12845. [PMID: 30920081 DOI: 10.1111/jsr.12845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/01/2019] [Accepted: 02/18/2019] [Indexed: 11/26/2022]
Abstract
Sleep apneas can be categorized as post-sigh (prevailing in non-rapid eye movement sleep) or spontaneous (prevailing in rapid eye movement sleep) according to whether or not they are preceded by an augmented breath (sigh). Notably, the occurrence of these apnea subtypes changes differently in hypoxic/hypercapnic environments and in some genetic diseases, highlighting the importance of an objective discrimination. We aim to: (a) systematically review the literature comparing the criteria used in categorizing mouse sleep apneas; and (b) provide data-driven criteria for this categorization, with the final goal of reducing experimental variability in future studies. Twenty-two wild-type mice, instrumented with electroencephalographic/electromyographic electrodes, were placed inside a whole-body plethysmographic chamber to quantify sleep apneas and sighs. Wake-sleep states were scored on 4-s epochs based on electroencephalographic/electromyographic signals. Literature revision showed that highly different criteria were used for post-sigh apnea definition, the intervals for apnea occurrence after sigh ranging from 1 breath up to 20 s. In our data, the apnea occurrence rate during non-rapid eye movement sleep was significantly higher than that calculated before the sigh only in the 1st and 2nd 4-s epochs following a sigh. These data suggest that, in mice, apneas should be categorized as post-sigh only if they start within 8 s from a sigh; the choice of shorter or longer time windows might underestimate or slightly overestimate their occurrence rate, respectively.
Collapse
Affiliation(s)
- Stefano Bastianini
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sara Alvente
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marcello Bosi
- ASL of Romagna, Department Thoracic Diseases, Pulmonary Operative Unit, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Viviana Lo Martire
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alice Valli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Nguyen CD, Dakin C, Yuill M, Crozier S, Wilson S. The effect of sigh on cardiorespiratory synchronization in healthy sleeping infants. Sleep 2012. [PMID: 23204607 DOI: 10.5665/sleep.2236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Sighs are thought to have a role in regulating breathing control. They may preceed a central apnea (sigh-CA) or a pause (sigh-P), particularly in quiet sleep. Recent techniques characterizing cardiorespiratory synchronization (CRS) provide sensitive measures of cardiorespiratory coupling, which is an important factor in breathing control. We speculated that the strength of CRS and direction of cardiorespiratory coupling (DC), would differ between sigh-P and sigh-CA; before and after a sigh; and with maturation. DESIGN Prospective study. CRS and DC were calculated from the respiratory signal and heart rate before and after sighs recorded during overnight polysomnography. SETTING Sleep laboratory. PARTICIPANTS The data were selected from 15 subjects of a prospective cohort of 34 healthy infants at ages 2 weeks, 3 months and 6 months. INTERVENTIONS N/A. MEASUREMENTS AND RESULTS Both CRS and respiratory modulation on heart rate (RMH) (negative DC index) were decreased around sigh-CA compared with sigh-P at all ages. Short-term CRS decreased after both sigh-P and sigh-CA in infants aged 2 weeks and 3 months. Long term CRS did not change before and after sigh-P or sigh-CA. CRS and RMH were increased at 3 months and 6 months compared to 2 weeks. CONCLUSIONS A sigh was not found to be associated with apparent resetting of breathing control in healthy infants less than 6 months of age. Cardiorespiratory coupling appears to be a leading marker of changes in breathing control, preceding central apnea associated with a sigh. CITATION Nguyen CD; Dakin C; Yuill M; Crozier S; Wilson S. The effect of sigh on cardiorespiratory synchronization in healthy sleeping infants. SLEEP 2012;35(12):1643-1650.
Collapse
Affiliation(s)
- Chinh D Nguyen
- School of Information Technology & Electrical Engineering, The University of Queensland, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
5
|
Toporikova N, Butera RJ. Two types of independent bursting mechanisms in inspiratory neurons: an integrative model. J Comput Neurosci 2010; 30:515-28. [PMID: 20838868 DOI: 10.1007/s10827-010-0274-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/19/2010] [Accepted: 08/25/2010] [Indexed: 02/02/2023]
Abstract
The network of coupled neurons in the pre-Bötzinger complex (pBC) of the medulla generates a bursting rhythm, which underlies the inspiratory phase of respiration. In some of these neurons, bursting persists even when synaptic coupling in the network is blocked and respiratory rhythmic discharge stops. Bursting in inspiratory neurons has been extensively studied, and two classes of bursting neurons have been identified, with bursting mechanism depends on either persistent sodium current or changes in intracellular Ca(2+), respectively. Motivated by experimental evidence from these intrinsically bursting neurons, we present a two-compartment mathematical model of an isolated pBC neuron with two independent bursting mechanisms. Bursting in the somatic compartment is modeled via inactivation of a persistent sodium current, whereas bursting in the dendritic compartment relies on Ca(2+) oscillations, which are determined by the neuromodulatory tone. The model explains a number of conflicting experimental results and is able to generate a robust bursting rhythm, over a large range of parameters, with a frequency adjusted by neuromodulators.
Collapse
Affiliation(s)
- Natalia Toporikova
- Laboratory for Neuroengineering, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250, USA
| | | |
Collapse
|