1
|
Margalit A, Sheehan D, Carolan JC, Kavanagh K. Exposure to the Pseudomonas aeruginosa secretome alters the proteome and secondary metabolite production of Aspergillus fumigatus. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001164. [PMID: 35333152 PMCID: PMC9558348 DOI: 10.1099/mic.0.001164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/16/2022] [Indexed: 01/09/2023]
Abstract
The fungal pathogen Aspergillus fumigatus is frequently cultured from the sputum of cystic fibrosis (CF) patients along with the bacterium Pseudomonas aeruginosa. A. fumigatus secretes a range of secondary metabolites, and one of these, gliotoxin, has inhibitory effects on the host immune response. The effect of P. aeruginosa culture filtrate (CuF) on fungal growth and gliotoxin production was investigated. Exposure of A. fumigatus hyphae to P. aeruginosa cells induced increased production of gliotoxin and a decrease in fungal growth. In contrast, exposure of A. fumigatus hyphae to P. aeruginosa CuF led to increased growth and decreased gliotoxin production. Quantitative proteomic analysis was used to characterize the proteomic response of A. fumigatus upon exposure to P. aeruginosa CuF. Changes in the profile of proteins involved in secondary metabolite biosynthesis (e.g. gliotoxin, fumagillin, pseurotin A), and changes to the abundance of proteins involved in oxidative stress (e.g. formate dehydrogenase) and detoxification (e.g. thioredoxin reductase) were observed, indicating that the bacterial secretome had a profound effect on the fungal proteome. Alterations in the abundance of proteins involved in detoxification and oxidative stress highlight the ability of A. fumigatus to differentially regulate protein synthesis in response to environmental stresses imposed by competitors such as P. aeruginosa. Such responses may ultimately have serious detrimental effects on the host.
Collapse
Affiliation(s)
- Anatte Margalit
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - David Sheehan
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - James C. Carolan
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| |
Collapse
|
2
|
Fu H, Chung KR, Liu X, Li H. Aaprb1, a subtilsin-like protease, required for autophagy and virulence of the tangerine pathotype of Alternaria alternata. Microbiol Res 2020; 240:126537. [PMID: 32739584 DOI: 10.1016/j.micres.2020.126537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023]
Abstract
Subtilisin-like serine protease secreted by pathogenic fungi can facilitate the infection and acquisition of nutrients. Functions of subtilisin-like serine proteases in the phytopathogenic fungus Alternaria alternata remains unknown. In the current study, 15 subtilisin-like serine proteases were individually deleted in the citrus fungal pathogen A. alternata. Only one, designated AaPrb1, was found to be required for A. alternata pathogenesis. The AaPrb1 deficiency strain (ΔAaprb1) reduced growth, conidiation, the formation of aerial hyphae, protease production, and virulence on citrus leaves. However, biochemical analyses and bioassays revealed that ΔAaprb1 plays no role in the production of ACT toxin. Through Y2H assays, Aaprb1 was found to interact with Aapep4, a vacuole-localized proteinase A in A. alternata. Furthermore, silencing AaPep4 in A. alternata resulted in phenotypes similar with those of ΔAaprb1. Expression of AaPrb1 was found to be regulated by AaPep4. TEM showed that AaPrb1and AaPep4 were involved in the suppression of the degradation of autophagosomes. Deletion of the autophagy gene AaAtg8 in A. alternata decreased conidiation, the formation of aerial hyphae and pathogenicity similar to ΔAaprb1, implying that some phenotypes of ΔAaprb1 were due to the impairment of autophagy. Overall, this study expands our understanding of how A. alternata utilizes the subtilisin-like serine protease to achieve successful infection in the plant host.
Collapse
Affiliation(s)
- Huilan Fu
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kuang-Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung-Hsing University, Taichung, Taiwan
| | - Xiaohong Liu
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Hongye Li
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Kerstens W, Van Dijck P. A Cinderella story: how the vacuolar proteases Pep4 and Prb1 do more than cleaning up the cell's mass degradation processes. MICROBIAL CELL 2018; 5:438-443. [PMID: 30386788 PMCID: PMC6206407 DOI: 10.15698/mic2018.10.650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recently, several research groups have assigned non-vacuolar functions to the well-known Saccharomyces cerevisiae vacuolar proteases Pep4 and Prb1, which are also known as proteinases A and B. These non-vacuolar activities seem to be autophagy-independent and stress-induced and suggest an unexplored but possibly prominent role for the proteases outside the vacuole. The functions range from the involvement in programmed cell death, to protection from hazardous protein forms and regulation of gene expression. We propose that a deeper understanding of these molecular processes will provide new insights that will be important for both fungal biology as well as studies in mammalian cells, as they might open up perspectives in the search for novel drug targets. To illustrate this, we summarize the recent literature on non-vacuolar Pep4 and Prb1 functions in S. cerevisiae and review the current data on the protein homologs in pathogenic fungi.
Collapse
Affiliation(s)
- Winnie Kerstens
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium.,Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium.,Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| |
Collapse
|
4
|
Takahashi-Nakaguchi A, Sakai K, Takahashi H, Hagiwara D, Toyotome T, Chibana H, Watanabe A, Yaguchi T, Yamaguchi M, Kamei K, Gonoi T. Aspergillus fumigatus adhesion factors in dormant conidia revealed through comparative phenotypic and transcriptomic analyses. Cell Microbiol 2017; 20. [PMID: 29113011 PMCID: PMC5838799 DOI: 10.1111/cmi.12802] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/11/2017] [Accepted: 10/30/2017] [Indexed: 01/29/2023]
Abstract
Aspergillus fumigatus is an important fungal pathogen of humans. Inhaled conidia of A. fumigatus adhere to pulmonary epithelial cells, causing opportunistic infection. However, little is known about the molecular mechanism of the adherence of resting conidia. Fungal molecules adhesive to host cells are presumed to be displayed on the conidial surface during conidial formation as a result of changes in gene expression. Therefore, we exhaustively searched for adhesion molecules by comparing the phenotypes and the gene expression profiles of A. fumigatus strains that have conidia showing either high or low adherence to human pulmonary A549 cells. Morphological observation suggested that strains that produce conidia of reduced size, hydrophobicity, or number show decreased adherence to A549 cells. K-means cluster analyses of gene expression revealed 31 genes that were differentially expressed in the high-adherence strains during conidial formation. We knocked out three of these genes and showed that the conidia of AFUA_4G01030 (encoding a hypothetical protein) and AFUA_4G08805 (encoding a haemolysin-like protein) knockout strains had significantly reduced adherence to host cells. Furthermore, the conidia of these knockout strains had lower hydrophobicity and fewer surface spikes compared to the control strain. We suggest that the selectively expressed gene products, including those we identified experimentally, have composite synergistic roles in the adhesion of conidia to pulmonary epithelial cells.
Collapse
Affiliation(s)
| | - Kanae Sakai
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | | | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | | | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Tohru Gonoi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA. Proteases and protease inhibitors in infectious diseases. Med Res Rev 2017; 38:1295-1331. [PMID: 29149530 DOI: 10.1002/med.21475] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/10/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
Abstract
There are numerous proteases of pathogenic organisms that are currently targeted for therapeutic intervention along with many that are seen as potential drug targets. This review discusses the chemical and biological makeup of some key druggable proteases expressed by the five major classes of disease causing agents, namely bacteria, viruses, fungi, eukaryotes, and prions. While a few of these enzymes including HIV protease and HCV NS3-4A protease have been targeted to a clinically useful level, a number are yet to yield any clinical outcomes in terms of antimicrobial therapy. A significant aspect of this review discusses the chemical and pharmacological characteristics of inhibitors of the various proteases discussed. A total of 25 inhibitors have been considered potent and safe enough to be trialed in humans and are at different levels of clinical application. We assess the mechanism of action and clinical performance of the protease inhibitors against infectious agents with their developmental strategies and look to the next frontiers in the use of protease inhibitors as anti-infective agents.
Collapse
Affiliation(s)
| | - Wilhelmina M Huston
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
6
|
Selvam RM, Nithya R, Devi PN, Shree RSB, Nila MV, Demonte NL, Thangavel C, Maheshwari JJ, Lalitha P, Prajna NV, Dharmalingam K. Exoproteome of Aspergillus flavus corneal isolates and saprophytes: identification of proteoforms of an oversecreted alkaline protease. J Proteomics 2014; 115:23-35. [PMID: 25497218 DOI: 10.1016/j.jprot.2014.11.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/19/2014] [Accepted: 11/28/2014] [Indexed: 01/14/2023]
Abstract
UNLABELLED Aspergillus flavus infects the human eye leading to keratitis. Extracellular proteins, the earliest proteins that come in contact with the host and virulence related exoproteins, were identified in the fungus isolated from infected cornea. Virulence of the corneal isolates was tested in the Galleria mellonella larvae model and those isolates showing higher virulence were taken for subsequent exoproteome analysis. High resolution two-dimensional electrophoresis and mass spectrometry were used to generate A. flavus exoproteome reference map as well as to profile most of the exoproteins. Analysis of the identified proteins clearly shows the major biological processes that they are involved in. Nearly 50% of the exoproteins possess catalytic activity and one of these, an alkaline serine protease (Alp1) is present in high abundance as well as multiple proteoforms. Many proteins in the A. flavus exoproteome have been shown to be virulence factors in other pathogens indicating the probable role for these proteins in the corneal infection as well. Interestingly, the majority of the exoproteins do not have secretory signal indicating that they are secreted through the non-classical pathway. Thus, this study provides a clue to the early strategies employed by the pathogen to establish an infection in an immunocompetent host. BIOLOGICAL SIGNIFICANCE The outcome of a fungal infection in an immunocompetent human eye depends on the ability of the fungus to overcome the host defense and propagate itself. In this process, the earliest events with respect to the fungal proteins involved include the secretory proteins of the invading organism. As a first step towards understanding the role of the extracellular proteins, exoproteome profile of the fungal isolates was generated. The fungal isolates from cornea showed a distinct pattern of the exoproteome when compared to the saprophyte. Since corneal isolates also showed higher virulence in the insect larval model, presumably the proteins elaborated by the corneal isolates are virulence related. One of the abundant proteins is an alkaline serine protease and this protein exists as multiple proteoforms. This study reports the comprehensive profile of exoproteome and reveals proteins that are potential virulence factors.
Collapse
Affiliation(s)
- Ramu Muthu Selvam
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Rathnavel Nithya
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Palraj Narmatha Devi
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - R S Bhuvana Shree
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Murugesan Valar Nila
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Naveen Luke Demonte
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Chitra Thangavel
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Jayapal Jeya Maheshwari
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Prajna Lalitha
- Department Of Ocular Microbiology, Aravind Eye Hospital, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | | | - Kuppamuthu Dharmalingam
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India.
| |
Collapse
|
7
|
Shi L, Li R, Liao S, Bai L, Lu Q, Chen B. Prb1, a subtilisin-like protease, is required for virulence and phenotypical traits in the chestnut blight fungus. FEMS Microbiol Lett 2014; 359:26-33. [DOI: 10.1111/1574-6968.12547] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 01/19/2023] Open
Affiliation(s)
- Liming Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning China
| | - Suhuan Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning China
| | - Lingyun Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning China
| | - Qunfeng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning China
| |
Collapse
|
8
|
Zhang Z, Qin G, Li B, Tian S. Knocking out Bcsas1 in Botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:590-600. [PMID: 24520899 DOI: 10.1094/mpmi-10-13-0314-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pathogenic fungi usually secrete a series of virulence factors to the extracellular environment to facilitate infection. Rab GTPases play a central role in the secretory pathway. To explore the function of Rab/GTPase in filamentous fungi, we knocked out a Rab/GTPase family gene, Bcsas1, in Botrytis cinerea, an aggressive fungal pathogen that infects more than 200 plant species. A detailed analysis was conducted on the virulence and the secretory capability of the mutants. The results indicated that knockout of Bcsas1 inhibited hyphal development and reduced sporulation of B. cinerea on potato dextrose agar plates resulting in reduced virulence on various fruit hosts. Knocking out the Bcsas1 gene led to an accumulation of transport vesicles at the hyphal tip, significantly reduced extracellular protein content, and lowered the activity of polygalacturonase and xylanase in the extracellular medium. However, mutation of Bcsas1 did not affect the expression of genes encoding polygalacturonase and xylanase, suggesting the secretion of these two family enzymes was suppressed in the mutant. Moreover, a comparative analysis of the secretome provided further evidence that the disruption of Bcsas1 in mutant strains significantly depressed the secretion of polysaccharide hydrolases and proteases. The results indicate that Bcsas1, the Rab8/SEC4-like gene, plays a crucial role in development, protein secretion, and virulence of B. cinerea.
Collapse
|
9
|
Mayer LSL, Stoll DA, Geisen R, Schmidt-Heydt M. Benzopyrone coumarin leads to an inhibition of ochratoxin biosynthesis in representatives of Aspergillus and Penicillium spp. via a type of feedback response mechanism. J Food Prot 2014; 77:647-52. [PMID: 24680079 DOI: 10.4315/0362-028x.jfp-13-280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Growth and mycotoxin biosynthesis of the ochratoxin-producing fungal strains Aspergillus carbonarius, Aspergillus steynii, Penicillium verrucosum, and Penicillium nordium were analyzed on standard laboratory growth medium supplemented with different amounts of coumarin, an organic compound of the benzopyrone class. Neither the growth nor the phenotypic morphology of the filamentous fungi analyzed was affected by using coumarin concentrations equivalent to 2.5 to 25 μg/ml of medium. In contrast, the ochratoxin biosynthesis was strongly inhibited in both strains of the Aspergillus species and nearly completely inhibited in both Penicillium strains at coumarin concentrations above 8.75 μg/ml. Analyzing the transcriptional activity of the otapksPN polyketide synthase gene in P. nordicum using real-time PCR revealed a strong concentration-dependent decrease in gene expression. Taken together, the data show that ochratoxin biosynthesis in representative strains of the genera Aspergillus and Penicillium could be effectively inhibited by coumarin in a concentration-dependent manner. It could be suggested that the molecular background behind this inhibition is some kind of feedback response mechanism, based on the structural similarity of coumarin to the benzopyrone moiety of the ochratoxin molecule.
Collapse
Affiliation(s)
- L S L Mayer
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruits and Vegetables, Haid-und-Neu-Strasse 09, Karlsruhe 76131, Germany
| | - D A Stoll
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruits and Vegetables, Haid-und-Neu-Strasse 09, Karlsruhe 76131, Germany
| | - R Geisen
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruits and Vegetables, Haid-und-Neu-Strasse 09, Karlsruhe 76131, Germany
| | - M Schmidt-Heydt
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruits and Vegetables, Haid-und-Neu-Strasse 09, Karlsruhe 76131, Germany.
| |
Collapse
|
10
|
Disruption of the phospholipase D gene attenuates the virulence of Aspergillus fumigatus. Infect Immun 2011; 80:429-40. [PMID: 22083709 DOI: 10.1128/iai.05830-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aspergillus fumigatus is the most prevalent airborne fungal pathogen that induces serious infections in immunocompromised patients. Phospholipases are key enzymes in pathogenic fungi that cleave host phospholipids, resulting in membrane destabilization and host cell penetration. However, knowledge of the impact of phospholipases on A. fumigatus virulence is rather limited. In this study, disruption of the pld gene encoding phospholipase D (PLD), an important member of the phospholipase protein family in A. fumigatus, was confirmed to significantly decrease both intracellular and extracellular PLD activity of A. fumigatus. The pld gene disruption did not alter conidial morphological characteristics, germination, growth, and biofilm formation but significantly suppressed the internalization of A. fumigatus into A549 epithelial cells without affecting conidial adhesion to epithelial cells. Importantly, the suppressed internalization was fully rescued in the presence of 100 μM phosphatidic acid, the PLD product. Indeed, complementation of pld restored the PLD activity and internalization capacity of A. fumigatus. Phagocytosis of A. fumigatus conidia by J774 macrophages was not affected by the absence of the pld gene. Pretreatment of conidia with 1-butanol and a specific PLD inhibitor decreased the internalization of A. fumigatus into A549 epithelial cells but had no effect on phagocytosis by J774 macrophages. Finally, loss of the pld gene attenuated the virulence of A. fumigatus in mice immunosuppressed with hydrocortisone acetate but not with cyclophosphamide. These data suggest that PLD of A. fumigatus regulates its internalization into lung epithelial cells and may represent an important virulence factor for A. fumigatus infection.
Collapse
|
11
|
Fungal proteases and their pathophysiological effects. Mycopathologia 2011; 171:299-323. [PMID: 21259054 DOI: 10.1007/s11046-010-9386-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 12/02/2010] [Indexed: 12/14/2022]
Abstract
Proteolytic enzymes play an important role in fungal physiology and development. External digestion of protein substrates by secreted proteases is required for survival and growth of both saprophytic and pathogenic species. Extracellular serine, aspartic, and metalloproteases are considered virulence factors of many pathogenic species. New findings focus on novel membrane-associated proteases such as yapsins and ADAMs and their role in pathology. Proteases from fungi induce inflammatory responses by altering the permeability of epithelial barrier and by induction of proinflammatory cytokines through protease-activated receptors. Many fungal allergens possess proteolytic activity that appears to be essential in eliciting Th2 responses. Allergenic fungal proteases can act as adjuvants, potentiating responses to other allergens. Proteolytic enzymes from fungi contribute to inflammation through interactions with the kinin system as well as the coagulation and fibrinolytic cascades. Their effect on the host protease-antiprotease balance results from activation of endogenous proteases and degradation of protease inhibitors. Recent studies of the role of fungi in human health point to the growing importance of proteases not only as pathogenic agents in fungal infections but also in asthma, allergy, and damp building related illnesses. Proteolytic enzymes from fungi are widely used in biotechnology, mainly in food, leather, and detergent industries, in ecological bioremediation processes and to produce therapeutic peptides. The involvement of fungal proteases in diverse pathological mechanisms makes them potential targets of therapeutic intervention and candidates for biomarkers of disease and exposure.
Collapse
|
12
|
What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev Iberoam Micol 2010; 27:155-82. [PMID: 20974273 DOI: 10.1016/j.riam.2010.10.003] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 11/21/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic pathogen that causes 90% of invasive aspergillosis (IA) due to Aspergillus genus, with a 50-95% mortality rate. It has been postulated that certain virulence factors are characteristic of A. fumigatus, but the "non-classical" virulence factors seem to be highly variable. Overall, published studies have demonstrated that the virulence of this fungus is multifactorial, associated with its structure, its capacity for growth and adaptation to stress conditions, its mechanisms for evading the immune system and its ability to cause damage to the host. In this review we intend to give a general overview of the genes and molecules involved in the development of IA. The thermotolerance section focuses on five genes related with the capacity of the fungus to grow at temperatures above 30°C (thtA, cgrA, afpmt1, kre2/afmnt1, and hsp1/asp f 12). The following sections discuss molecules and genes related to interaction with the host and with the immune responses. These sections include β-glucan, α-glucan, chitin, galactomannan, galactomannoproteins (afmp1/asp f 17 and afmp2), hydrophobins (rodA/hyp1 and rodB), DHN-melanin, their respective synthases (fks1, rho1-4, ags1-3, chsA-G, och1-4, mnn9, van1, anp1, glfA, pksP/alb1, arp1, arp2, abr1, abr2, and ayg1), and modifying enzymes (gel1-7, bgt1, eng1, ecm33, afpigA, afpmt1-2, afpmt4, kre2/afmnt1, afmnt2-3, afcwh41 and pmi); several enzymes related to oxidative stress protection such as catalases (catA, cat1/catB, cat2/katG, catC, and catE), superoxide dismutases (sod1, sod2, sod3/asp f 6, and sod4), fatty acid oxygenases (ppoA-C), glutathione tranferases (gstA-E), and others (afyap1, skn7, and pes1); and efflux transporters (mdr1-4, atrF, abcA-E, and msfA-E). In addition, this review considers toxins and related genes, such as a diffusible toxic substance from conidia, gliotoxin (gliP and gliZ), mitogillin (res/mitF/asp f 1), hemolysin (aspHS), festuclavine and fumigaclavine A-C, fumitremorgin A-C, verruculogen, fumagillin, helvolic acid, aflatoxin B1 and G1, and laeA. Two sections cover genes and molecules related with nutrient uptake, signaling and metabolic regulations involved in virulence, including enzymes, such as serine proteases (alp/asp f 13, alp2, and asp f 18), metalloproteases (mep/asp f 5, mepB, and mep20), aspartic proteases (pep/asp f 10, pep2, and ctsD), dipeptidylpeptidases (dppIV and dppV), and phospholipases (plb1-3 and phospholipase C); siderophores and iron acquisition (sidA-G, sreA, ftrA, fetC, mirB-C, and amcA); zinc acquisition (zrfA-H, zafA, and pacC); amino acid biosynthesis, nitrogen uptake, and cross-pathways control (areA, rhbA, mcsA, lysF, cpcA/gcn4p, and cpcC/gcn2p); general biosynthetic pathway (pyrG, hcsA, and pabaA), trehalose biosynthesis (tpsA and tpsB), and other regulation pathways such as those of the MAP kinases (sakA/hogA, mpkA-C, ste7, pbs2, mkk2, steC/ste11, bck1, ssk2, and sho1), G-proteins (gpaA, sfaD, and cpgA), cAMP-PKA signaling (acyA, gpaB, pkaC1, and pkaR), His kinases (fos1 and tcsB), Ca(2+) signaling (calA/cnaA, crzA, gprC and gprD), and Ras family (rasA, rasB, and rhbA), and others (ace2, medA, and srbA). Finally, we also comment on the effect of A. fumigatus allergens (Asp f 1-Asp f 34) on IA. The data gathered generate a complex puzzle, the pieces representing virulence factors or the different activities of the fungus, and these need to be arranged to obtain a comprehensive vision of the virulence of A. fumigatus. The most recent gene expression studies using DNA-microarrays may be help us to understand this complex virulence, and to detect targets to develop rapid diagnostic methods and new antifungal agents.
Collapse
|
13
|
Behnsen J, Lessing F, Schindler S, Wartenberg D, Jacobsen ID, Thoen M, Zipfel PF, Brakhage AA. Secreted Aspergillus fumigatus protease Alp1 degrades human complement proteins C3, C4, and C5. Infect Immun 2010; 78:3585-94. [PMID: 20498262 PMCID: PMC2916278 DOI: 10.1128/iai.01353-09] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/08/2010] [Accepted: 05/06/2010] [Indexed: 01/15/2023] Open
Abstract
The opportunistic human pathogenic fungus Aspergillus fumigatus is a major cause of fungal infections in immunocompromised patients. Innate immunity plays an important role in the defense against infections. The complement system represents an essential part of the innate immune system. This cascade system is activated on the surface of A. fumigatus conidia and hyphae and enhances phagocytosis of conidia. A. fumigatus conidia but not hyphae bind to their surface host complement regulators factor H, FHL-1, and CFHR1, which control complement activation. Here, we show that A. fumigatus hyphae possess an additional endogenous activity to control complement activation. A. fumigatus culture supernatant efficiently cleaved complement components C3, C4, C5, and C1q as well as immunoglobulin G. Secretome analysis and protease inhibitor studies identified the secreted alkaline protease Alp1, which is present in large amounts in the culture supernatant, as the central molecule responsible for this cleavage. An alp1 deletion strain was generated, and the culture supernatant possessed minimal complement-degrading activity. Moreover, protein extract derived from an Escherichia coli strain overproducing Alp1 cleaved C3b, C4b, and C5. Thus, the protease Alp1 is responsible for the observed cleavage and degrades a broad range of different substrates. In summary, we identified a novel mechanism in A. fumigatus that contributes to evasion from the host complement attack.
Collapse
Affiliation(s)
- Judith Behnsen
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| | - Franziska Lessing
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| | - Susann Schindler
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| | - Dirk Wartenberg
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| | - Ilse D. Jacobsen
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| | - Marcel Thoen
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| | - Peter F. Zipfel
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
14
|
Miyazaki Y, Sunagawa M, Higashibata A, Ishioka N, Babasaki K, Yamazaki T. Differentially expressed genes under simulated microgravity in fruiting bodies of the fungus Pleurotus ostreatus. FEMS Microbiol Lett 2010; 307:72-9. [DOI: 10.1111/j.1574-6968.2010.01966.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
15
|
Pöll V, Denk U, Shen HD, Panzani RC, Dissertori O, Lackner P, Hemmer W, Mari A, Crameri R, Lottspeich F, Rid R, Richter K, Breitenbach M, Simon-Nobbe B. The vacuolar serine protease, a cross-reactive allergen from Cladosporium herbarum. Mol Immunol 2009; 46:1360-73. [DOI: 10.1016/j.molimm.2008.11.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 11/24/2008] [Accepted: 11/25/2008] [Indexed: 11/30/2022]
|
16
|
Liu Y, Yang Q, Song J. A new serine protease gene from Trichoderma harzianum is expressed in Saccharomyces cerevisiae. APPL BIOCHEM MICRO+ 2009. [DOI: 10.1134/s0003683809010049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Monod M. Secreted proteases from dermatophytes. Mycopathologia 2008; 166:285-94. [PMID: 18478360 DOI: 10.1007/s11046-008-9105-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 01/15/2008] [Accepted: 01/30/2008] [Indexed: 11/21/2022]
Abstract
Dermatophytes are highly specialized pathogenic fungi that exclusively infect the stratum corneum, nails or hair, and it is evident that secreted proteolytic activity is important for their virulence. Endo- and exoproteases-secreted by dermatophytes are similar to those of species of the genus Aspergillus. However, in contrast to Aspergillus spp., dermatophyte-secreted endoproteases are multiple and are members of two large protein families, the subtilisins (serine proteases) and the fungalysins (metalloproteases). In addition, dermatophytes excrete sulphite as a reducing agent. In the presence of sulphite, disulphide bounds of the keratin substrate are directly cleaved to cysteine and S-sulphocysteine, and reduced proteins become accessible for further digestion by various endo- and exoproteases secreted by the fungi. Sulphitolysis is likely to be an essential step in the digestion of compact keratinized tissues which precedes the action of all proteases.
Collapse
Affiliation(s)
- Michel Monod
- Service de Dermatologie et Vénéréologie, Laboratoire de Mycologie, BT422, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland.
| |
Collapse
|
18
|
Vickers I, Reeves EP, Kavanagh KA, Doyle S. Isolation, activity and immunological characterisation of a secreted aspartic protease, CtsD, from Aspergillus fumigatus. Protein Expr Purif 2007; 53:216-24. [PMID: 17275325 DOI: 10.1016/j.pep.2006.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 12/18/2006] [Accepted: 12/19/2006] [Indexed: 11/21/2022]
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen that infects immunocompromised patients. A putative aspartic protease gene (ctsD; 1425 bp; intron-free) was identified and cloned. CtsD is evolutionarily distinct from all previously identified A. fumigatus aspartic proteases. Recombinant CtsD was expressed in inclusion bodies in Escherichia coli (0.2mg/g cells) and subjected to extensive proteolysis in the baculovirus expression system. Activation studies performed on purified, refolded, recombinant CtsD resulted in protease activation with a pH(opt)4.0 and specific activity=10 U/mg. Pepstatin A also inhibited recombinant CtsD activity by up to 72% thereby confirming classification as an aspartic protease. Native CtsD was also immunologically identified in culture supernatants and purified from fungal cultures using pepstatin-agarose affinity chromatography (7.8 microg CtsD/g mycelia). In A. fumigatus, semi-quantitative RT-PCR analysis revealed expression of ctsD in minimal and proteinaceous media only. Expression of ctsD was absent under nutrient-rich conditions. Expression of ctsD was also detected, in vivo, in the Galleria mellonella virulence model following A. fumigatus infection.
Collapse
Affiliation(s)
- Imelda Vickers
- National Institute for Cellular Biotechnology, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | | | | | | |
Collapse
|
19
|
Pál K, van Diepeningen AD, Varga J, Hoekstra RF, Dyer PS, Debets AJM. Sexual and vegetative compatibility genes in the aspergilli. Stud Mycol 2007; 59:19-30. [PMID: 18490952 PMCID: PMC2275199 DOI: 10.3114/sim.2007.59.03] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Gene flow within populations can occur by sexual and/or parasexual means. Analyses of experimental and in silico work are presented relevant to possible gene flow within the aspergilli. First, the discovery of mating-type (MAT) genes within certain species of Aspergillus is described. The implications for self-fertility, sexuality in supposedly asexual species and possible uses as phylogenetic markers are discussed. Second, the results of data mining for heterokaryon incompatibility (het) and programmed cell death (PCD) related genes in the genomes of two heterokaryon incompatible isolates of the asexual species Aspergillus niger are reported. Het-genes regulate the formation of anastomoses and heterokaryons, may protect resources and prevent the spread of infectious genetic elements. Depending on the het locus involved, hetero-allelism is not tolerated and fusion of genetically different individuals leads to growth inhibition or cell death. The high natural level of heterokaryon incompatibility in A. niger blocks parasexual analysis of the het-genes involved, but in silico experiments in the sequenced genomes allow us to identify putative het-genes. Homologous sequences to known het- and PCD-genes were compared between different sexual and asexual species including different Aspergillus species, Sordariales and the yeast Saccharomyces cerevisiae. Both het- and PCD-genes were well conserved in A. niger. However some point mutations and other small differences between the het-genes in the two A. niger isolates examined may hint to functions in heterokaryon incompatibility reactions.
Collapse
Affiliation(s)
- K Pál
- Laboratory of Genetics, Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Fedorova ND, Badger JH, Robson GD, Wortman JR, Nierman WC. Comparative analysis of programmed cell death pathways in filamentous fungi. BMC Genomics 2005; 6:177. [PMID: 16336669 PMCID: PMC1325252 DOI: 10.1186/1471-2164-6-177] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 12/08/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fungi can undergo autophagic- or apoptotic-type programmed cell death (PCD) on exposure to antifungal agents, developmental signals, and stress factors. Filamentous fungi can also exhibit a form of cell death called heterokaryon incompatibility (HI) triggered by fusion between two genetically incompatible individuals. With the availability of recently sequenced genomes of Aspergillus fumigatus and several related species, we were able to define putative components of fungi-specific death pathways and the ancestral core apoptotic machinery shared by all fungi and metazoa. RESULTS Phylogenetic profiling of HI-associated proteins from four Aspergilli and seven other fungal species revealed lineage-specific protein families, orphan genes, and core genes conserved across all fungi and metazoa. The Aspergilli-specific domain architectures include NACHT family NTPases, which may function as key integrators of stress and nutrient availability signals. They are often found fused to putative effector domains such as Pfs, SesB/LipA, and a newly identified domain, HET-s/LopB. Many putative HI inducers and mediators are specific to filamentous fungi and not found in unicellular yeasts. In addition to their role in HI, several of them appear to be involved in regulation of cell cycle, development and sexual differentiation. Finally, the Aspergilli possess many putative downstream components of the mammalian apoptotic machinery including several proteins not found in the model yeast, Saccharomyces cerevisiae. CONCLUSION Our analysis identified more than 100 putative PCD associated genes in the Aspergilli, which may help expand the range of currently available treatments for aspergillosis and other invasive fungal diseases. The list includes species-specific protein families as well as conserved core components of the ancestral PCD machinery shared by fungi and metazoa.
Collapse
Affiliation(s)
- Natalie D Fedorova
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Jonathan H Badger
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Geoff D Robson
- Faculty of Life Sciences, 1.800 Stopford Building, University of Manchester, Manchester M13 9PT, UK
| | - Jennifer R Wortman
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - William C Nierman
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
- The George Washington University School of Medicine, Department of Biochemistry and Molecular Biology, 2300 Eye Street, NW Washington, DC 20837, USA
| |
Collapse
|
21
|
Clemons KV, Stevens DA. The contribution of animal models of aspergillosis to understanding pathogenesis, therapy and virulence. Med Mycol 2005; 43 Suppl 1:S101-10. [PMID: 16110800 DOI: 10.1080/13693780500051919] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Animal models of aspergillosis have been used extensively to study various aspects of pathogenesis, innate and acquired host-response, disease transmission and therapy. Several different animal models of aspergillosis have been developed. Because aspergillosis is an important pulmonary disease in birds, avian models have been used successfully to study preventative vaccines. Studies done to emulate human disease have relied on models using common laboratory animal species. Guinea pig models have primarily been used in therapy studies of invasive pulmonary aspergillosis (IPA). Rabbits have been used to study IPA and systemic disease, as well as fungal keratitis. Rodent, particularly mouse, models of aspergillosis predominate as the choice for most investigators. The availability of genetically defined strains of mice, immunological reagents, cost and ease of handling are factors. Both normal and immunosuppressed animals are used routinely. These models have been used to determine efficacy of experimental therapeutics, comparative virulence of different isolates of Aspergillus, genes involved in virulence, and susceptibility to infection with Aspergillus. Mice with genetic immunological deficiency and cytokine gene-specific knockout mice facilitate studies of the roles cells, and cytokines and chemokines, play in host-resistance to Aspergillus. Overall, these models have been critical to the advancement of therapy, and our current understanding of pathogenesis and host-resistance.
Collapse
Affiliation(s)
- K V Clemons
- California Institute for Medical Research, San Jose, CA 95128, USA.
| | | |
Collapse
|
22
|
Rementeria A, López-Molina N, Ludwig A, Vivanco AB, Bikandi J, Pontón J, Garaizar J. Genes and molecules involved in Aspergillus fumigatus virulence. Rev Iberoam Micol 2005; 22:1-23. [PMID: 15813678 DOI: 10.1016/s1130-1406(05)70001-2] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aspergillus fumigatus causes a wide range of diseases that include mycotoxicosis, allergic reactions and systemic diseases (invasive aspergillosis) with high mortality rates. Pathogenicity depends on immune status of patients and fungal strain. There is no unique essential virulence factor for development of this fungus in the patient and its virulence appears to be under polygenetic control. The group of molecules and genes associated with the virulence of this fungus includes many cell wall components, such as beta-(1-3)-glucan, galactomannan, galactomannanproteins (Afmp1 and Afmp2), and the chitin synthetases (Chs; chsE and chsG), as well as others. Some genes and molecules have been implicated in evasion from the immune response, such as the rodlets layer (rodA/hyp1 gene) and the conidial melanin-DHN (pksP/alb1 gene). The detoxifying systems for Reactive Oxygen Species (ROS) by catalases (Cat1p and Cat2p) and superoxide dismutases (MnSOD and Cu, ZnSOD), had also been pointed out as essential for virulence. In addition, this fungus produces toxins (14 kDa diffusible substance from conidia, fumigaclavin C, aurasperon C, gliotoxin, helvolic acid, fumagilin, Asp-hemolysin, and ribotoxin Asp fI/mitogilin F/restrictocin), allergens (Asp f1 to Asp f23), and enzymatic proteins as alkaline serin proteases (Alp and Alp2), metalloproteases (Mep), aspartic proteases (Pep and Pep2), dipeptidyl-peptidases (DppIV and DppV), phospholipase C and phospholipase B (Plb1 and Plb2). These toxic substances and enzymes seems to be additive and/or synergistic, decreasing the survival rates of the infected animals due to their direct action on cells or supporting microbial invasion during infection. Adaptation ability to different trophic situations is an essential attribute of most pathogens. To maintain its virulence attributes A. fumigatus requires iron obtaining by hydroxamate type siderophores (ornitin monooxigenase/SidA), phosphorous obtaining (fos1, fos2, and fos3), signal transductional falls that regulate morphogenesis and/or usage of nutrients as nitrogen (rasA, rasB, rhbA), mitogen activated kinases (sakA codified MAP-kinase), AMPc-Pka signal transductional route, as well as others. In addition, they seem to be essential in this field the amino acid biosynthesis (cpcA and homoaconitase/lysF), the activation and expression of some genes at 37 degrees C (Hsp1/Asp f12, cgrA), some molecules and genes that maintain cellular viability (smcA, Prp8, anexins), etc. Conversely, knowledge about relationship between pathogen and immune response of the host has been improved, opening new research possibilities. The involvement of non-professional cells (endothelial, and tracheal and alveolar epithelial cells) and professional cells (natural killer or NK, and dendritic cells) in infection has been also observed. Pathogen Associated Molecular Patterns (PAMP) and Patterns Recognizing Receptors (PRR; as Toll like receptors TLR-2 and TLR-4) could influence inflammatory response and dominant cytokine profile, and consequently Th response to infec tion. Superficial components of fungus and host cell surface receptors driving these phenomena are still unknown, although some molecules already associated with its virulence could also be involved. Sequencing of A. fumigatus genome and study of gene expression during their infective process by using DNA microarray and biochips, promises to improve the knowledge of virulence of this fungus.
Collapse
Affiliation(s)
- Aitor Rementeria
- Departamento Inmunología, Microbiología y Parasitología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Spain.
| | | | | | | | | | | | | |
Collapse
|
23
|
Davies DA, Kalinina NA, Samokhvalova LV, Malakhova GV, Scott G, Volynskaia AM, Nesmeianov VA. Isolation and Characterization of the ALP1 Protease from Aspergillus fumigatus and Its Protein Inhibitor from Physarium polycephalum. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2005; 31:259-68. [PMID: 16004384 DOI: 10.1007/s11171-005-0032-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It is known that Aspergillus fumigatus secretes a serine protease ALP1 of the subtilisin family in the presence of extracellular protein substrates. We found conditions of A. fumigatus culturing that provide a high ALP1 activity inside cells without induction by extracellular proteins. The identity of the properties of the secreted and intracellular enzymes was shown. A thermostable protein inhibitor of the ALP1 protease was isolated from the plasmodium of the myxomycete Physarum polycephalum. Its molecular mass is 32-33 kDa. The inhibitor inhibits the ALP1 protease activity with IC50 of 0.14 microM. This protein was also shown to be a less efficient inhibitor of the activity of HIV-1 protease (IC50 2.5 microM). The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 3; see also http://www.maik.ru.
Collapse
|
24
|
Bisht V, Arora N, Singh BP, Pasha S, Gaur SN, Sridhara S. Epi p 1, an allergenic glycoprotein ofEpicoccum purpurascensis a serine protease. ACTA ACUST UNITED AC 2004; 42:205-11. [PMID: 15364105 DOI: 10.1016/j.femsim.2004.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 05/10/2004] [Accepted: 05/12/2004] [Indexed: 11/20/2022]
Abstract
Epicoccum purpurascens (EP) is a ubiquitous saprophytic mould, the inhalant spores and mycelia of which are responsible for respiratory allergic disorders in 5-7% of population worldwide. The diagnosis/therapy of these disorders caused by fungi involves the use of standardized and purified fungal extracts. A 33.5 kDa glycoprotein, Epi p 1 released histamine from whole blood cells of EP allergic patients at a concentration of 50-ng protein. The high specific IgE values detected in EP hypersensitive sera indicated that Epi p 1 is capable of mediating type I hypersensitive reaction in predisposed individuals. It also showed protease activity by virtue of its dose dependent cleavage of serine protease specific synthetic substrate, N-benzoyl arginine ethyl ester hydrochloride (BAEE). The serine protease nature of Epi p 1 was confirmed by its N-terminal sequence (ADG/FIVAVELD/STY) homology to a subtilisin like serine protease. The protease activity of Epi p 1 may be responsible for making its way into the system of pre-disposed individuals through epithelial cell detachment and the histamine releasing ability by cross-linking of IgE antibodies on cell surface is the cause of its allergenic nature.
Collapse
Affiliation(s)
- Vandana Bisht
- Institute of Genomics and Integrative Biology, Mall Road, DU Campus, Delhi 7, India.
| | | | | | | | | | | |
Collapse
|
25
|
Guilleroux M, Osbourn A. Gene expression during infection of wheat roots by the 'take-all' fungus Gaeumannomyces graminis. MOLECULAR PLANT PATHOLOGY 2004; 5:203-16. [PMID: 20565610 DOI: 10.1111/j.1364-3703.2004.00219.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
SUMMARY The infection of plants by pathogenic microbes and the subsequent establishment of disease involves substantial changes in the biochemistry and physiology of both partners. Analysis of genes that are expressed during these interactions represents a powerful strategy to obtain insights into the molecular events underlying these changes. Root diseases have considerable economic impact but have not been characterized extensively at the molecular genetic level. Here we have used two complementary approaches-suppression subtractive hybridization and expressed sequence tag analysis of an unsubtracted cDNA library-to investigate gene expression during the early stages of colonization of wheat roots by the take-all fungus, Gaeumannomyces graminis.
Collapse
Affiliation(s)
- M Guilleroux
- IBP, Bat 630, Université Paris Sud, Orsay 91405, France
| | | |
Collapse
|
26
|
Pozo MJ, Baek JM, García JM, Kenerley CM. Functional analysis of tvsp1, a serine protease-encoding gene in the biocontrol agent Trichoderma virens. Fungal Genet Biol 2004; 41:336-48. [PMID: 14761794 DOI: 10.1016/j.fgb.2003.11.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2003] [Accepted: 11/10/2003] [Indexed: 11/18/2022]
Abstract
Serine proteases are highly conserved among fungi and considered to play a key role in different aspects of fungal biology. These proteases can be involved in development and have been related to pathogenesis or biocontrol processes. A gene (tvsp1) encoding an extracellular serine protease was cloned from Trichoderma virens, a biocontrol agent effective against soilborne fungal pathogens. The gene was expressed in Escherichia coli and a polyclonal antibody was raised against the recombinant protein. The expression pattern of tvsp1 was determined and its physiological role was addressed by mutational analysis. Strains of T. virens in which tvsp1 was deleted (PKO) or constitutively overexpressed (POE) were not affected in growth rate, conidiation, extracellular protein accumulation, antibiotic profiles nor in their ability to induce phytoalexins in cotton seedlings. Tvsp1 overexpression, however, significantly increased the ability of some strains to protect cotton seedlings against Rhizoctonia solani. Our data show that Tvsp1 is not necessary for the normal growth or development of T. virens, but plays a role in the biocontrol process.
Collapse
Affiliation(s)
- María J Pozo
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
27
|
Lee LW, Chiou CH, Linz JE. Function of native OmtA in vivo and expression and distribution of this protein in colonies of Aspergillus parasiticus. Appl Environ Microbiol 2002; 68:5718-27. [PMID: 12406770 PMCID: PMC129877 DOI: 10.1128/aem.68.11.5718-5727.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activities of two enzymes, a 168-kDa protein and a 40-kDa protein, OmtA, purified from the filamentous fungus Aspergillus parasiticus were reported to convert the aflatoxin pathway intermediate sterigmatocystin to O-methylsterigmatocystin in vitro. Our initial goal was to determine if OmtA is necessary and sufficient to catalyze this reaction in vivo and if this reaction is necessary for aflatoxin synthesis. We generated A. parasiticus omtA-null mutant LW1432 and a maltose binding protein-OmtA fusion protein expressed in Escherichia coli. Enzyme activity analysis of OmtA fusion protein in vitro confirmed the reported catalytic function of OmtA. Feeding studies conducted with LW1432 demonstrated a critical role for OmtA, and the reaction catalyzed by this enzyme in aflatoxin synthesis in vivo. Because of a close regulatory link between aflatoxin synthesis and asexual sporulation (conidiation), we hypothesized a spatial and temporal association between OmtA expression and conidiospore development. We developed a novel time-dependent colony fractionation protocol to analyze the accumulation and distribution of OmtA in fungal colonies grown on a solid medium that supports both toxin synthesis and conidiation. OmtA-specific polyclonal antibodies were purified by affinity chromatography using an LW1432 protein extract. OmtA was not detected in 24-h-old colonies but was detected in 48-h-old colonies using Western blot analysis; the protein accumulated in all fractions of a 72-h-old colony, including cells (0 to 24 h) in which little conidiophore development was observed. OmtA in older fractions of the colony (24 to 72 h) was partly degraded. Fluorescence-based immunohistochemical analysis conducted on thin sections of paraffin-embedded fungal cells from time-fractionated fungal colonies demonstrated that OmtA is evenly distributed among different cell types and is not concentrated in conidiophores. These data suggest that OmtA is present in newly formed fungal tissue and then is proteolytically cleaved as cells in that section of the colony age.
Collapse
Affiliation(s)
- Li-Wei Lee
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
28
|
Orozco I, Ortiz L, Elorza MV, Ruiz-Herrera J, Sentandreu R. Cloning and characterization of PRB1, a Candida albicans gene encoding a putative novel endoprotease B and factors affecting its expression. Res Microbiol 2002; 153:611-20. [PMID: 12455710 DOI: 10.1016/s0923-2508(02)01373-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several cDNA fragments corresponding to transcripts differentially expressed under conditions that favor mycelial growth of Candida albicans were identified by the "differential display" technique. One of these was cloned and used as a probe to rescue the full gene from a genomic library of the fungus. The sequence identified a single, uninterrupted open reading frame of 1395 nucleotides encoding a putative protein of 465 residues and a theoretical molecular weight of 50.3 kDa, present in the genome as a single copy located at chromosome 2 in different strains. The gene product showed high homology with subtilisin-like proteases, mainly PRB1, the vacuolar B protease from Saccharomyces cerevisiae, and for this reason it was designated as a putative CaPRB1. Expression of the gene was not directly related to fungal morphogenesis, but to the initial response to inducers: Heat shock and the presence of N-acetyl glucosamine. It was also subject to nitrogen, but not to carbon catabolite repression, although glucose inhibited the GlcNAc stimulatory effect. The gene was, in our hands, unable to complement PRB1 mutation in S. cerevisiae. C. albicans prb null mutants did not show any distinct alteration in the phenotype. CaPRB1 is the first gene coding for a putative vacuolar serine protease cloned from C. albicans.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Southern
- Candida albicans/enzymology
- Candida albicans/genetics
- Chromosomes, Fungal/genetics
- Cloning, Molecular
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- Electrophoresis, Gel, Pulsed-Field
- Fungal Proteins/biosynthesis
- Fungal Proteins/chemistry
- Fungal Proteins/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Fungal/genetics
- Gene Expression Regulation, Fungal/physiology
- Gene Library
- Humans
- Molecular Sequence Data
- Mutagenesis
- Sequence Alignment
- Sequence Analysis, DNA
- Serine Endopeptidases/biosynthesis
- Serine Endopeptidases/chemistry
- Serine Endopeptidases/genetics
Collapse
Affiliation(s)
- Iranzu Orozco
- Secció Departamental de Microbiología, Facultat de Farmàcia, Universitat de València, Avgda. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| | | | | | | | | |
Collapse
|
29
|
Monod M, Capoccia S, Léchenne B, Zaugg C, Holdom M, Jousson O. Secreted proteases from pathogenic fungi. Int J Med Microbiol 2002; 292:405-19. [PMID: 12452286 DOI: 10.1078/1438-4221-00223] [Citation(s) in RCA: 236] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many species of human pathogenic fungi secrete proteases in vitro or during the infection process. Secreted endoproteases belong to the aspartic proteases of the pepsin family, serine proteases of the subtilisin family, and metalloproteases of two different families. To these proteases has to be added the non-pepsin-type aspartic protease from Aspergillus niger and a unique chymotrypsin-like protease from Coccidioides immitis. Pathogenic fungi also secrete aminopeptidases, carboxypeptidases and dipeptidyl-peptidases. The function of fungal secreted proteases and their importance in infections vary. It is evident that secreted proteases are important for the virulence of dermatophytes since these fungi grow exclusively in the stratum corneum, nails or hair, which constitutes their sole nitrogen and carbon sources. The aspartic proteases secreted by Candida albicans are involved in the adherence process and penetration of tissues, and in interactions with the immune system of the infected host. For Aspergillus fumigatus, the role of proteolytic activity has not yet been proved. Although the secreted proteases have been intensively investigated as potential virulence factors, knowledge on protease substrate specificities is rather poor and few studies have focused on the research of inhibitors. Knowledge of substrate specificities will increase our understanding about the action of each protease secreted by pathogenic fungi and will help to determine their contribution to virulence.
Collapse
Affiliation(s)
- Michel Monod
- Service de Dermatologie (DHURDV), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|