1
|
Aging and Cancer: The Waning of Community Bonds. Cells 2021; 10:cells10092269. [PMID: 34571918 PMCID: PMC8468626 DOI: 10.3390/cells10092269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer often arises in the context of an altered tissue landscape. We argue that a major contribution of aging towards increasing the risk of neoplastic disease is conveyed through effects on the microenvironment. It is now firmly established that aged tissues are prone to develop clones of altered cells, most of which are compatible with a normal histological appearance. Such increased clonogenic potential results in part from a generalized decrease in proliferative fitness, favoring the emergence of more competitive variant clones. However, specific cellular genotypes can emerge with reduced cooperative and integrative capacity, leading to disruption of tissue architecture and paving the way towards progression to overt neoplastic phenotypes.
Collapse
|
2
|
Serra M, Marongiu F, Pisu MG, Serra M, Laconi E. Time-restricted feeding delays the emergence of the age-associated, neoplastic-prone tissue landscape. Aging (Albany NY) 2020; 11:3851-3863. [PMID: 31188781 PMCID: PMC6594823 DOI: 10.18632/aging.102021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/05/2019] [Indexed: 12/18/2022]
Abstract
Aging increases the risk of cancer partly through alterations in the tissue microenvironment. Time-restricted feeding (TRF) is being proposed as an effective strategy to delay biological aging. In the present studies, we assessed the effect of long-term exposure to TRF on the emergence of the age-associated, neoplastic-prone tissue landscape. Animals were exposed to either ad libitum feeding (ALF) or TRF for 18 months and then transplanted with hepatocytes isolated from pre-neoplastic nodules. Both groups were continued ALF and the growth of transplanted cells was evaluated 3 months later. A significant decrease in frequency of larger size clusters of pre-neoplastic hepatocytes was seen in TRF-exposed group compared to controls. Furthermore, TRF modified several parameters related to both liver and systemic aging towards the persistence of a younger phenotype, including a decrease in liver cell senescence, diminished fat accumulation and up-regulation of SIRT1 in the liver, down-regulation of plasma IGF-1, decreased levels of plasma lipoproteins and up-regulation of hippocampal brain-derived growth factor (BDNF).These results indicate that TRF was able to delay the onset of the neoplastic-prone tissue landscape typical of aging. To our knowledge, this is the first investigation to describe a direct beneficial effect of TRF on early phases of carcinogenesis.
Collapse
Affiliation(s)
- Monica Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Mariangela Serra
- Department of Life and Environment Sciences University of Cagliari, Cagliari, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Marongiu F, Serra M, Laconi E. Development versus Evolution in Cancer Biology. Trends Cancer 2018; 4:342-348. [PMID: 29709258 DOI: 10.1016/j.trecan.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 01/08/2023]
Abstract
The terms 'development' and 'evolution' are both used to describe the unfolding of the carcinogenic process. However, there is increasing awareness of an essential difference in the meanings of these two terms with reference to cancer. We discuss evidence suggesting that the concepts of development and evolution are both pertinent to the description of carcinogenesis; however, they appropriately apply to distinct phases of a multistep process. Such a distinction bears important implications for the study and management of cancer.
Collapse
Affiliation(s)
- Fabio Marongiu
- Unit of Experimental Medicine, Department of Biomedical Sciences, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy
| | - Monica Serra
- Unit of Experimental Medicine, Department of Biomedical Sciences, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy
| | - Ezio Laconi
- Unit of Experimental Medicine, Department of Biomedical Sciences, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy.
| |
Collapse
|
4
|
Braun MS, Wink M. Exposure, Occurrence, and Chemistry of Fumonisins and their Cryptic Derivatives. Compr Rev Food Sci Food Saf 2018; 17:769-791. [DOI: 10.1111/1541-4337.12334] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/20/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Markus Santhosh Braun
- Inst. of Pharmacy and Molecular Biotechnology; Heidelberg Univ.; INF 364 69120 Heidelberg Germany
| | - Michael Wink
- Inst. of Pharmacy and Molecular Biotechnology; Heidelberg Univ.; INF 364 69120 Heidelberg Germany
| |
Collapse
|
5
|
Al-Hashimi F, J. Diaz-Cano S. Multi-target analysis of neoplasms for the evaluation of tumor progression: stochastic approach of biologic processes. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.1.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Marongiu F, Serra MP, Doratiotto S, Sini M, Fanti M, Cadoni E, Serra M, Laconi E. Aging promotes neoplastic disease through effects on the tissue microenvironment. Aging (Albany NY) 2017; 8:3390-3399. [PMID: 27929382 PMCID: PMC5270675 DOI: 10.18632/aging.101128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022]
Abstract
A better understanding of the complex relationship between aging and cancer will provide important tools for the prevention and treatment of neoplasia. In these studies, the hypothesis was tested that aging may fuel carcinogenesis via alterations imposed in the tissue microenvironment. Preneoplastic hepatocytes isolated from liver nodules were orthotopically injected into either young or old syngeneic rats and their fate was followed over time using the dipeptidyl-peptidase type IV (DPPIV) system to track donor-derived-cells. At 3 months post-Tx, the mean size of donor-derived clusters was 11±3 cells in young vs. 42±8 in old recipients. At 8 months post-Tx, no visible lesion were detected in any of 21 young recipients, while 17/18 animals transplanted at old age displayed hepatic nodules, including 7 large tumors. All tumors expressed the DPPIV marker enzyme, indicating that they originated from transplanted cells. Expression of senescence-associated β-galactosidase was common in liver of 18-month old animals, while it was a rare finding in young controls. Finally, both mRNA and IL6 protein were found to be increased in the liver of aged rats compared to young controls. These results are interpreted to indicate that the microenvironment of the aged liver promotes the growth of pre-neoplastic hepatocytes.
Collapse
Affiliation(s)
- Fabio Marongiu
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, 09124, Cagliari, Italy
| | - Maria Paola Serra
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, 09124, Cagliari, Italy
| | - Silvia Doratiotto
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, 09124, Cagliari, Italy
| | - Marcella Sini
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, 09124, Cagliari, Italy
| | - Maura Fanti
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, 09124, Cagliari, Italy
| | - Erika Cadoni
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, 09124, Cagliari, Italy
| | - Monica Serra
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, 09124, Cagliari, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, 09124, Cagliari, Italy
| |
Collapse
|
7
|
Riedel S, Abel S, Burger HM, van der Westhuizen L, Swanevelder S, Gelderblom WCA. Differential modulation of the lipid metabolism as a model for cellular resistance to fumonisin B1-induced cytotoxic effects in vitro. Prostaglandins Leukot Essent Fatty Acids 2016; 109:39-51. [PMID: 27269712 DOI: 10.1016/j.plefa.2016.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 12/30/2022]
Abstract
Differential sensitivity of primary hepatocytes and Chang cells to the cancer promoter fumonisin B1 (FB1)-induced cytotoxic effects were investigated in relation to changes in membrane lipid distribution. In contrast to primary hepatocytes, Chang cells were resistant to FB1-induced cytotoxic effects. This was associated with a high cholesterol (Chol) and sphingomyelin (SM) and low phosphatidylcholine (PC) content, resulting in a significant (P<0.05) decrease in phosphatidylethanolamine (PE)/PC ratio, increased Chol/total phosphoglyceride (TPG) ratios and low total polyunsaturated fatty acids (PUFA) content in PC and PE, suggesting a more rigid membrane structure. High levels of C18:1 and reduced polyunsaturated fatty acid (PUFA) levels are likely to provide selective resistance to FB1-induced oxidative stress. FB1-associated lipid changes included decreases in SM and Chol, increases in sphinganine (Sa) and PE with the increases in key saturated, monounsaturated, and PUFAs in PE as key role players in the differential responses to FB1-induced cell growth responses in cells.
Collapse
Affiliation(s)
- S Riedel
- Biomedical Research and Innovation Platform, South African Medical Research Council, PO Box 19070, Tygerberg 7505, South Africa.
| | - S Abel
- Mycotoxicology and Chemoprevention Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa.
| | - H-M Burger
- Mycotoxicology and Chemoprevention Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa.
| | - L van der Westhuizen
- Oxidative Stress Research Centre, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa.
| | - S Swanevelder
- Biostatistics Unit, South African Medical Research Council, PO Box 19070, Tygerberg, South Africa.
| | - W C A Gelderblom
- Mycotoxicology and Chemoprevention Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa; Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
8
|
Mejía-Aranguré JM. Molecular epidemiology of acute leukemia in children: causal model, interaction of three factors-susceptibility, environmental exposure and vulnerability period. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2016; 73:55-63. [PMID: 29421234 DOI: 10.1016/j.bmhimx.2015.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/03/2015] [Indexed: 01/07/2023] Open
Abstract
Acute leukemias have a huge morphological, cytogenetic and molecular heterogeneity and genetic polymorphisms associated with susceptibility. Every leukemia presents causal factors associated with the development of the disease. Particularly, when three factors are present, they result in the development of acute leukemia. These phenomena are susceptibility, environmental exposure and a period that, for this model, has been called the period of vulnerability. This framework shows how the concepts of molecular epidemiology have established a reference from which it is more feasible to identify the environmental factors associated with the development of leukemia in children. Subsequently, the arguments show that only susceptible children are likely to develop leukemia once exposed to an environmental factor. For additional exposure, if the child is not susceptible to leukemia, the disease does not develop. In addition, this exposure should occur during a time window when hematopoietic cells and their environment are more vulnerable to such interaction, causing the development of leukemia. This model seeks to predict the time when the leukemia develops and attempts to give a context in which the causality of childhood leukemia should be studied. This information can influence and reduce the risk of a child developing leukemia.
Collapse
Affiliation(s)
- Juan Manuel Mejía-Aranguré
- Unidad de Investigación en Epidemiología Clínica, Unidad Médica de Alta Especialidad, Hospital de Pediatría, Centro Médico Nacional Siglo XXI and Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social, Ciudad de México, México.
| |
Collapse
|
9
|
Casey SC, Vaccari M, Al-Mulla F, Al-Temaimi R, Amedei A, Barcellos-Hoff MH, Brown DG, Chapellier M, Christopher J, Curran CS, Forte S, Hamid RA, Heneberg P, Koch DC, Krishnakumar PK, Laconi E, Maguer-Satta V, Marongiu F, Memeo L, Mondello C, Raju J, Roman J, Roy R, Ryan EP, Ryeom S, Salem HK, Scovassi AI, Singh N, Soucek L, Vermeulen L, Whitfield JR, Woodrick J, Colacci A, Bisson WH, Felsher DW. The effect of environmental chemicals on the tumor microenvironment. Carcinogenesis 2015; 36 Suppl 1:S160-83. [PMID: 26106136 DOI: 10.1093/carcin/bgv035] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through effects on epithelial cells, the most common origin of cancer, as well as on stromal cells, extracellular matrix components and immune cells. Here, we review how environmental exposures can perturb the tumor microenvironment. We suggest a role for disrupting chemicals such as nickel chloride, Bisphenol A, butyltins, methylmercury and paraquat as well as more traditional carcinogens, such as radiation, and pharmaceuticals, such as diabetes medications, in the disruption of the tumor microenvironment. Further studies interrogating the role of chemicals and their mixtures in dose-dependent effects on the tumor microenvironment could have important general mechanistic implications for the etiology and prevention of tumorigenesis.
Collapse
Affiliation(s)
- Stephanie C Casey
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA 94305, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy, Department of Pathology, Kuwait University, 13110 Safat, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy, Department of Radiation Oncology, NYU School of Medicine, New York, NY 10016, USA, Department of Environmental and Radiological Health Sciences, Colorado State University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Centre De Recherche En Cancerologie De Lyon, U1052-UMR5286, Université de Lyon, 69007 Lyon, France, Cancer Research UK, Cambridge Institute, University of Cambridge, Robinson Way, CB2 0RE Cambridge, UK, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia, Charles University in Prague, Third Faculty of Medicine, 100 00 Prague 10, Czech Republic, Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia, Department of Science and Biomedical Technology, University of Cagliari, 09124 Cagliari, Italy, Pathology Unit, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy, Regulatory Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada, Department of Medicine, University of Louisville, Louisville, KY 40202, USA, Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA, University of Pennsylvania School of Medicine
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, 13110 Safat, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy
| | | | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences, Colorado State University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Marion Chapellier
- Centre De Recherche En Cancerologie De Lyon, U1052-UMR5286, Université de Lyon, 69007 Lyon, France
| | - Joseph Christopher
- Cancer Research UK, Cambridge Institute, University of Cambridge, Robinson Way, CB2 0RE Cambridge, UK
| | - Colleen S Curran
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Roslida A Hamid
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia
| | - Petr Heneberg
- Charles University in Prague, Third Faculty of Medicine, 100 00 Prague 10, Czech Republic
| | - Daniel C Koch
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA 94305, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy, Department of Pathology, Kuwait University, 13110 Safat, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy, Department of Radiation Oncology, NYU School of Medicine, New York, NY 10016, USA, Department of Environmental and Radiological Health Sciences, Colorado State University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Centre De Recherche En Cancerologie De Lyon, U1052-UMR5286, Université de Lyon, 69007 Lyon, France, Cancer Research UK, Cambridge Institute, University of Cambridge, Robinson Way, CB2 0RE Cambridge, UK, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia, Charles University in Prague, Third Faculty of Medicine, 100 00 Prague 10, Czech Republic, Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia, Department of Science and Biomedical Technology, University of Cagliari, 09124 Cagliari, Italy, Pathology Unit, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy, Regulatory Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada, Department of Medicine, University of Louisville, Louisville, KY 40202, USA, Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA, University of Pennsylvania School of Medicine
| | - P K Krishnakumar
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Ezio Laconi
- Department of Science and Biomedical Technology, University of Cagliari, 09124 Cagliari, Italy
| | - Veronique Maguer-Satta
- Centre De Recherche En Cancerologie De Lyon, U1052-UMR5286, Université de Lyon, 69007 Lyon, France
| | - Fabio Marongiu
- Department of Science and Biomedical Technology, University of Cagliari, 09124 Cagliari, Italy
| | - Lorenzo Memeo
- Pathology Unit, Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Jayadev Raju
- Regulatory Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Jesse Roman
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Sandra Ryeom
- University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Hosni K Salem
- Urology Department, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 11562, Egypt
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Neetu Singh
- Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology (VHIO) and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08035 Barcelona, Spain
| | - Louis Vermeulen
- Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jonathan R Whitfield
- Vall d'Hebron Institute of Oncology (VHIO) and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08035 Barcelona, Spain
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - William H Bisson
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA, and
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Riedel S, Abel S, Swanevelder S, Gelderblom WCA. Induction of an altered lipid phenotype by two cancer promoting treatments in rat liver. Food Chem Toxicol 2015; 78:96-104. [PMID: 25656646 DOI: 10.1016/j.fct.2015.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 01/06/2015] [Accepted: 01/26/2015] [Indexed: 02/02/2023]
Abstract
Changes in lipid metabolism have been associated with tumor promotion in rat liver. Similarities and differences of lipid parameters were investigated using the mycotoxin fumonisin B1 (FB1) and the 2-acetylaminofluorene/partial hepatectomy (AAF/PH) treatments as cancer promoters in rat liver. A typical lipid phenotype was observed, including increased membranal phosphatidylethanolamine (PE) and cholesterol content, increased levels of C16:0 and monounsaturated fatty acids in PE and phosphatidylcholine (PC), as well as a decrease in C18:0 and long-chained polyunsaturated fatty acids in the PC fraction. The observed lipid changes, which likely resulted in changes in membrane structure and fluidity, may represent a growth stimulus exerted by the cancer promoters that could provide initiated cells with a selective growth advantage. This study provided insight into complex lipid profiles induced by two different cancer promoting treatments and their potential role in the development of hepatocyte nodules, which can be used to identify targets for the development of chemopreventive strategies against cancer promotion in the liver.
Collapse
Affiliation(s)
- S Riedel
- Diabetes Discovery Platform, South African Medical Research Council, PO Box 19070, Tygerberg, South Africa.
| | - S Abel
- Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa
| | - S Swanevelder
- Biostatistics Unit, South African Medical Research Council, PO Box 19070, Tygerberg, South Africa
| | - W C A Gelderblom
- Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa; Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
11
|
Lou X, Zhang J, Liu S, Xu N, Liao DJ. The other side of the coin: the tumor-suppressive aspect of oncogenes and the oncogenic aspect of tumor-suppressive genes, such as those along the CCND-CDK4/6-RB axis. Cell Cycle 2014; 13:1677-93. [PMID: 24799665 DOI: 10.4161/cc.29082] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although cancer-regulatory genes are dichotomized to oncogenes and tumor-suppressor gene s, in reality they can be oncogenic in one situation but tumor-suppressive in another. This dual-function nature, which sometimes hampers our understanding of tumor biology, has several manifestations: (1) Most canonically defined genes have multiple mRNAs, regulatory RNAs, protein isoforms, and posttranslational modifications; (2) Genes may interact at different levels, such as by forming chimeric RNAs or by forming different protein complexes; (3) Increased levels of tumor-suppressive genes in normal cells drive proliferation of cancer progenitor cells in the same organ or tissue by imposing compensatory proliferation pressure, which presents the dual-function nature as a cell-cell interaction. All these manifestations of dual functions can find examples in the genes along the CCND-CDK4/6-RB axis. The dual-function nature also underlies the heterogeneity of cancer cells. Gene-targeting chemotherapies, including that targets CDK4, are effective to some cancer cells but in the meantime may promote growth or progression of some others in the same patient. Redefining "gene" by considering each mRNA, regulatory RNA, protein isoform, and posttranslational modification from the same genomic locus as a "gene" may help in better understanding tumor biology and better selecting targets for different sub-populations of cancer cells in individual patients for personalized therapy.
Collapse
Affiliation(s)
- Xiaomin Lou
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, PR China
| | - Ju Zhang
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, PR China
| | - Siqi Liu
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, PR China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology; Cancer Institute; Chinese Academy of Medical Science; Beijing, PR China
| | - D Joshua Liao
- Hormel Institute; University of Minnesota; Austin, MN USA
| |
Collapse
|
12
|
Marongiu F, Doratiotto S, Sini M, Serra MP, Laconi E. Cancer as a disease of tissue pattern formation. ACTA ACUST UNITED AC 2012; 47:175-207. [DOI: 10.1016/j.proghi.2012.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2012] [Indexed: 12/21/2022]
|
13
|
Xu JY, Meng QH, Chong Y, Jiao Y, Zhao L, Rosen EM, Fan S. Sanguinarine inhibits growth of human cervical cancer cells through the induction of apoptosis. Oncol Rep 2012; 28:2264-70. [PMID: 22965493 DOI: 10.3892/or.2012.2024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/25/2012] [Indexed: 12/14/2022] Open
Abstract
Sanguinarine, a natural benzophenanthridine alkaloid, has been shown to possess anticancer activity in vitro and in vivo. In the present study, we demonstrated that sanguinarine caused a dose-dependent inhibition of growth in HeLa and SiHa human cervical cancer cells, i.e., 2.43 µmol/l (IC50) in HeLa cells and 3.07 µmol/l in SiHa cells. Cell cycle analysis revealed that sanguinarine significantly increased the sub-G1 population, from 1.7 to 59.7% in HeLa cells and from 1.7 to 41.7% in SiHa cells. Sanguinarine caused a dose-dependent decrease in Bcl-2 and NF-κB protein expression and a significant increase in Bax protein expression. Our findings indicate that sanguinarine as an effective anticancer drug candidate inhibits the growth of cervical cancer cells through the induction of apoptosis.
Collapse
Affiliation(s)
- Jia-Ying Xu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | | | | | | | | | | | | |
Collapse
|
14
|
Diaz-Cano SJ. Tumor heterogeneity: mechanisms and bases for a reliable application of molecular marker design. Int J Mol Sci 2012; 13:1951-2011. [PMID: 22408433 PMCID: PMC3292002 DOI: 10.3390/ijms13021951] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/23/2012] [Accepted: 02/01/2012] [Indexed: 12/22/2022] Open
Abstract
Tumor heterogeneity is a confusing finding in the assessment of neoplasms, potentially resulting in inaccurate diagnostic, prognostic and predictive tests. This tumor heterogeneity is not always a random and unpredictable phenomenon, whose knowledge helps designing better tests. The biologic reasons for this intratumoral heterogeneity would then be important to understand both the natural history of neoplasms and the selection of test samples for reliable analysis. The main factors contributing to intratumoral heterogeneity inducing gene abnormalities or modifying its expression include: the gradient ischemic level within neoplasms, the action of tumor microenvironment (bidirectional interaction between tumor cells and stroma), mechanisms of intercellular transference of genetic information (exosomes), and differential mechanisms of sequence-independent modifications of genetic material and proteins. The intratumoral heterogeneity is at the origin of tumor progression and it is also the byproduct of the selection process during progression. Any analysis of heterogeneity mechanisms must be integrated within the process of segregation of genetic changes in tumor cells during the clonal expansion and progression of neoplasms. The evaluation of these mechanisms must also consider the redundancy and pleiotropism of molecular pathways, for which appropriate surrogate markers would support the presence or not of heterogeneous genetics and the main mechanisms responsible. This knowledge would constitute a solid scientific background for future therapeutic planning.
Collapse
Affiliation(s)
- Salvador J. Diaz-Cano
- Department Histopathology, King’s College Hospital and King’s Health Partners, Denmark Hill, London SE5 9RS, UK; E-Mail: ; Tel.: +44-20-3299-3041; Fax: +44-20-3299-3670
| |
Collapse
|
15
|
Serra MP, Doratiotto S, Marongiu F, Laconi E. Normal hepatocyte transplantation delays the emergence of chemically induced preneoplastic nodules in rat liver. Cell Transplant 2011; 21:671-7. [PMID: 21944459 DOI: 10.3727/096368911x600975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cancer often arises in a background of chronic tissue damage. It is also increasingly appreciated that such an injured tissue microenvironment might foster the selective emergence of altered cells, leading to neoplasia. Accordingly, reversal of chronic tissue damage could represent a potential strategy to counteract neoplastic disease. In these studies, we aim to investigate whether transplantation of normal cells in the context of an injured, neoplastic-prone microenvironment might impact on the evolution of the carcinogenic process. A rat model of chemically induced hepatocarcinogenesis was used. Animals were given a single dose of diethylnitrosamine (DENA), followed by two injections of retrorsine (RS), a pyrrolizidine alkaloid that imposes a persistent block on hepatocyte cell cycle. At the end of this protocol, rats were either given no further treatment or injected, via the portal circulation, with 4 million normal hepatocytes isolated from a syngenic donor. After 3 months, rats given DENA+RS alone displayed numerous discrete nodular lesions (up to 30 per liver), ranging 1 to 3 mm in size. On the other hand, in animals receiving DENA+RS and transplantation, donor hepatocytes were able to repopulate over 50% of the host liver, as expected. Most importantly, both the number and the size of hepatocyte nodules were greatly reduced in these animals (percent nodular area was 1.8 ± 0.3, down from a control value of 8.5 ± 2.8). The above data indicate that strategies aimed at reestablishing a normal tissue microenvironment might be relevant to the management of neoplastic disease.
Collapse
Affiliation(s)
- Maria Paola Serra
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | | | | | | |
Collapse
|
16
|
Wang C, Tai Y, Lisanti MP, Liao DJ. c-Myc induction of programmed cell death may contribute to carcinogenesis: a perspective inspired by several concepts of chemical carcinogenesis. Cancer Biol Ther 2011; 11:615-26. [PMID: 21278493 DOI: 10.4161/cbt.11.7.14688] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The c-Myc protein, encoded by c-myc gene, in its wild-type form can induce tumors with a high frequency and can induce massive programmed cell death (PCD) in most transgenic mouse models, with greater efficiency than other oncogenes. Evidence also indicates that c-Myc can cause proliferative inhibition, i.e. mitoinhibition. The c-Myc-induced PCD and mitoinhibition, which may be attributable to its inhibition of cyclin D1 and induction of p53, may impose a pressure of compensatory proliferation, i.e. regeneration, onto the initiated cells (cancer progenitor cells) that occur sporadically and are resistant to the mitoinhibition. The initiated cells can thus proliferate robustly and progress to a malignancy. This hypothetical thinking, i.e. the concurrent PCD and mitoinhibition induced by c-Myc can promote carcinogenesis, predicts that an optimal balance is achieved between cell death and ensuing regeneration during oncogenic transformation by c-Myc, which can better promote carcinogenesis. In this perspective, we summarize accumulating evidence and challenge the current model that oncoprotein induces carcinogenesis by promoting cellular proliferation and/or inhibiting PCD. Inspired by c-myc oncogene, we surmise that many tumor-suppressive or growth-inhibitory genes may also be able to promote carcinogenesis in a similar way, i.e. by inducing PCD and/or mitoinhibition of normal cells to create a need for compensatory proliferation that drives a robust replication of initiating cells.
Collapse
Affiliation(s)
- Chenguang Wang
- Department of Stem Cell and Regenerative Medicine, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
17
|
Mroz P, Hashmi JT, Huang YY, Lange N, Hamblin MR. Stimulation of anti-tumor immunity by photodynamic therapy. Expert Rev Clin Immunol 2011; 7:75-91. [PMID: 21162652 DOI: 10.1586/eci.10.81] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photodynamic therapy (PDT) is a rapidly developing cancer treatment that utilizes the combination of nontoxic dyes and harmless visible light to destroy tumors by generating reactive oxygen species. PDT produces tumor-cell destruction in the context of acute inflammation that acts as a 'danger signal' to the innate immune system. Activation of the innate immune system increases the priming of tumor-specific T lymphocytes that have the ability to recognize and destroy distant tumor cells and, in addition, lead to the development of an immune memory that can combat recurrence of the cancer at a later point in time. PDT may be also successfully combined with immunomodulating strategies that are capable of overcoming or bypassing the escape mechanisms employed by the progressing tumor to evade immune attack. This article will cover the role of the immune response in PDT anti-tumor effectiveness. It will highlight the milestones in the development of PDT-mediated anti-tumor immunity and emphasize the combination strategies that may improve this therapy.
Collapse
Affiliation(s)
- Pawel Mroz
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | |
Collapse
|
18
|
Gelderblom WCA, Marasas WFO. Controversies in fumonisin mycotoxicology and risk assessment. Hum Exp Toxicol 2011; 31:215-35. [DOI: 10.1177/0960327110395338] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- WCA Gelderblom
- PROMEC Unit, Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Stellenbosch, 7602 South Africa
| | - WFO Marasas
- PROMEC Unit, Medical Research Council, Tygerberg, South Africa
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602 South Africa
| |
Collapse
|
19
|
Marquez-Quiñones A, Čipak A, Žarkovic K, Fattel-Fazenda S, Villa-Treviño S, Waeg G, Žarkovic N, Guéraud F. HNE-protein adducts formation in different pre-carcinogenic stages of hepatitis in LEC rats. Free Radic Res 2009; 44:119-27. [DOI: 10.3109/10715760903338071] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
Laconi E, Doratiotto S, Vineis P. The microenvironments of multistage carcinogenesis. Semin Cancer Biol 2008; 18:322-9. [PMID: 18456510 DOI: 10.1016/j.semcancer.2008.03.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 03/25/2008] [Indexed: 12/19/2022]
Abstract
Overt neoplasia is often the result of a chronic disease process encompassing an extended segment of the lifespan of any species. A common pathway in the natural history of the disease is the appearance of focal proliferative lesions that are known to act as precursors for cancer development. It is becoming increasingly apparent that the emergence of such lesions is not a cell-autonomous phenomenon, but is heavily dependent on microenvironmental cues derived from the surrounding tissue. Specific alterations in the tissue microenvironment that can foster the selective growth of focal lesions are discussed herein. Furthermore, we argue that a fundamental property of focal lesions as it relates to their precancerous nature lies in their altered growth pattern as compared to the tissue where they reside. The resulting altered tissue architecture translates into the emergence of a unique tumor microenvironment inside these lesions, associated with altered blood vessels and/or blood supply which in turn can trigger biochemical and metabolic changes fueling tumor progression. A deeper understanding of the role(s) of tissue and tumor microenvironments in the pathogenesis of cancer is essential to design more effective strategies for the management of this disease.
Collapse
Affiliation(s)
- Ezio Laconi
- Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Patologia Sperimentale, Università di Cagliari, 09125 Cagliari, Italy.
| | | | | |
Collapse
|
21
|
Anticancer Cell Therapy with TRAIL-Armed CD34+ Progenitor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 610:100-11. [DOI: 10.1007/978-0-387-73898-7_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Abstract
The role of the microenvironment in cancer development is being increasingly appreciated. This paper will review data that highlight an emerging distinction between two different entities: the microenvironment that altered/preneoplastic/neoplastic cells find in the tissue where they reside, and the peculiar microenvironment inside the focal lesion (tumor) that these cells contribute to create. While alteration in the tissue environment can contribute to the selective clonal expansion of altered cells to form focal proliferative lesions, the atypical, non-integrated growth pattern that defines such focal lesions leads to the appearance of what is correctly referred to as the tumor microenvironment. The latter represents a new and unique biological milieu, characterized by hypoxia, acidosis and other biochemical and metabolic alterations, including genetic instability, that can set the stage for tumor progression to occur. Thus, the two microenvironments act in sequence and play complementary roles in the development of overt neoplasia. This distinction has important implications for the understanding of disease pathogenesis and for the management of preneoplastic/neoplastic lesions at various stages of cancer development.
Collapse
Affiliation(s)
- Ezio Laconi
- Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Patologia Sperimentale, Università di Cagliari, 09125 Cagliari, Italy.
| |
Collapse
|
23
|
Carlo-Stella C, Lavazza C, Locatelli A, Viganò L, Gianni AM, Gianni L. Targeting TRAIL agonistic receptors for cancer therapy. Clin Cancer Res 2007; 13:2313-7. [PMID: 17438088 DOI: 10.1158/1078-0432.ccr-06-2774] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Based on preclinical studies demonstrating that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) exerts a potent and cancer cell-specific proapoptotic activity, recombinant TRAIL as well as agonistic anti-TRAIL-R1 and anti-TRAIL-R2 antibodies recently entered clinical trials. Additionally, gene therapy approaches using TRAIL-encoding adenovirus (Ad-TRAIL) are currently being developed to overcome the limitations inherent to TRAIL receptor targeting, i.e., pharmacokinetic of soluble TRAIL, pattern of receptor expression, and tumor cell resistance. To optimize gene therapy approaches, CD34+ cells transduced with Ad-TRAIL (CD34-TRAIL+) have been investigated as cellular vehicles for TRAIL delivery. Transduced cells exhibit a potent tumor killing activity on a variety of tumor cell types both in vitro and in vivo and are also cytotoxic against tumor cells resistant to soluble TRAIL. Studies in tumor-bearing nonobese diabetic/severe combined immunodeficient mice suggest that the antitumor effect of CD34-TRAIL+ cells is mediated by both direct tumor cell killing due to apoptosis and indirect tumor cell killing due to vascular-disrupting mechanisms. The clinical translation of cell and gene therapy approaches represent a challenging strategy that might achieve systemic tumor targeting and increased intratumor delivery of the therapeutic agent.
Collapse
|
24
|
Chang MC, Chan CP, Wang YJ, Lee PH, Chen LI, Tsai YL, Lin BR, Wang YL, Jeng JH. Induction of necrosis and apoptosis to KB cancer cells by sanguinarine is associated with reactive oxygen species production and mitochondrial membrane depolarization. Toxicol Appl Pharmacol 2006; 218:143-51. [PMID: 17196629 DOI: 10.1016/j.taap.2006.10.025] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 10/10/2006] [Accepted: 10/30/2006] [Indexed: 12/14/2022]
Abstract
Sanguinarine is a benzopheanthridine alkaloid present in the root of Sanguinaria canadensis L. and Chellidonium majus L. In this study, sanguinarine (2 and 3 microM) exhibited cytotoxicity to KB cancer cells by decreasing MTT reduction to 83% and 52% of control after 24-h of exposure. Sanguinarine also inhibited the colony forming capacity (>52-58%) and growth of KB cancer cells at concentrations higher than 0.5-1 microM. Short-term exposure to sanguinarine (>0.5 microM) effectively suppressed the adhesion of KB cells to collagen and fibronectin (FN). Sanguinarine (2 and 3 microM) induced evident apoptosis as indicated by an increase in sub-G0/G1 populations, which was detected after 6-h of exposure. Only a slight increase in cells arresting in S-phase and G2/M was noted. Induction of KB cell apoptosis and necrosis by sanguinarine (2 and 3 microM) was further confirmed by Annexin V-PI dual staining flow cytometry and the presence of DNA fragmentation. The cytotoxicity by sanguinarine was accompanied by an increase in production of reactive oxygen species (ROS) and depolarization of mitochondrial membrane potential as indicated by single cell flow cytometric analysis of DCF and rhodamine fluorescence. NAC (1 and 3 mM) and catalase (2000 U/ml) prevented the sanguinarine-induced ROS production and cytotoxicity, whereas dimethylthiourea (DMT) showed no marked preventive effect. These results suggest that sanguinarine has anticarcinogenic properties with induction of ROS production and mitochondrial membrane depolarization, which mediate cancer cell death.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Biomedical Science Team, Chang Gung Institute of Technology, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pasciu D, Montisci S, Greco M, Doratiotto S, Pitzalis S, Pani P, Laconi S, Laconi E. Aging is associated with increased clonogenic potential in rat liver in vivo. Aging Cell 2006; 5:373-7. [PMID: 16911563 DOI: 10.1111/j.1474-9726.2006.00230.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cancer increases with age and often arises from the selective clonal growth of altered cells. Thus, any environment favoring clonal growth per se poses a higher risk for cancer development. Using a genetically tagged animal model, we investigated whether aging is associated with increased clonogenic potential. Groups of 4-, 12-, 18-, and 24-month-old Fischer 344 rats were infused (via the portal vein) with 2x10(6) hepatocytes isolated from a normal syngenic 2-month-old donor. Animals deficient in dipeptidyl-peptidase type IV (DPP-IV-) enzyme were used as recipients, allowing for the histochemical detection of injected DPP-IV+ cells. Groups of animals were sacrificed at various times thereafter. No growth of DPP-IV+ transplanted hepatocytes was present after either 2 or 6 months in the liver of rats transplanted at young age, as expected. In striking contrast, significant expansion of donor-derived cells was seen in animals transplanted at the age of 18 months: clusters comprising 7-10 DPP-IV+ hepatocytes/cross-section were present after 2 months and were markedly enlarged after 6 months (mean of 88+/-35 cells/cluster/cross-section). These results indicate that the microenvironment of the aged liver supports the clonal expansion of transplanted normal hepatocytes. Such clonogenic environments can foster the selective growth of pre-existing altered cells, thereby increasing the overall risk for cancer development associated with aging.
Collapse
Affiliation(s)
- Daniela Pasciu
- Department of Biomedical Sciences and Biotechnology, Section of Experimental Pathology, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Monceviciūte-Eringiene E. Neoplastic growth: the consequence of evolutionary malignant resistance to chronic damage for survival of cells (review of a new theory of the origin of cancer). Med Hypotheses 2005; 65:595-604. [PMID: 15919162 DOI: 10.1016/j.mehy.2005.02.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 02/16/2005] [Indexed: 11/18/2022]
Abstract
In the present review, a new theory that the mechanisms of general evolutionary persistent resistance to damaging factors are closely related to the development of tumour cells is introduced. Evolutionary resistance and its variability have an immense power to drive and control the process of carcinogenesis and the success of microbial and antitumour chemotherapy. First, this phenomenon of adaptation is characteristic of microbial cells whose resistance to antibiotics and other chemotherapeutic drugs is manifested through ATP-dependent transmembrane transporters. The structure and function of some multidrug transporters of resistance are conserved from microorganisms to mammals. When somatic cells are exposed to carcinogens and develop into tumour cells, they also acquire resistance to the toxic effects of carcinogens through these same transmembrane transporters (P-glycoprotein, glutathione S-transferases and other products of evolutionary resistance-related genes arisen for detoxification and exportation of cytotoxic xenobiotics and drugs). Cancerous cells acquire a persistent evolutionary resistance to chemotherapy drugs or irradiation through the same ATP-dependent transporters encountered in prokaryotic and eukaryotic cells. The mechanism of acquired resistance of cells to damaging factors, which becomes manifested during tumorigenic process formation, is a general biological law of primary significance in carcinogenesis. This resistance can be called malignant as, once formed, it does not disappear, as does also a clone of malignant cells. In tumorous cells, the mutagenic processes, morphological and functional modifications are a mechanism of secondary significance in carcinogenesis, contributing to formation of damage-resistant cells. This mechanism characterizes the processes of simplification arising in damage-resistant cells. Such cells acquire parasitic features. To survive under unfavourable conditions, they get adapted as if returning down the evolutionary stairs back to a more primitive stage of atavistic regression, which is characteristic of primitive forms of existence. Therefore they cease obeying the growth-regulating mechanisms in the organism and acquire the potential of unlimited division and accelerated growth (metastases) as do unicellular organisms or their forms resistant to damaging factors in the environment and in the host organism. Thus, cancer is a natural self-protective response of the damaged cells to the biological, physical and chemical damage and oxidative stress. This response has been developed in the process of evolution under the impact of the general biological Darwinian law of nature--to survive through variability and adaptation to the changed environmental conditions. Thus, malignization is the consequence of an evolutionary variety of the general biological resistance of cells to damage and stress in order to survive.
Collapse
Affiliation(s)
- E Monceviciūte-Eringiene
- Laboratory of Experimental Oncology, Institute of Oncology, Vilnius University, Santariskiu 1, Nemencinés pl. 8-24, LT-2600, Vilnius, Lithuania.
| |
Collapse
|
27
|
Kanduc D, Capuano F, Capurso SA, Geliebter J, Guercia D, Lucchese A, Mittelman A, Simone SM, Sinha AA, Tiwari R, Farber E. Cancer prevention and therapy: strategies and problems. JOURNAL OF EXPERIMENTAL THERAPEUTICS AND ONCOLOGY 2003; 3:108-14. [PMID: 14641817 DOI: 10.1046/j.1359-4117.2003.01086.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
During the next years, molecular diagnostic science and the pharmaceutical industry will face increasing demand for personalized medicine. Therapeutic treatments should be tailored to the needs of individual patient. Patients will inquire for information about potential tumor detection at an early stage when disease can be more likely to be arrested or cured with specific regimens of drug therapy. To respond to this demand, science and industry need to modulate therapeutic approaches to the continuous development of cancer. Now more than ever, it is necessary to fill the knowledge hiatus between the "beginning" and the "end" of cancer development, i.e we need to critically analyze the extensive multi-step process of cancer development that still remains poorly understood.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biochemistry and Molecular Biology, University of Bari, Via Orabona 4, 70126, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Laconi S, Pani P, Pillai S, Pasciu D, Sarma DS, Laconi E. A growth-constrained environment drives tumor progression invivo. Proc Natl Acad Sci U S A 2001; 98:7806-11. [PMID: 11427708 PMCID: PMC35423 DOI: 10.1073/pnas.131210498] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2001] [Accepted: 05/01/2001] [Indexed: 12/21/2022] Open
Abstract
We recently have shown that selective growth of transplanted normal hepatocytes can be achieved in a setting of cell cycle block of endogenous parenchymal cells. Thus, massive proliferation of donor-derived normal hepatocytes was observed in the liver of rats previously given retrorsine (RS), a naturally occurring alkaloid that blocks proliferation of resident liver cells. In the present study, the fate of nodular hepatocytes transplanted into RS-treated or normal syngeneic recipients was followed. The dipeptidyl peptidase type IV-deficient (DPPIV(-)) rat model for hepatocyte transplantation was used to distinguish donor-derived cells from recipient cells. Hepatocyte nodules were chemically induced in Fischer 344, DPPIV(+) rats; livers were then perfused and larger (>5 mm) nodules were separated from surrounding tissue. Cells isolated from either tissue were then injected into normal or RS-treated DPPIV(-) recipients. One month after transplantation, grossly visible nodules (2--3 mm) were seen in RS-treated recipients transplanted with nodular cells. They grew rapidly, occupying 80--90% of the host liver at 2 months, and progressed to hepatocellular carcinoma within 4 months. By contrast, no liver nodules developed within 6 months when nodular hepatocytes were injected into the liver of recipients not exposed to RS, although small clusters of donor-derived cells were present in these animals. Taken together, these results directly point to a fundamental role played by the host environment in modulating the growth and the progression rate of altered cells during carcinogenesis. In particular, they indicate that conditions associated with growth constraint of the host tissue can drive tumor progression in vivo.
Collapse
Affiliation(s)
- S Laconi
- Department of Medical Sciences and Biotechnology, University of Cagliari, 09125 Cagliari, Italy
| | | | | | | | | | | |
Collapse
|