1
|
Casalini T, Mann J, Pepin X. Predicting Surface pH in Unbuffered Conditions for Acids, Bases, and Their Salts - A Review of Modeling Approaches and Their Performance. Mol Pharm 2024; 21:513-534. [PMID: 38127789 DOI: 10.1021/acs.molpharmaceut.3c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Dissolution of ionizable drugs and their salts is a function of drug surface solubility driven by the surface pH, i.e., the microenvironmental pH at the solid/liquid interface, which will deviate from bulk pH when there is an acid-base reaction occurring at the solid/liquid interface. In this work, we first present a brief overview of the modeling approaches available in the literature, classified according to the rate-determining step assumed in the dissolution process. In the second part, we present and evaluate the prediction performance of two different modeling approaches for surface pH. The first method relies only on thermodynamic equilibria, while the second method accounts for transport phenomena of charged compounds through the diffusional boundary layer using the Nernst - Planck equation. Model outcomes are compared with experimental data taken from the literature and obtained during this work. In terms of surface pH predictions, the models provide identical values for weak acids or weak bases. The models' outcomes for bases are in good agreement with experimental data in acidic conditions (bulk pH 1-4), while overpredictions are observed in the 5-7 bulk pH range in a system-dependent manner. Deviations can be related to the effect of surface dissolution (also referred to as surface reaction), which may become a controlling mechanism and slow the replenishment of the unionized drug at the surface of the crystal. Surface pH predictions for acids are generally in good agreement with experiments, with a slight underestimation for some drug examples, which could be related to errors in intrinsic solubility determination or to the assumption of thermodynamic equilibrium at the surface of the drug. A good agreement is also observed for salts with the thermodynamic model except for mesylate salts, suggesting that other phenomena, not currently included in the thermodynamic equilibrium model, may determine the surface pH.
Collapse
Affiliation(s)
- Tommaso Casalini
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg 431 50, Sweden
| | - James Mann
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Xavier Pepin
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| |
Collapse
|
2
|
Anand O, Pepin XJH, Kolhatkar V, Seo P. The Use of Physiologically Based Pharmacokinetic Analyses-in Biopharmaceutics Applications -Regulatory and Industry Perspectives. Pharm Res 2022; 39:1681-1700. [PMID: 35585448 DOI: 10.1007/s11095-022-03280-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/27/2022] [Indexed: 12/18/2022]
Abstract
The use of physiologically based pharmacokinetic (PBPK) modeling to support the drug product quality attributes, also known as physiologically based biopharmaceutics modeling (PBBM) is an evolving field and the interest in using PBBM is increasing. The US-FDA has emphasized on the use of patient centric quality standards and clinically relevant drug product specifications over the years. Establishing an in vitro in vivo link is an important step towards achieving the goal of patient centric quality standard. Such a link can aid in constructing a bioequivalence safe space and establishing clinically relevant drug product specifications. PBBM is an important tool to construct a safe space which can be used during the drug product development and lifecycle management. There are several advantages of using the PBBM approach, though there are also a few challenges, both with in vitro methods and in vivo understanding of drug absorption and disposition, that preclude using this approach and therefore further improvements are needed. In this review we have provided an overview of experience gained so far and the current perspective from regulatory and industry point of view. Collaboration between scientists from regulatory, industry and academic fields can further help to advance this field and deliver on promises that PBBM can offer towards establishing patient centric quality standards.
Collapse
Affiliation(s)
- Om Anand
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA.
| | - Xavier J H Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Vidula Kolhatkar
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Paul Seo
- Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
3
|
Pepin X, Goetschy M, Abrahmsén-Alami S. Mechanistic Models for USP2 Dissolution Apparatus, Including Fluid Hydrodynamics and Sedimentation. J Pharm Sci 2021; 111:185-196. [PMID: 34666045 DOI: 10.1016/j.xphs.2021.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022]
Abstract
Drug product dissolution is a key input to Physiologically Based Biopharmaceutics Models (PBBM) to be able to predict in vivo dissolution. The integration of product dissolution in PBBMs for immediate release drug products should be mechanistic, i.e. allow to capture the main determinants of the in vitro dissolution experiment, and extract product batch specific parameter(s). This work focussed on the Product Particle Size Distribution (P-PSD), which was previously shown to integrate the effect of dose, volume, solubility (pH), size and concentration of micelles in the calculation of a batch specific input to PBBMs, and proposed new hydrodynamic (HD) models, which integrate the effect of USP2 apparatus paddle rotation speed and medium viscosity on dissolution. In addition, new models are also proposed to estimate the quantitative impact of formulation and drug sedimentation or "coning" on dissolution. Model "HDC-1" predicts coning in the presence of formulation insoluble excipients and "HDC-2" predicts the sedimentation of the drug substance only. These models were parameterized and validated on 166 dissolution experiments and 18 different drugs. The validation showed that the HD model average fold errors (AFE) for dissolution rate prediction of immediate release formulations, is comprised between 0.85 and 1.15, and the absolute average fold errors (AAFE) are comprised between 1.08 and 1.28, which shows satisfactory predictive power. For experiments where coning was suspected, the HDC-1 model improved the precision of the prediction (defined as ratio of "AAFE-1"values) by 2.46 fold compared to HD model. The calculation of a P-PSD integrating the impact of USP2 paddle rotation, medium viscosity and coning, will improve the PBBM predictions, since these parameters could have an influence on in vitro dissolution, and could open the way to better prediction of the effect of prandial state on human exposure, by developing new in silico tools which could integrate variation of velocity profiles due to the chyme viscosity.
Collapse
Affiliation(s)
- Xavier Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK.
| | - Matéo Goetschy
- During manuscript preparation: European School of Chemistry, Polymers and Materials. University of Strasbourg (ECPM-Strasbourg), Strasbourg, France
| | - Susanna Abrahmsén-Alami
- Innovation Sciences & External Liaisons, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
4
|
Pepin XJH, Huckle JE, Alluri RV, Basu S, Dodd S, Parrott N, Emami Riedmaier A. Understanding Mechanisms of Food Effect and Developing Reliable PBPK Models Using a Middle-out Approach. AAPS JOURNAL 2021; 23:12. [PMID: 33398593 DOI: 10.1208/s12248-020-00548-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Over the last 10 years, 40% of approved oral drugs exhibited a significant effect of food on their pharmacokinetics (PK) and currently the only method to characterize the effect of food on drug absorption, which is recognized by the authorities, is to conduct a clinical evaluation. Within the pharmaceutical industry, there is a significant effort to predict the mechanism and clinical relevance of a food effect. Physiologically based pharmacokinetic (PBPK) models combining both drug-specific and physiology-specific data have been used to predict the effect of food on absorption and to reveal the underlying mechanisms. This manuscript provides detailed descriptions of how a middle-out modeling approach, combining bottom-up in vitro-based predictions with limited top-down fitting of key model parameters for clinical data, can be successfully used to predict the magnitude and direction of food effect when it is predicted poorly by a bottom-up approach. For nefazodone, a mechanistic clearance for the gut and liver was added, for furosemide, an absorption window was introduced, and for aprepitant, the biorelevant solubility was refined using multiple solubility measurements. In all cases, these adjustments were supported by literature data and showcased a rational approach to assess the factors limiting absorption and exposure.
Collapse
Affiliation(s)
- Xavier J H Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK.
| | - James E Huckle
- Drug Product Technology, Amgen, Thousand Oaks, California, USA
| | - Ravindra V Alluri
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Sumit Basu
- Pharmacokinetic, Pharmacodynamic and Drug Metabolism-Quantitative Pharmacology and Pharmacometrics (PPDM-QP2), Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Stephanie Dodd
- Chemical & Pharmaceutical Profiling, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | | |
Collapse
|
5
|
Liu Z, Wang Y, Muzzio FJ, Callegari G, Drazer G. Capillary Drop Penetration Method to Characterize the Liquid Wetting of Powders. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:56-65. [PMID: 27982594 DOI: 10.1021/acs.langmuir.6b03589] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a method to characterize the wettability of powders, based on the penetration dynamics of a sessile drop deposited on a slightly compressed powder bed. First, we show that a direct comparison of the wetting properties of different liquids is possible without having to solve the three-dimensional liquid penetration problem, by considering the appropriate dimensionless variables. We show that the contact area between the sessile drop and the powder bed remains constant during most of the penetration process and demonstrate that as a result, the evolution of the dimensionless penetration volume is given by a universal function of the dimensionless time, with no dimensionless parameters. Then, using a reference liquid that completely wets the powder, it is possible to obtain an effective contact angle for a test liquid of interest, independent of other properties of the powder bed, such as permeability and a characteristic pore size. We apply the proposed method to estimate the contact angle of water with different powder blends, by using silicone oil as the reference liquid. Finally, to highlight the potential of the proposed method to characterize pharmaceutical powders, we consider a blend of lactose, acetaminophen, and a small amount of lubricant (magnesium stearate). The proposed method adequately captures a significant decrease in hydrophilicity that results from exposing the blend to excessive mixing, a well-known effect in the pharmaceutical industry.
Collapse
Affiliation(s)
- Zhanjie Liu
- Chemical and Biological Engineering Rutgers and ‡Mechanical and Aerospace Engineering Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States !--Q1: Please confirm the postal code in the affiliation, as we have inserted the required information.-->
| | - Yifan Wang
- Chemical and Biological Engineering Rutgers and ‡Mechanical and Aerospace Engineering Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States !--Q1: Please confirm the postal code in the affiliation, as we have inserted the required information.-->
| | - Fernando J Muzzio
- Chemical and Biological Engineering Rutgers and ‡Mechanical and Aerospace Engineering Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States !--Q1: Please confirm the postal code in the affiliation, as we have inserted the required information.-->
| | - Gerardo Callegari
- Chemical and Biological Engineering Rutgers and ‡Mechanical and Aerospace Engineering Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States !--Q1: Please confirm the postal code in the affiliation, as we have inserted the required information.-->
| | - German Drazer
- Chemical and Biological Engineering Rutgers and ‡Mechanical and Aerospace Engineering Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States !--Q1: Please confirm the postal code in the affiliation, as we have inserted the required information.-->
| |
Collapse
|
6
|
Holm R, Borkenfelt S, Allesø M, Andersen JET, Beato S, Holm P. Investigation of surface porosity measurements and compaction pressure as means to ensure consistent contact angle determinations. Int J Pharm 2016; 498:355-61. [DOI: 10.1016/j.ijpharm.2015.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/05/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
|
7
|
Alghunaim A, Kirdponpattara S, Newby BMZ. Techniques for determining contact angle and wettability of powders. POWDER TECHNOL 2016. [DOI: 10.1016/j.powtec.2015.10.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Stöckelhuber KW, Das A, Jurk R, Heinrich G. Contribution of physico-chemical properties of interfaces on dispersibility, adhesion and flocculation of filler particles in rubber. POLYMER 2010. [DOI: 10.1016/j.polymer.2010.03.013] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Dahlberg C, Millqvist-Fureby A, Schuleit M, Furó I. Polymer–drug interactions and wetting of solid dispersions. Eur J Pharm Sci 2010; 39:125-33. [DOI: 10.1016/j.ejps.2009.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/10/2009] [Accepted: 11/17/2009] [Indexed: 11/25/2022]
|
10
|
Influence of drug polarity upon the solid-state structure and release properties of self-emulsifying drug delivery systems in relation with water affinity. Colloids Surf B Biointerfaces 2009; 71:73-8. [DOI: 10.1016/j.colsurfb.2009.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 12/22/2008] [Accepted: 01/07/2009] [Indexed: 11/20/2022]
|
11
|
Steele DF, Moreton RC, Staniforth JN, Young PM, Tobyn MJ, Edge S. Surface energy of microcrystalline cellulose determined by capillary intrusion and inverse gas chromatography. AAPS J 2008; 10:494-503. [PMID: 18841480 PMCID: PMC2761700 DOI: 10.1208/s12248-008-9057-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 07/09/2008] [Indexed: 11/30/2022] Open
Abstract
Surface energy data for samples of microcrystalline cellulose have been obtained using two techniques: capillary intrusion and inverse gas chromatography. Ten microcrystalline cellulose materials, studied using capillary intrusion, showed significant differences in the measured surface energetics (in terms of total surface energy and the acid-base characteristics of the cellulose surface), with variations noted between the seven different manufacturers who produced the microcrystalline cellulose samples. The surface energy data from capillary intrusion was similar to data obtained using inverse gas chromatography with the column maintained at 44% relative humidity for the three samples of microcrystalline cellulose studied. This suggests that capillary intrusion may be a suitable method to study the surface energy of pharmaceutical samples.
Collapse
Affiliation(s)
- D. Fraser Steele
- />Pharmaceutical Technology Research Group, Department of Pharmacy & Pharmacology, University of Bath, Bath, BA2 7AY UK
- />Drug Delivery Solutions Ltd, Leatherhead Enterprise Centre, Randalls Rd, Leatherhead, Surrey KT22 7RY UK
| | | | - John N. Staniforth
- />Pharmaceutical Technology Research Group, Department of Pharmacy & Pharmacology, University of Bath, Bath, BA2 7AY UK
| | - Paul M. Young
- />Advanced Drug Delivery Group, University of Sydney, Sydney, NSW 2006 Australia
| | - Michael J. Tobyn
- />Pharmaceutical Technology Research Group, Department of Pharmacy & Pharmacology, University of Bath, Bath, BA2 7AY UK
| | - Stephen Edge
- />Pharmaceutical Technology Research Group, Department of Pharmacy & Pharmacology, University of Bath, Bath, BA2 7AY UK
| |
Collapse
|
12
|
Szepes A, Makai Z, Blümer C, Mäder K, Kása P, Szabó-Révész P. Characterization and drug delivery behaviour of starch-based hydrogels prepared via isostatic ultrahigh pressure. Carbohydr Polym 2008. [DOI: 10.1016/j.carbpol.2007.09.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Muster TH. Dynamic contact angle measurement on materials with an unknown wet perimeter. Int J Pharm 2004; 282:189-91. [PMID: 15336394 DOI: 10.1016/j.ijpharm.2004.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 06/23/2004] [Accepted: 06/24/2004] [Indexed: 11/23/2022]
Abstract
Whilst contact angle measurements obtained using the Wilhelmy balance technique are accurate and reproducible for planar surfaces, their use for characterizing particulate materials is highly dependent upon accurate knowledge of the wet perimeter. This communication suggests that the approach of Pepin et al. [Int. J. Pharm. 152 (1997) 1] for wet perimeter determination using non-polar liquids may lead to erroneous conclusions. Alternative approaches for wet perimeter determination are suggested.
Collapse
Affiliation(s)
- Tim H Muster
- Corrosion Science and Surface Design Team, CSIRO Manufacturing and Infrastructure Technology, Graham Road, Highett, Vic. 3190, Australia.
| |
Collapse
|