1
|
Peirone S, Tirtei E, Campello A, Parlato C, Guarrera S, Mareschi K, Marini E, Asaftei SD, Bertero L, Papotti M, Priante F, Perrone S, Cereda M, Fagioli F. Impaired neutrophil-mediated cell death drives Ewing's Sarcoma in the background of Down syndrome. Front Oncol 2024; 14:1429833. [PMID: 39421445 PMCID: PMC11484044 DOI: 10.3389/fonc.2024.1429833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Ewing Sarcoma (EWS) has been reported in seven children with Down syndrome (DS). To date, a detailed assessment of this solid tumour in DS patients is yet to be made. Methods Here, we characterise a chemo-resistant mediastinal EWS in a 2-year-old DS child, the youngest ever reported case, by exploiting sequencing approaches. Results The tumour showed a neuroectodermal development driven by the EWSR1-FLI1 fusion. The inherited myeloperoxidase deficiency of the patient caused failure of neutrophil-mediated cell death and promoted genomic instability. Discussion In this context, the tumour underwent genome-wide near haploidisation resulting in a massive overexpression of pro-inflammatory cytokines. Recruitment of defective neutrophils fostered rapid evolution of this EWS.
Collapse
Affiliation(s)
- Serena Peirone
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
| | - Elisa Tirtei
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Anna Campello
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
| | - Caterina Parlato
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Simonetta Guarrera
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Katia Mareschi
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Elena Marini
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | | | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Mauro Papotti
- Pathology Unit, Department of Oncology, University of Turin, Turin, Italy
| | - Francesca Priante
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Sarah Perrone
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Matteo Cereda
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
| | - Franca Fagioli
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Schultewolter JH, Rissmann A, von Schweinitz D, Frühwald M, Blattmann C, Fischer L, Lange BS, Wessalowski R, Fröhlich B, Behnisch W, Schmid I, Reinhard H, Dürken M, Hundsdörfer P, Heimbrodt M, Vokuhl C, Schönberger S, Schneider DT, Seitz G, Looijenga L, Göbel U, von Kries R, Reutter H, Calaminus G. Non-Syndromic and Syndromic Defects in Children with Extracranial Germ Cell Tumors: Data of 2610 Children Registered with the German MAKEI 96/MAHO 98 Registry Compared to the General Population. Cancers (Basel) 2024; 16:2157. [PMID: 38893276 PMCID: PMC11172205 DOI: 10.3390/cancers16112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
GCTs are developmental tumors and are likely to reflect ontogenetic and teratogenetic determinants. The objective of this study was to identify syndromes with or without congenital anomalies and non-syndromic defects as potential risk factors. Patients with extracranial GCTs (eGCTs) registered in MAKEI 96/MAHO 98 between 1996 and 2017 were included. According to Teilum's holistic concept, malignant and benign teratomas were registered. We used a case-control study design with Orphanet as a reference group for syndromic defects and the Mainz birth registry (EUROCAT) for congenital anomalies at birth. Co-occurring genetic syndromes and/or congenital anomalies were assessed accordingly. Odds ratios and 95% confidence intervals were calculated and p-values for Fisher's exact test with Bonferroni correction if needed. A strong association was confirmed for Swyer (OR 338.6, 95% CI 43.7-2623.6) and Currarino syndrome (OR 34.2, 95% CI 13.2-88.6). We additionally found 16 isolated cases of eGCT with a wide range of syndromes. However, these were not found to be significantly associated following Bonferroni correction. Most of these cases pertained to girls. Regarding non-syndromic defects, no association with eGCTs could be identified. In our study, we confirmed a strong association for Swyer and Currarino syndromes with additional congenital anomalies.
Collapse
Affiliation(s)
| | - Anke Rissmann
- Malformation Monitoring Centre Saxony-Anhalt, Medical Faculty, Otto-von-Guericke University, 39106 Magdeburg, Germany;
| | - Dietrich von Schweinitz
- Dr. von Haunersches Kinderspital, Department of Paediatric Surgery, University of Munich, 80539 Munich, Germany;
| | - Michael Frühwald
- Department of Pediatric and Adolescent Medicine, University Medical Center Augsburg, 86159 Augsburg, Germany;
| | - Claudia Blattmann
- Centre for Childhood, Adolescents and Female Medicine, Paediatrics 5 (Oncology, Hämatology, Immunology), Olgahospital Klinikum Stuttgart, 70174 Stuttgart, Germany;
| | - Lars Fischer
- Clinic for Childhood and Adolescent Medicine, Paediatric Oncology, University Hospital Leipzig (Universitätsklinikum Leipzig AöR), 04103 Leipzig, Germany;
| | - Björn Sönke Lange
- Clinic for Childhood and Adolescent Medicine, Paediatric Haematology and Oncology, University Hospital Dresden, 01307 Dresden, Germany;
| | - Rüdiger Wessalowski
- Clinic for Paediatric Hematology, Oncology and Immunology, University Childrens Hospital Düsseldorf, 40225 Düsseldorf, Germany; (R.W.); (U.G.)
| | - Birgit Fröhlich
- Clinic for Paediatric Hematology and Oncology, University of Münster, 48149 Münster, Germany;
| | - Wolfgang Behnisch
- Department of Paediatric Haematology and Oncology, University Childrens Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Irene Schmid
- Dr. von Haunersches Kinderspital, Department of Paediatric Haematology and Oncology, University of Munich, 80539 Munich, Germany;
| | - Harald Reinhard
- Department of Paediatric Haematology and Oncology, Asklepios Hospital Sankt Augustin, 53757 St. Augustin, Germany;
| | - Matthias Dürken
- Clinic for Childhood and Adolescent Medicine, Paediatric Haematology and Oncology, Medical Faculty Mannheim, University of Heidelberg, 69117 Heidelberg, Germany;
| | - Patrick Hundsdörfer
- Clinic for Childhood and Adolescent Medicine, Oncology Haematology, HELIOS Clinic Berlin-Buch, 13125 Berlin, Germany;
| | - Martin Heimbrodt
- Department of Pediatric Hematology and Oncology, University Hospital Bonn, 53127 Bonn, Germany; (M.H.); (G.C.)
| | - Christian Vokuhl
- Department of Pathology, Section Paidopathology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Stefan Schönberger
- Department of Pediatric Hematology and Oncology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Dominik T. Schneider
- Clinic of Paediatrics, Klinikum Dortmund, University Witten/Herdecke, 58448 Witten, Germany;
| | - Guido Seitz
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Campus Marburg, 35037 Marburg, Germany;
- Department of Pediatric Surgery, University Hospital Giessen-Marburg, Campus Giessen, 35392 Giessen, Germany
| | - Leendert Looijenga
- Princess Máxima Center for Pediatric Oncology, 3584 Utrecht, The Netherlands;
| | - Ulrich Göbel
- Clinic for Paediatric Hematology, Oncology and Immunology, University Childrens Hospital Düsseldorf, 40225 Düsseldorf, Germany; (R.W.); (U.G.)
| | - Rüdiger von Kries
- Division of Epidemiology, Institute of Social Pediatrics and Adolescent Medicine, LMU Munich, 80539 Munich, Germany;
| | - Heiko Reutter
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - Gabriele Calaminus
- Department of Pediatric Hematology and Oncology, University Hospital Bonn, 53127 Bonn, Germany; (M.H.); (G.C.)
| |
Collapse
|
3
|
Songthawee N, Sripornsawan P, Chavananon S, Kittivisuit S, McNeil EB, Chotsampancharoen T. Survival outcomes of myeloid leukemia associated with Down syndrome and de novo acute myeloid leukemia in children: Experience from a single tertiary center in Thailand. Pediatr Hematol Oncol 2024; 41:150-162. [PMID: 38013232 DOI: 10.1080/08880018.2023.2286970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Few studies have reported the survival outcomes of myeloid leukemia associated with Down syndrome (DS) in resource-limited countries. This study aimed to compare characteristics and survival outcomes of children with acute myeloid leukemia (AML) between those with and without DS in Thailand. The medical records of AML patients aged 0-15 years treated in a major tertiary center in Southern Thailand between October 1978 and December 2019 were reviewed retrospectively. The overall (OS) and event-free survivals (EFS) rates were calculated using the Kaplan-Meier method. A total of 362 AML patients were included, of which 41 (11.3%) had DS. The mean age at diagnosis of the DS patients was 2.5 ± 1.9 years and most of them (90.2%) were under the age of five. The DS patients had lower initial white blood cell counts and peripheral blasts compared to the non-DS patients. The AML-M7 subtype was more common in the DS than in the non-DS patients (80.5% vs. 9.1%, p < 0.01, respectively). The 5-year OS and EFS rates of the DS patients were lower compared to the non-DS patients (12.9% vs. 20.5%, p = 0.05 and 13.7% vs. 18.4%, p = 0.03, respectively). DS patients had a significantly higher rate of early and treatment-related deaths compared to non-DS patients (30.3% vs. 13.5%, p < 0.01 and 39.4% vs. 19.5%, p = 0.02, respectively). Over the study period, there were a decrease in early death rate and an increase in survival rates of DS patients, which suggests that chemotherapy regimens and supportive care have improved over time.
Collapse
Affiliation(s)
- Natsaruth Songthawee
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Pornpun Sripornsawan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Shevachut Chavananon
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Sirinthip Kittivisuit
- Division of Rheumatology, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Edward B McNeil
- Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Thirachit Chotsampancharoen
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
4
|
Gandy K, Hall L, Krull KR, Esbensen AJ, Rubnitz J, Jacola LM. Neurocognitive and psychosocial outcomes in survivors of childhood leukemia with Down syndrome. Cancer Med 2024; 13:e6842. [PMID: 38240104 PMCID: PMC10905531 DOI: 10.1002/cam4.6842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/24/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE The primary aim of this study was to assess the feasibility of a developmentally tailored neurocognitive assessment in survivors of childhood acute leukemia with Down syndrome (DS-leukemia). A secondary aim was to compare outcomes in the DS-leukemia group to a historical comparison group of individuals with DS and no history of childhood cancer. METHODS Survivors of DS-leukemia (n = 43; 56% male, mean [SD] age at diagnosis = 4.3 [4.5] years; age at evaluation = 15 [7.9] years) completed a neurocognitive assessment battery that included direct measures of attention, executive function, and processing speed, and proxy ratings of attention problems and executive dysfunction. Direct assessment outcomes were compared to a historical comparison cohort of individuals with DS and no history of childhood cancer (DS-control; n = 117; 56% male, mean [SD] age at evaluation = 12.7 [3.4] years). RESULTS Rates of valid task completion ranged from 54% to 95%, suggesting feasibility for most direct assessment measures. Compared to the DS-control group, the DS-leukemia group had significantly lower completion rates on measures of executive function (p = 0.008) and processing speed (p = 0.018) compared to the DS-control group. There were no other significant group differences in completion rates. Compared to the DS-control group, the DS-leukemia group had significantly more accurate performance on two measures of executive function (p = 0.032; p = 0.005). Compared to the DS-control group, the DS-leukemia group had significantly more problems with executive function as identified on proxy ratings (6.5% vs. 32.6%, p = <0.001). CONCLUSION Children with Down syndrome (DS) are at increased risk for developing acute leukemia compared to the general population but are systematically excluded from neurocognitive outcome studies among leukemia survivors. This study demonstrated the feasibility of evaluating neurocognitive late effects in leukemia survivors with DS using novel measures appropriate for populations with intellectual developmental disorder.
Collapse
Affiliation(s)
- Kellen Gandy
- Department of Psychology and Biobehavioral SciencesSt. Jude Children's Research HospitalMemphisTennesseeUSA
- Department of Social SciencesUniversity of Houston DowntownHoustonTexasUSA
| | - Lacey Hall
- Department of Psychology and Biobehavioral SciencesSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Kevin R. Krull
- Department of Psychology and Biobehavioral SciencesSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Anna J. Esbensen
- Division of Developmental and Behavioral PediatricsCincinnati Children's Hospital Medical Center & University of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Jeffrey Rubnitz
- Department of OncologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Lisa M. Jacola
- Department of Psychology and Biobehavioral SciencesSt. Jude Children's Research HospitalMemphisTennesseeUSA
| |
Collapse
|
5
|
de Smith AJ, Spector LG. In Utero Origins of Acute Leukemia in Children. Biomedicines 2024; 12:236. [PMID: 38275407 PMCID: PMC10813074 DOI: 10.3390/biomedicines12010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Acute leukemias, mainly consisting of acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), comprise a major diagnostic group among hematologic cancers. Due to the early age at onset of ALL, particularly, it has long been suspected that acute leukemias of childhood may have an in utero origin. This supposition has motivated many investigations seeking direct proof of prenatal leukemogenesis, in particular, twin and "backtracking studies". The suspected in utero origin has also focused on gestation as a critical window of risk, resulting in a rich literature on prenatal risk factors for pediatric acute leukemias. In this narrative review, we recount the circumstantial and direct evidence for an in utero origin of childhood acute leukemias.
Collapse
Affiliation(s)
- Adam J. de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Logan G. Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Hormann FM, Mooij EJ, van de Mheen M, Beverloo HB, den Boer ML, Boer JM. The impact of an additional copy of chromosome 21 in B-cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer 2024; 63:e23217. [PMID: 38087879 DOI: 10.1002/gcc.23217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/04/2024] Open
Abstract
A common finding in pediatric B-cell precursor acute lymphoblastic leukemia (BCPALL) is that chromosome 21 is never lost and an extra chromosome 21 is often gained. This implies an important role for chromosome 21 in the pathobiology of BCPALL, emphasized by the increased risk of BCPALL in children with Down syndrome. However, model systems of chromosome 21 gain are lacking. We therefore developed a BCPALL cell line (Nalm-6, DUX4-rearranged) with an additional chromosome 21 by means of microcell-mediated chromosome transfer. FISH, PCR, multiplex ligation-dependent probe amplification, and whole exome sequencing showed that an additional chromosome 21 was successfully transferred to the recipient cells. Transcription of some but not all genes on chromosome 21 was increased, indicating tight transcriptional regulation. Nalm-6 cells with an additional chromosome 21 proliferated slightly slower compared with parental Nalm-6 and sensitivity to induction chemotherapeutics was mildly increased. The extra copy of chromosome 21 did not confer sensitivity to targeted signaling inhibitors. In conclusion, a BCPALL cell line with an additional human chromosome 21 was developed, validated, and subjected to functional studies, which showed a minor but potentially relevant effect in vitro. This cell line offers the possibility to study further the role of chromosome 21 in ALL.
Collapse
Affiliation(s)
- Femke M Hormann
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Eva J Mooij
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - H Berna Beverloo
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Monique L den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
7
|
Peroni E, Gottardi M, D’Antona L, Randi ML, Rosato A, Coltro G. Hematologic Neoplasms Associated with Down Syndrome: Cellular and Molecular Heterogeneity of the Diseases. Int J Mol Sci 2023; 24:15325. [PMID: 37895004 PMCID: PMC10607483 DOI: 10.3390/ijms242015325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The molecular basis of Down syndrome (DS) predisposition to leukemia is not fully understood but involves various factors such as chromosomal abnormalities, oncogenic mutations, epigenetic alterations, and changes in selection dynamics. Myeloid leukemia associated with DS (ML-DS) is preceded by a preleukemic phase called transient abnormal myelopoiesis driven by GATA1 gene mutations and progresses to ML-DS via additional mutations in cohesin genes, CTCF, RAS, or JAK/STAT pathway genes. DS-related ALL (ALL-DS) differs from non-DS ALL in terms of cytogenetic subgroups and genetic driver events, and the aberrant expression of CRLF2, JAK2 mutations, and RAS pathway-activating mutations are frequent in ALL-DS. Recent advancements in single-cell multi-omics technologies have provided unprecedented insights into the cellular and molecular heterogeneity of DS-associated hematologic neoplasms. Single-cell RNA sequencing and digital spatial profiling enable the identification of rare cell subpopulations, characterization of clonal evolution dynamics, and exploration of the tumor microenvironment's role. These approaches may help identify new druggable targets and tailor therapeutic interventions based on distinct molecular profiles, ultimately improving patient outcomes with the potential to guide personalized medicine approaches and the development of targeted therapies.
Collapse
Affiliation(s)
- Edoardo Peroni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy
| | - Michele Gottardi
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology, IOV-IRCCS, 31033 Padua, Italy
| | - Lucia D’Antona
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy
| | - Maria Luigia Randi
- First Medical Clinic, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy
- Department of Surgery Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
| | - Giacomo Coltro
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
- Center of Research and Innovation for Myeloproliferative Neoplasms, CRIMM, AOU Careggi, 50134 Florence, Italy
| |
Collapse
|
8
|
Verma A, Lupo PJ, Shah NN, Hitzler J, Rabin KR. Management of Down Syndrome-Associated Leukemias: A Review. JAMA Oncol 2023; 9:1283-1290. [PMID: 37440251 DOI: 10.1001/jamaoncol.2023.2163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Importance Down syndrome (DS), caused by an extra copy of material from chromosome 21, is one of the most common genetic conditions. The increased risk of acute leukemia in DS (DS-AL) has been recognized for decades, consisting of an approximately 150-fold higher risk of acute myeloid leukemia (AML) before age 4 years, and a 10- to 20-fold higher risk of acute lymphoblastic leukemia (ALL), compared with children without DS. Observations A recent National Institutes of Health-sponsored conference, ImpacT21, reviewed research and clinical trials in children, adolescents, and young adults (AYAs) with DS-AL and are presented herein, including presentation and treatment, clinical trial design, and ethical considerations for this unique population. Between 10% to 30% of infants with DS are diagnosed with transient abnormal myelopoiesis (TAM), which spontaneously regresses. After a latency period of up to 4 years, 20% to 30% develop myeloid leukemia associated with DS (ML-DS). Recent studies have characterized somatic mutations associated with progression from TAM to ML-DS, but predicting which patients will progress to ML-DS remains elusive. Clinical trials for DS-AL have aimed to reduce treatment-related mortality (TRM) and improve survival. Children with ML-DS have better outcomes compared with non-DS AML, but outcomes remain dismal in relapse. In contrast, patients with DS-ALL have inferior outcomes compared with those without DS, due to both higher TRM and relapse. Management of relapsed leukemia poses unique challenges owing to disease biology and increased vulnerability to toxic effects. Late effects in survivors of DS-AL are an important area in need of further study because they may demonstrate unique patterns in the setting of chronic medical conditions associated with DS. Conclusions and Relevance Optimal management of DS-AL requires specific molecular testing, meticulous supportive care, and tailored therapy to reduce TRM while optimizing survival. There is no standard approach to treatment of relapsed disease. Future work should include identification of biomarkers predictive of toxic effects; enhanced clinical and scientific collaborations; promotion of access to novel agents through innovative clinical trial design; and dedicated studies of late effects of treatment.
Collapse
Affiliation(s)
- Anupam Verma
- Pediatric Oncology Branch, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Philip J Lupo
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Johann Hitzler
- Division of Hematology Oncology, The Hospital for Sick Children, Toronto, Canada
| | - Karen R Rabin
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
9
|
Hsu FC, Hudson C, Wilson ER, Pardo LM, Singleton TP, Xu D, Zehentner BK, Hitzler J, Berman J, Wells DA, Loken MR, Brodersen LE. The impact of Down syndrome-specific non-malignant hematopoietic regeneration in the bone marrow on the detection of leukemic measurable residual disease. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:311-318. [PMID: 37015883 DOI: 10.1002/cyto.b.22118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/23/2023] [Accepted: 02/17/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Detection of measurable residual disease detection (MRD) by flow cytometry after the first course of chemotherapy is a standard measure of early response in patients with acute myeloid leukemia (AML). Myeloid leukemia associated with Down Syndrome (ML-DS) is a distinct form of AML. Differences in steady-state and regenerating hematopoiesis between patients with or without DS are not well understood. This understanding is essential to accurately determine the presence of residual leukemia in patients with ML-DS. METHODS A standardized antibody panel defined quantitative antigen expression in 115 follow-up bone marrow (BM) aspirates from 45 patients following chemotherapy for ML-DS or DS precursor B-cell acute lymphoblastic leukemia (B-ALL-DS) with the "difference from normal (ΔN)" technique. When possible, FISH and SNP/CGH microarray studies were performed on sorted cell fractions. RESULTS 93% of BM specimens submitted post chemotherapy had a clearly identifiable CD34+ CD56+ population present between 0.06% and 2.6% of total non-erythroid cells. An overlapping CD34+ HLA-DRheterogeneous population was observed among 92% of patients at a lower frequency (0.04%-0.8% of total non-erythroid cells). In B-ALL-DS patients, the same CD34+ CD56+ HLA-DRheterogeneous expression was observed. FACS-FISH/Array studies demonstrated no residual genetic clones in the DS-specific myeloid progenitor cells. CONCLUSIONS Non-malignant myeloid progenitors in the regenerating BM of patients who have undergone chemotherapy for either ML-DS or B-ALL-DS express an immunophenotype that is different from normal BM of non-DS patients. Awareness of this DS-specific non-malignant myeloid progenitor is essential to the interpretation of MRD by flow cytometry in patients with ML-DS.
Collapse
Affiliation(s)
- Fan-Chi Hsu
- Hematologics, Inc., Seattle, Washington, USA
| | - Chad Hudson
- Hematologics, Inc., Seattle, Washington, USA
| | | | - Laura M Pardo
- Hematologics, Inc., Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Dongbin Xu
- Hematologics, Inc., Seattle, Washington, USA
| | | | - Johann Hitzler
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason Berman
- CHEO Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
10
|
Veluvolu SM, Grohar PJ. Importance of pharmacologic considerations in the development of targeted anticancer agents for children. Curr Opin Pediatr 2023; 35:91-96. [PMID: 36562272 DOI: 10.1097/mop.0000000000001208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe key pharmacologic considerations to inform strategies in drug development for pediatric cancer. RECENT FINDINGS Main themes that will be discussed include considering patient specific factors, epigenetic/genetic tumor context, and drug schedule when optimizing protocols to treat pediatric cancers. SUMMARY Considering these factors will allow us to more effectively translate novel targeted therapies to benefit pediatric patients.
Collapse
Affiliation(s)
- Sridhar M Veluvolu
- Division of Oncology, Center of Childhood Cancer Research, Children's Hospital of Philadelphia
| | - Patrick J Grohar
- Division of Oncology, Center of Childhood Cancer Research, Children's Hospital of Philadelphia
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Bohnstedt C, Stenmarker M, Olersbacken L, Schmidt L, Larsen HB, Schmiegelow K, Hansson H. Participation, challenges and needs in children with down syndrome during cancer treatment at hospital: a qualitative study of parents' experiences. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1099516. [PMID: 37180572 PMCID: PMC10172473 DOI: 10.3389/fresc.2023.1099516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023]
Abstract
Background Studies report that it can be challenging to assess and treat side-effects and symptoms among children who have impairments and difficulties in expressing their needs. Children with Down syndrome have an increased vulnerability and an increased risk for contracting leukaemia. There is sparse knowledge about the parental experience of how treatment and side-effects affect children with Down syndrome with leukaemia, as well as the role of participation during treatment. Purpose This study aimed to explore the perceptions of parents of children with Down syndrome and leukaemia regarding their child's treatment, side effects and participation during hospital care. Methods A qualitative study design was used, and interviews were conducted with a semi-structured interview-guide. Fourteen parents of 10 children with Down syndrome and acute lymphoblastic leukaemia from Sweden and Denmark, 1-18 years of age, participated. All children had completed therapy or had a few months left before the end of treatment. Data was analysed according to qualitative content analysis. Results Four sub-themes were identified: (1) Continuously dealing with the child's potential susceptibility; (2) Confidence and worries regarding decisions related to treatment regulation; (3) Challenges in communication, interpretation, and participation; and (4) Facilitating participation by adapting to the child's behavioural and cognitive needs. The sub-themes were bound together in an overarching theme, which expressed the core perception "Being the child's spokesperson to facilitate the child's participation during treatment". The parents expressed this role as self-evident to facilitate communication regarding the needs of the child, but also regarding how the cytotoxic treatment affected the vulnerable child. Parents conveyed the struggle to ensure the child's right to receive optimal treatment. Conclusion The study results highlight parental challenges regarding childhood disabilities and severe health conditions, as well as communication and ethical aspects regarding to act in the best interests of the child. Parents played a vital role in interpreting their child with Down syndrome. Involving parents during treatment enables a more accurate interpretation of symptoms and eases communication and participation. Still, the results raise questions regarding issues related to building trust in healthcare professionals in a context where medical, psychosocial and ethical dilemmas are present.
Collapse
Affiliation(s)
- Cathrine Bohnstedt
- Paediatric Oncology Research Laboratory, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Margaretha Stenmarker
- Department of Paediatrics, Region Jönköping County, Jönköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Institute of Clinical Sciences, Department of Paediatrics, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Linn Olersbacken
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lone Schmidt
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Hanne B. Larsen
- Paediatric Oncology Research Laboratory, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Paediatric Oncology Research Laboratory, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helena Hansson
- Paediatric Oncology Research Laboratory, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Correspondence: Helena Hansson
| |
Collapse
|
12
|
Lao M, Zhang X, Yang H, Bai X, Liang T. RCAN1-mediated calcineurin inhibition as a target for cancer therapy. Mol Med 2022; 28:69. [PMID: 35717152 PMCID: PMC9206313 DOI: 10.1186/s10020-022-00492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Regulator of calcineurin 1 (RCAN1), as a patent endogenous inhibitor of calcineurin, plays crucial roles in the pathogenesis of cancers. Except for hypopharyngeal and laryngopharynx cancer, high expression of RCAN1 inhibits tumor progression. Molecular antitumor functions of RCAN1 are largely dependent on calcineurin. In this review, we highlight current research on RCAN1 characteristics, and the interaction between RCAN1 and calcineurin. Moreover, the dysregulation of RCAN1 in various cancers is reviewed, and the potential of targeting RCAN1 as a new therapeutic approach is discussed.
Collapse
Affiliation(s)
- Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
13
|
Grimm J, Bhayadia R, Gack L, Heckl D, Klusmann JH. Combining LSD1 and JAK-STAT inhibition targets Down syndrome-associated myeloid leukemia at its core. Leukemia 2022; 36:1926-1930. [PMID: 35610347 PMCID: PMC9252908 DOI: 10.1038/s41375-022-01603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Juliane Grimm
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Raj Bhayadia
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lucie Gack
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dirk Heckl
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jan-Henning Klusmann
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany. .,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany. .,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
14
|
Grant CN, Rhee D, Tracy ET, Aldrink JH, Baertschiger RM, Lautz TB, Glick RD, Rodeberg DA, Ehrlich PF, Christison-Lagay E. Pediatric solid tumors and associated cancer predisposition syndromes: Workup, management, and surveillance. A summary from the APSA Cancer Committee. J Pediatr Surg 2022; 57:430-442. [PMID: 34503817 DOI: 10.1016/j.jpedsurg.2021.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND/PURPOSE Cancer predisposition syndromes (CPS) are a heterogeneous group of inherited disorders that greatly increase the risk of developing malignancies. CPS are particularly relevant to pediatric surgeons since nearly 10% of cancer diagnoses are due to inherited genetic traits, and CPS often contribute to cancer development during childhood. MATERIALS/METHODS The English language literature was searched for manuscripts, practice guidelines, and society statements on "cancer predisposition syndromes in children". Following review of these manuscripts and cross-referencing of their bibliographies, tables were created to summarize findings of the most common CPS associated with surgically treated pediatric solid malignancies. RESULTS Pediatric surgeons should be aware of CPS as the identification of one of these syndromes can completely change the management of certain tumors, such as WT. The most common CPS associated with pediatric solid malignancies are outlined, with an emphasis on those most often encountered by pediatric surgeons: neuroblastoma, Wilms' tumor, hepatoblastoma, and medullary thyroid cancer. Frequently associated non-tumor manifestations of these CPS are also included as a guide to increase surgeon awareness. Screening and management guidelines are outlined, and published genetic testing and counseling guidelines are included where available. CONCLUSION Pediatric surgeons play an important role as surgical oncologists and are often the first point of contact for children with solid tumors. In their role of delivering a diagnosis and developing a follow-up and treatment plan as part of a multidisciplinary team, familiarity with common CPS will ensure evidence-based practices are followed, including important principles such as organ preservation and intensified surveillance plans. This review defines and summarizes the CPS associated with common childhood solid tumors encountered by the pediatric surgeon, as well as common non-cancerous disease stigmata that may help guide diagnosis. TYPE OF STUDY Summary paper. LEVEL OF EVIDENCE 5.
Collapse
Affiliation(s)
- Christa N Grant
- Division of Pediatric Surgery, Penn State Children's Hospital, Milton S. Hershey Medical Center, Hershey, PA, United States.
| | - Daniel Rhee
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Elisabeth T Tracy
- Division of Pediatric Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Jennifer H Aldrink
- Division of Pediatric Surgery, Department of Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Reto M Baertschiger
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Timothy B Lautz
- Division of Pediatric Surgery, Ann & Robert H Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, United States
| | - Richard D Glick
- Division of Pediatric Surgery, Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Cohen Children's Medical Center, New Hyde Park, NY, United States
| | - David A Rodeberg
- Division of Pediatric Surgery, East Carolina Medical Center, Greenville, NC, United States
| | - Peter F Ehrlich
- Division of Pediatric Surgery, C.S. Mott Children's Hospital, University of Michigan, United States
| | - Emily Christison-Lagay
- Division of Pediatric Surgery, Yale-New Haven Children's Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
15
|
Osuna-Marco MP, López-Barahona M, López-Ibor B, Tejera ÁM. Ten Reasons Why People With Down Syndrome are Protected From the Development of Most Solid Tumors -A Review. Front Genet 2021; 12:749480. [PMID: 34804119 PMCID: PMC8602698 DOI: 10.3389/fgene.2021.749480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/21/2021] [Indexed: 12/27/2022] Open
Abstract
People with Down syndrome have unique characteristics as a result of the presence of an extra chromosome 21. Regarding cancer, they present a unique pattern of tumors, which has not been fully explained to date. Globally, people with Down syndrome have a similar lifetime risk of developing cancer compared to the general population. However, they have a very increased risk of developing certain tumors (e.g., acute leukemia, germ cell tumors, testicular tumors and retinoblastoma) and, on the contrary, there are some other tumors which appear only exceptionally in this syndrome (e.g., breast cancer, prostate cancer, medulloblastoma, neuroblastoma and Wilms tumor). Various hypotheses have been developed to explain this situation. The genetic imbalance secondary to the presence of an extra chromosome 21 has molecular consequences at several levels, not only in chromosome 21 but also throughout the genome. In this review, we discuss the different proposed mechanisms that protect individuals with trisomy 21 from developing solid tumors: genetic dosage effect, tumor suppressor genes overexpression, disturbed metabolism, impaired neurogenesis and angiogenesis, increased apoptosis, immune system dysregulation, epigenetic aberrations and the effect of different microRNAs, among others. More research into the molecular pathways involved in this unique pattern of malignancies is still needed.
Collapse
Affiliation(s)
- Marta Pilar Osuna-Marco
- Biology of Ageing Group, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain.,Pediatric Oncology and Hematology Unit, HM Hospitals, Madrid, Spain
| | | | | | - Águeda Mercedes Tejera
- Biology of Ageing Group, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
16
|
Brown PA, Shah B, Advani A, Aoun P, Boyer MW, Burke PW, DeAngelo DJ, Dinner S, Fathi AT, Gauthier J, Jain N, Kirby S, Liedtke M, Litzow M, Logan A, Luger S, Maness LJ, Massaro S, Mattison RJ, May W, Oluwole O, Park J, Przespolewski A, Rangaraju S, Rubnitz JE, Uy GL, Vusirikala M, Wieduwilt M, Lynn B, Berardi RA, Freedman-Cass DA, Campbell M. Acute Lymphoblastic Leukemia, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 19:1079-1109. [PMID: 34551384 DOI: 10.6004/jnccn.2021.0042] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The NCCN Guidelines for Acute Lymphoblastic Leukemia (ALL) focus on the classification of ALL subtypes based on immunophenotype and cytogenetic/molecular markers; risk assessment and stratification for risk-adapted therapy; treatment strategies for Philadelphia chromosome (Ph)-positive and Ph-negative ALL for both adolescent and young adult and adult patients; and supportive care considerations. Given the complexity of ALL treatment regimens and the required supportive care measures, the NCCN ALL Panel recommends that patients be treated at a specialized cancer center with expertise in the management of ALL This portion of the Guidelines focuses on the management of Ph-positive and Ph-negative ALL in adolescents and young adults, and management in relapsed settings.
Collapse
Affiliation(s)
- Patrick A Brown
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | - Anjali Advani
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | | | | | | | - Shira Dinner
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | - Jordan Gauthier
- Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | - Nitin Jain
- The University of Texas MD Anderson Cancer Center
| | | | | | | | - Aaron Logan
- UCSF Helen Diller Family Comprehensive Cancer Center
| | - Selina Luger
- Abramson Cancer Center at the University of Pennsylvania
| | | | | | | | | | | | - Jae Park
- Memorial Sloan Kettering Cancer Center
| | | | | | - Jeffrey E Rubnitz
- St. Jude Children's Research Hospital/The University of Tennessee Health Science Center
| | - Geoffrey L Uy
- Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | - Beth Lynn
- National Comprehensive Cancer Network
| | | | | | | |
Collapse
|
17
|
Copy Number Changes and Allele Distribution Patterns of Chromosome 21 in B Cell Precursor Acute Lymphoblastic Leukemia. Cancers (Basel) 2021; 13:cancers13184597. [PMID: 34572826 PMCID: PMC8465600 DOI: 10.3390/cancers13184597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/12/2023] Open
Abstract
Chromosome 21 is the most affected chromosome in childhood acute lymphoblastic leukemia. Many of its numerical and structural abnormalities define diagnostically and clinically important subgroups. To obtain an overview about their types and their approximate genetic subgroup-specific incidence and distribution, we performed cytogenetic, FISH and array analyses in a total of 578 ALL patients (including 26 with a constitutional trisomy 21). The latter is the preferred method to assess genome-wide large and fine-scale copy number abnormalities (CNA) together with their corresponding allele distribution patterns. We identified a total of 258 cases (49%) with chromosome 21-associated CNA, a number that is perhaps lower-than-expected because ETV6-RUNX1-positive cases (11%) were significantly underrepresented in this array-analyzed cohort. Our most interesting observations relate to hyperdiploid leukemias with tetra- and pentasomies of chromosome 21 that develop in constitutionally trisomic patients. Utilizing comparative short tandem repeat analyses, we were able to prove that switches in the array-derived allele patterns are in fact meiotic recombination sites, which only become evident in patients with inborn trisomies that result from a meiosis 1 error. The detailed analysis of such cases may eventually provide important clues about the respective maldistribution mechanisms and the operative relevance of chromosome 21-specific regions in hyperdiploid leukemias.
Collapse
|
18
|
Shimada A. Profile of down syndrome–associated malignancies: Epidemiology, clinical features and therapeutic aspects. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2021. [DOI: 10.1016/j.phoj.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
19
|
Abstract
Children show a higher incidence of leukaemia compared with young adolescents, yet their cells are less damaged because of their young age. Children with Down syndrome (DS) have an even higher risk of developing leukaemia during the first years of life. The presence of a constitutive trisomy of chromosome 21 (T21) in DS acts as a genetic driver for leukaemia development, however, additional oncogenic mutations are required. Therefore, T21 provides the opportunity to better understand leukaemogenesis in children. Here, we describe the increased risk of leukaemia in DS during childhood from a somatic evolutionary view. According to this idea, cancer is caused by a variation in inheritable phenotypes within cell populations that are subjected to selective forces within the tissue context. We propose a model in which the increased risk of leukaemia in DS children derives from higher rates of mutation accumulation, already present during fetal development, which is further enhanced by changes in selection dynamics within the fetal liver niche. This model could possibly be used to understand the rate-limiting steps of leukaemogenesis early in life.
Collapse
|
20
|
Gadgeel M, AlQanber B, Buck S, Taub JW, Ravindranath Y, Savaşan S. Aberrant myelomonocytic CD56 expression in Down syndrome is frequent and not associated with leukemogenesis. Ann Hematol 2021; 100:1695-1700. [PMID: 33890142 DOI: 10.1007/s00277-021-04531-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022]
Abstract
Children with Down syndrome (DS) are at an increased risk of developing transient abnormal myelopoiesis (TAM) and acute leukemia. Aberrant expression of CD56 has been observed on myeloid leukemic blasts in DS patients. In general, CD56 expression in acute myeloid leukemia (AML) is considered a promoter of leukemogenesis. We did a retrospective flow cytometric study to investigate mature myelomonocytic cell CD56 expression patterns in TAM, non-TAM, and leukemia cases with DS. Flow cytometric analysis showed that granulocyte and monocyte aberrant/dysplastic CD56 expression is an inherent characteristic of most DS patients irrespective of the presence of TAM or leukemia. Increased CD56 expression in monocyte and granulocyte populations in DS could be multifactorial; greater expression of RUNX1 secondary to the gene dose effect of trisomy 21 along with the maturational state of the cells are the potential contributors. Unlike AML seen in non-DS patients, CD56 overexpression in DS AML cases does not appear to play a role in leukemogenesis.
Collapse
Affiliation(s)
- Manisha Gadgeel
- Children's Hospital of Michigan, Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Detroit, MI, USA
| | - Batool AlQanber
- Children's Hospital of Michigan, Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Detroit, MI, USA
| | - Steven Buck
- Children's Hospital of Michigan, Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Detroit, MI, USA
| | - Jeffrey W Taub
- Children's Hospital of Michigan, Division of Hematology/Oncology, Barbara Ann Karmanos Cancer Center, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yaddanapudi Ravindranath
- Children's Hospital of Michigan, Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Detroit, MI, USA.,Children's Hospital of Michigan, Division of Hematology/Oncology, Barbara Ann Karmanos Cancer Center, Wayne State University School of Medicine, Detroit, MI, USA
| | - Süreyya Savaşan
- Children's Hospital of Michigan, Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Detroit, MI, USA. .,Children's Hospital of Michigan, Division of Hematology/Oncology, Pediatric Blood and Marrow Transplant Program, Barbara Ann Karmanos Cancer Center, Central Michigan University College of Medicine, 3901 Beaubien Blvd., Detroit, MI, 48201, USA.
| |
Collapse
|
21
|
Lao M, Zhang X, Ma T, Xu J, Yang H, Duan Y, Ying H, Zhang X, Guo C, Qiu J, Bai X, Liang T. Regulator of calcineurin 1 gene isoform 4 in pancreatic ductal adenocarcinoma regulates the progression of tumor cells. Oncogene 2021; 40:3136-3151. [PMID: 33824473 PMCID: PMC8084734 DOI: 10.1038/s41388-021-01763-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/24/2021] [Accepted: 03/17/2021] [Indexed: 12/27/2022]
Abstract
Therapeutic strategies to treat pancreatic ductal adenocarcinoma (PDAC) remain unsatisfying and limited. Therefore, it is imperative to fully determine the mechanisms underlying PDAC progression. In the present study, we report a novel role of regulator of calcineurin 1, isoform 4 (RCAN1.4) in regulating PDAC progression. We demonstrated that RCAN1.4 expression was decreased significantly in PDAC tissues compared with that in para-cancerous tissues, and correlated with poor prognosis of patients with pancreatic cancer. In vitro, stable high expression of RCAN1.4 could suppress the metastasis and proliferation and angiogenesis of pancreatic tumor cells. In addition, interferon alpha inducible protein 27 (IFI27) was identified as having a functional role in RCAN1.4-mediated PDAC migration and invasion, while VEGFA play a vital role in RCAN1.4-mediated PDAC angiogenesis. Analysis of mice with subcutaneously/orthotopic implanted xenograft tumors and liver metastasis model confirmed that RCAN1.4 could modulate the growth, metastasis, and angiogenesis of tumors via IFI27/VEGFA in vivo. In conclusion, our results suggested that RCAN1.4 suppresses the growth, metastasis, and angiogenesis of PDAC, functioning partly via IFI27 and VEGFA. Importantly, our results provided possible diagnostic criteria and therapeutic targets for PDAC.
Collapse
Affiliation(s)
- Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Tao Ma
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Jian Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Yi Duan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Honggang Ying
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xiaoyu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Chengxiang Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Junyu Qiu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China.
| |
Collapse
|
22
|
Demoury C, Faes C, De Schutter H, Carbonnelle S, Rosskamp M, Francart J, Van Damme N, Van Bladel L, Van Nieuwenhuyse A, De Clercq EM. Childhood leukemia near nuclear sites in Belgium: An ecological study at small geographical level. Cancer Epidemiol 2021; 72:101910. [PMID: 33735659 DOI: 10.1016/j.canep.2021.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/14/2021] [Accepted: 02/14/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND A previous investigation of the occurrence of childhood acute leukemia around the Belgian nuclear sites has shown positive associations around one nuclear site (Mol-Dessel). In the following years, the Belgian Cancer Registry has made data available at the smallest administrative unit for which demographic information exists in Belgium, i.e. the statistical sector. This offers the advantage to reduce the potential misclassification due to large geographical scales. METHODS The current study performed for the period 2006-2016 uses Poisson models to investigate (i) the incidence of childhood acute leukemia within 20 km around the four Belgian nuclear sites, (ii) exposure-response relationships between cancer incidence and surrogate exposures from the nuclear sites (distance, wind direction frequency and exposure by hypothetical radioactive discharges taking into account historical meteorological conditions). All analyses are carried out at statistical sector level. RESULTS Higher incidence rate ratios were found for children <15 years (7 cases, RR = 3.01, 95% CI: 1.43;6.35) and children <5 years (< 5 cases, RR = 3.62, 95% CI: 1.35;9.74) living less than 5 km from the site of Mol-Dessel. In addition, there was an indication for positive exposure-response relationships with the different types of surrogate exposures. CONCLUSION Results confirm an increased incidence of acute childhood leukemia around Mol-Dessel, but the number of cases remains very small. Random variation cannot be excluded and the ecological design does not allow concluding on causality. These findings emphasize the need for more in-depth research into the risk factors of childhood leukemia, for a better understanding of the etiology of this disease.
Collapse
|
23
|
Grimm J, Heckl D, Klusmann JH. Molecular Mechanisms of the Genetic Predisposition to Acute Megakaryoblastic Leukemia in Infants With Down Syndrome. Front Oncol 2021; 11:636633. [PMID: 33777792 PMCID: PMC7992977 DOI: 10.3389/fonc.2021.636633] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/12/2021] [Indexed: 01/28/2023] Open
Abstract
Individuals with Down syndrome are genetically predisposed to developing acute megakaryoblastic leukemia. This myeloid leukemia associated with Down syndrome (ML–DS) demonstrates a model of step-wise leukemogenesis with perturbed hematopoiesis already presenting in utero, facilitating the acquisition of additional driver mutations such as truncating GATA1 variants, which are pathognomonic to the disease. Consequently, the affected individuals suffer from a transient abnormal myelopoiesis (TAM)—a pre-leukemic state preceding the progression to ML–DS. In our review, we focus on the molecular mechanisms of the different steps of clonal evolution in Down syndrome leukemogenesis, and aim to provide a comprehensive view on the complex interplay between gene dosage imbalances, GATA1 mutations and somatic mutations affecting JAK-STAT signaling, the cohesin complex and epigenetic regulators.
Collapse
Affiliation(s)
- Juliane Grimm
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dirk Heckl
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jan-Henning Klusmann
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
24
|
Kratz CP, Jongmans MC, Cavé H, Wimmer K, Behjati S, Guerrini-Rousseau L, Milde T, Pajtler KW, Golmard L, Gauthier-Villars M, Jewell R, Duncan C, Maher ER, Brugieres L, Pritchard-Jones K, Bourdeaut F. Predisposition to cancer in children and adolescents. THE LANCET. CHILD & ADOLESCENT HEALTH 2021; 5:142-154. [PMID: 33484663 DOI: 10.1016/s2352-4642(20)30275-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022]
Abstract
Childhood malignancies are rarely related to known environmental exposures, and it has become increasingly evident that inherited genetic factors play a substantial causal role. Large-scale sequencing studies have shown that approximately 10% of children with cancer have an underlying cancer predisposition syndrome. The number of recognised cancer predisposition syndromes and cancer predisposition genes are constantly growing. Imaging and laboratory technologies are improving, and knowledge of the range of tumours and risk of malignancy associated with cancer predisposition syndromes is increasing over time. Consequently, surveillance measures need to be constantly adjusted to address these new findings. Management recommendations for individuals with pathogenic germline variants in cancer predisposition genes need to be established through international collaborative studies, addressing issues such as genetic counselling, cancer prevention, cancer surveillance, cancer therapy, psychological support, and social-ethical issues. This Review represents the work by a group of experts from the European Society for Paediatric Oncology (SIOPE) and aims to summarise the current knowledge and define future research needs in this evolving field.
Collapse
Affiliation(s)
- Christian P Kratz
- Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Marjolijn C Jongmans
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands; Department of Genetics, University Medical Center Utrecht, Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
| | - Hélène Cavé
- Department of Genetics, Assistance Publique Hôpitaux de Paris-Robert Debre University Hospital, Paris, France; Denis Diderot School of Medicine, University of Paris, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1131, Institut de Recherche Saint Louis, Paris, France
| | - Katharina Wimmer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Sam Behjati
- Wellcome Sanger Institute, Cambridge, UK; Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Lea Guerrini-Rousseau
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, Paris, France
| | - Till Milde
- Clinical Cooperation Unit Paediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany; KiTZ Clinical Trial Unit, Department of Paediatric Haematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany; Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Kristian W Pajtler
- Clinical Cooperation Unit Paediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany; KiTZ Clinical Trial Unit, Department of Paediatric Haematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany; Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Lisa Golmard
- Department of Genetics, Institut Curie, Paris, France; Paris Sciences Lettres Research University, Paris, France
| | - Marion Gauthier-Villars
- Department of Genetics, Institut Curie, Paris, France; Paris Sciences Lettres Research University, Paris, France
| | - Rosalyn Jewell
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, UK; NIHR Cambridge Biomedical Research Centre and Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Laurence Brugieres
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, Paris, France
| | - Kathy Pritchard-Jones
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Franck Bourdeaut
- SIREDO Paediatric Cancer Center, Institut Curie, Paris, France; INSERM U830, Laboratory of Translational Research in Paediatric Oncology, Institut Curie, Paris, France; Paris Sciences Lettres Research University, Paris, France.
| |
Collapse
|
25
|
Mahernia S, Sarvari S, Fatahi Y, Amanlou M. The Role of HSA21 Encoded Mirna in Down Syndrome Pathophysiology:Opportunities in miRNA-Targeted Pharmacotherapy and Diagnosis of the Down Syndrome. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Trisomy 21 is the most prevalent aneuploidy disorder among live-born children worldwide. Itresults from the presence of an extra copy of chromosome 21 which leads to a wide spectrum ofpathophysiological abnormalities and intellectual disabilities. Nevertheless human chromosome21 (HSA21) possess protein non-coding regions where HAS-21 derived-microRNA genes aretranscribed from. In turn, these HSA21-derived miRNAs curb protein translation of severalgenes which are essential to meet memory and cognitive abilities. From the genetics andmolecular biology standpoints, dissecting the mechanistic relationship between DS pathology/symptoms and five chromosome 21-encoded miRNAs including miR-99a, let-7c, miR-125b-2,miR-155 and miR-802 seems pivotal for unraveling novel therapeutic targets. Recently,several studies have successfully carried out small molecule inhibition of miRNAs function,maturation, and biogenesis. One might assume in the case of DS trisomy, the pharmacologicalinhibition of these five overexpressed miRNAs might open new avenues for amelioration of theDS symptoms and complications. In this review, we primarily elucidated the role of HSA21-encoded miRNAs in the DS pathology which in turn introduced and addressed importanttherapeutic targets. Moreover, we reviewed relevant pharmaceutical efforts that based theirgoals on inhibition of these pathological miRNAs at their different biogenesis steps. We havealso discussed the challenges that undermine and question the reliability of miRNAs as noneinvasivebiomarkers in prenatal diagnosis.
Collapse
Affiliation(s)
- Shabnam Mahernia
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Sarvari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences,Tehran, Iran
| |
Collapse
|
26
|
Acute lymphoblastic leukemia and down syndrome: 6-mercaptopurine and methotrexate metabolites during maintenance therapy. Leukemia 2020; 35:863-866. [PMID: 32623444 DOI: 10.1038/s41375-020-0946-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/20/2020] [Accepted: 06/19/2020] [Indexed: 11/08/2022]
|
27
|
Excellent long-term survival of children with Down syndrome and standard-risk ALL: a report from the Children's Oncology Group. Blood Adv 2020; 3:1647-1656. [PMID: 31160295 DOI: 10.1182/bloodadvances.2019032094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/25/2019] [Indexed: 11/20/2022] Open
Abstract
The Children's Cancer Group 1991 study was a clinical trial for children with National Cancer Institute standard-risk acute lymphoblastic leukemia (ALL). This trial demonstrated that 5 doses of vincristine and escalating IV methotrexate (MTX) without leucovorin rescue in the interim maintenance (IM) phases resulted in superior event-free survival (EFS) when compared with 2 doses of vincristine, oral (PO) MTX, PO mercaptopurine, and dexamethasone. This report describes a favorable outcome of this regimen in patients with Down syndrome (DS). Forty-four patients with DS were randomized to the arms containing PO MTX during IM, and 31 to those containing IV MTX. Ten-year EFS rates for patients with DS randomized to IV MTX vs PO MTX were 94.4% ± 5.4% vs 81.5% ± 6.6%, respectively. IV methotrexate with strict escalation parameters, as given in this study, was well tolerated, although the mean total tolerated dose received was lower in patients with DS than in those without DS. There was no increase in hepatic toxicity, systemic infections, or treatment-related deaths in patients with DS during IM on either the IV or PO MTX arms, as compared with those without DS. The incidence of mucositis was increased in patients with DS as compared with patients without DS, particularly among patients who received IV MTX. This trial was registered at www.clinicaltrials.gov as #NCT00005945.
Collapse
|
28
|
Czogala M, Pawinska-Wasikowska K, Ksiazek T, Sikorska-Fic B, Matysiak M, Skalska-Sadowska J, Wachowiak J, Rodziewicz-Konarska A, Chybicka A, Myszynska-Roslan K, Krawczuk-Rybak M, Grabowski D, Kowalczyk J, Maciejka-Kemblowska L, Adamkiewicz-Drozynska E, Bobeff K, Mlynarski W, Tomaszewska R, Szczepanski T, Pohorecka J, Chodala-Grzywacz A, Karolczyk G, Mizia-Malarz A, Mycko K, Badowska W, Zielezinska K, Urasinski T, Nykiel M, Woszczyk M, Ciebiera M, Chaber R, Skoczen S, Balwierz W. Retrospective Analysis of the Treatment Outcome in Myeloid Leukemia of Down Syndrome in Polish Pediatric Leukemia and Lymphoma Study Group From 2005 to 2019. Front Pediatr 2020; 8:277. [PMID: 32637384 PMCID: PMC7317010 DOI: 10.3389/fped.2020.00277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/04/2020] [Indexed: 12/04/2022] Open
Abstract
Background: Children with Down syndrome (DS) have increased risk of myeloid leukemia (ML), but specific treatment protocols ensure excellent outcome. This study was a retrospective analysis of the treatment results and genetic characteristics of ML of DS (ML-DS) in Poland from 2005 to 2019. Methods: All 54 patients with ML-DS registered in the Polish Pediatric Leukemia and Lymphoma Study Group in analyzed period were enrolled to the study. There were 34 children treated with Acute Myeloid Leukemia-Berlin-Frankfurt-Munster 2004 Interim Protocol (group I) and 20 patients treated with ML-DS 2006 Protocol (group II). In the first protocol, there was reduction of the antracyclines doses and intrathecal treatment for ML-DS compared to non-DS patients. In the second protocol, further reduction of the treatment was introduced (omission of etoposide in the last cycle, no maintenance therapy). Results: Probabilities of 5-year overall survival (OS), event-free survival (EFS), and relapse-free survival in the whole analyzed group were 0.85 ± 0.05, 0.83 ± 0.05, and 0.97 ± 0.03, respectively. No significant differences were found between two protocols in the terms of OS and EFS (0.79 ± 0.07 vs. 0.95 ± 0.05, p = 0.14, and 0.76 ± 0.07 vs. 0.95 ± 0.05, p = 0.12, respectively). All deaths were caused by the treatment-related toxicities. Reduction of the treatment-related mortality was noticed (20% in group I and 5% in group II). The only one relapse in the whole cohort occurred in the patient from group I, older than 4 years, without GATA1 gene mutation. He was treated successfully with IdaFLA cycle followed by hematopoietic stem cell transplantation from matched sibling donor. No significant prognostic factor was found in the study group probably due to low number of patients in the subgroups. Conclusions: The study confirms that the reduced intensity protocols are very effective in ML-DS patients. The only cause of deaths was toxicities; however, systematic decrease of the treatment-related mortality was noticed.
Collapse
Affiliation(s)
- Malgorzata Czogala
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
- Department of Pediatric Oncology and Hematology, University Children Hospital, Kraków, Poland
| | - Katarzyna Pawinska-Wasikowska
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
- Department of Pediatric Oncology and Hematology, University Children Hospital, Kraków, Poland
| | - Teofila Ksiazek
- Department of Pediatric Oncology and Hematology, University Children Hospital, Kraków, Poland
- Department of Medical Genetics, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Barbara Sikorska-Fic
- Department of Pediatrics, Hematology and Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Michal Matysiak
- Department of Pediatrics, Hematology and Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Jolanta Skalska-Sadowska
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznań, Poland
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznań, Poland
| | - Anna Rodziewicz-Konarska
- Department of Bone Marrow Transplantation, Pediatric Oncology and Hematology, Medical University of Wroclaw, Wrocław, Poland
| | - Alicja Chybicka
- Department of Bone Marrow Transplantation, Pediatric Oncology and Hematology, Medical University of Wroclaw, Wrocław, Poland
| | | | - Maryna Krawczuk-Rybak
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Bialystok, Poland
| | - Dominik Grabowski
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Jerzy Kowalczyk
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | | | | | - Katarzyna Bobeff
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Łódź, Poland
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Łódź, Poland
| | - Renata Tomaszewska
- Department of Pediatrics Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - Tomasz Szczepanski
- Department of Pediatrics Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - Joanna Pohorecka
- Paediatric Department of Hematology and Oncology, Regional Polyclinic Hospital in Kielce, Kielce, Poland
| | - Agnieszka Chodala-Grzywacz
- Paediatric Department of Hematology and Oncology, Regional Polyclinic Hospital in Kielce, Kielce, Poland
| | - Grazyna Karolczyk
- Paediatric Department of Hematology and Oncology, Regional Polyclinic Hospital in Kielce, Kielce, Poland
| | - Agnieszka Mizia-Malarz
- Department of Oncology, Hematology and Chemotherapy, John Paul II Upper Silesian Child Heath Centre, The Independent Public Clinical Hospital No. 6 of the Medical University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Mycko
- Department of Pediatrics and Hematology and Oncology, Province Children's Hospital, Olsztyn, Poland
| | - Wanda Badowska
- Department of Pediatrics and Hematology and Oncology, Province Children's Hospital, Olsztyn, Poland
| | - Karolina Zielezinska
- Department of Pediatrics, Hematology and Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Urasinski
- Department of Pediatrics, Hematology and Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Magdalena Nykiel
- Department of Pediatrics, Hematology and Oncology, City Hospital, Chorzów, Poland
| | - Mariola Woszczyk
- Department of Pediatrics, Hematology and Oncology, City Hospital, Chorzów, Poland
| | - Malgorzata Ciebiera
- Department of Pediatric Oncohematology, Clinical Province Hospital of Rzeszów, Rzeszow, Poland
| | - Radosław Chaber
- Department of Pediatric Oncohematology, Clinical Province Hospital of Rzeszów, Rzeszow, Poland
| | - Szymon Skoczen
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
- Department of Pediatric Oncology and Hematology, University Children Hospital, Kraków, Poland
| | - Walentyna Balwierz
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
- Department of Pediatric Oncology and Hematology, University Children Hospital, Kraków, Poland
| |
Collapse
|
29
|
Kattner P, Strobel H, Khoshnevis N, Grunert M, Bartholomae S, Pruss M, Fitzel R, Halatsch ME, Schilberg K, Siegelin MD, Peraud A, Karpel-Massler G, Westhoff MA, Debatin KM. Compare and contrast: pediatric cancer versus adult malignancies. Cancer Metastasis Rev 2020; 38:673-682. [PMID: 31832830 DOI: 10.1007/s10555-019-09836-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cancer is a leading cause of death in both adults and children, but in terms of absolute numbers, pediatric cancer is a relatively rare disease. The rarity of pediatric cancer is consistent with our current understanding of how adult malignancies form, emphasizing the view of cancer as a genetic disease caused by the accumulation and selection of unrepaired mutations over time. However, considering those children who develop cancer merely as stochastically "unlucky" does not fully explain the underlying aetiology, which is distinct from that observed in adults. Here, we discuss the differences in cancer genetics, distribution, and microenvironment between adult and pediatric cancers and argue that pediatric tumours need to be seen as a distinct subset with their own distinct therapeutic challenges. While in adults, the benefit of any treatment should outweigh mostly short-term complications, potential long-term effects have a much stronger impact in children. In addition, clinical trials must cope with low participant numbers when evaluating novel treatment strategies, which need to address the specific requirements of children.
Collapse
Affiliation(s)
- Patricia Kattner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, 89075, Ulm, Germany
| | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, 89075, Ulm, Germany
| | - Nika Khoshnevis
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, 89075, Ulm, Germany
| | - Michael Grunert
- Department of Radiology, German Armed Forces Hospital of Ulm, Ulm, Germany
| | - Stephan Bartholomae
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, 89075, Ulm, Germany
| | - Maximilian Pruss
- Department of Neurosurgery, University Medical Center Ulm, Ulm, Germany
| | - Rahel Fitzel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, 89075, Ulm, Germany
| | | | | | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Aurelia Peraud
- Pediatric Neurosurgery Section, Department of Neurosurgery, University Medical Center Ulm, Ulm, Germany
| | | | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, 89075, Ulm, Germany.
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, 89075, Ulm, Germany
| |
Collapse
|
30
|
Abstract
Acute megakaryoblastic leukemia (AMKL) is a rare malignancy affecting megakaryocytes, platelet-producing cells that reside in the bone marrow. Children with Down syndrome (DS) are particularly prone to developing the disease and have a different age of onset, distinct genetic mutations, and better prognosis as compared with individuals without DS who develop the disease. Here, we discuss the contributions of chromosome 21 genes and other genetic mutations to AMKL, the clinical features of the disease, and the differing features of DS- and non-DS-AMKL. Further studies elucidating the role of chromosome 21 genes in this disease may aid our understanding of how they function in other types of leukemia, in which they are frequently mutated or differentially expressed. Although researchers have made many insights into understanding AMKL, much more remains to be learned about its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Maureen McNulty
- Northwestern University, Division of Hematology/Oncology, Chicago, Illinois 60611, USA
| | - John D Crispino
- Northwestern University, Division of Hematology/Oncology, Chicago, Illinois 60611, USA
| |
Collapse
|
31
|
Terui K, Toki T, Taga T, Iwamoto S, Miyamura T, Hasegawa D, Moritake H, Hama A, Nakashima K, Kanezaki R, Kudo K, Saito AM, Horibe K, Adachi S, Tomizawa D, Ito E. Highly sensitive detection of GATA1 mutations in patients with myeloid leukemia associated with Down syndrome by combining Sanger and targeted next generation sequencing. Genes Chromosomes Cancer 2019; 59:160-167. [PMID: 31606922 DOI: 10.1002/gcc.22816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 11/09/2022] Open
Abstract
Myeloid leukemia associated with Down syndrome (ML-DS) is characterized by a predominance of acute megakaryoblastic leukemia, the presence of GATA1 mutations and a favorable outcome. Because DS children can also develop conventional acute myeloid leukemia with unfavorable outcome, detection of GATA1 mutations is important for diagnosis of ML-DS. However, myelofibrosis and the significant frequency of dry taps have hampered practical screening of GATA1 mutations using bone marrow (BM) samples. In response to those problems, 82 patients were enrolled in the Japanese Pediatric Leukemia/Lymphoma Study Group AML-D11 study. GATA1 mutations were analyzed by Sanger sequencing (SS) using genomic DNA (gDNA) from BM and cDNA from peripheral blood (PB) followed by targeted next-generation sequencing (NGS) using pooled diagnostic samples. BM and PB samples were obtained from 71 (87%) and 82 (100%) patients, respectively. GATA1 mutations were detected in 46 (56%) and 58 (71%) patients by SS using BM gDNA and PB cDNA, respectively. Collectively, GATA1 mutations were identified in 73/82 (89%) patients by SS. Targeted NGS detected GATA1 mutations in 74/82 (90%) patients. Finally, combining the results of SS with those of targeted NGS, GATA1 mutations were identified in 80/82 (98%) patients. These results indicate that SS using BM gDNA and PB cDNA is a rapid and useful method for screening for GATA1 mutations in ML-DS patients. Thus, a combination of SS and targeted NGS is a sensitive and useful method to evaluate the actual incidence and clinical significance of GATA1 mutations in ML-DS patients.
Collapse
Affiliation(s)
- Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Takako Miyamura
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Hasegawa
- Department of Pediatrics, St Luke's International Hospital, Tokyo, Japan
| | - Hiroshi Moritake
- Division of Pediatrics, Department of Reproductive and Developmental Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Asahito Hama
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Kentaro Nakashima
- Department of Pediatrics, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Rika Kanezaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ko Kudo
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akiko M Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
32
|
Recio A. Tumour growth activation by the central nervous system-An integrative theory of cancer. Stress Health 2019; 35:569-581. [PMID: 31397066 DOI: 10.1002/smi.2890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 01/11/2023]
Abstract
The currently recognized mechanisms of the biology of cancer are not yet enough to explain the high incidence of the disease in industrialized countries. Survival and proliferation of cancer cells demand a well-orchestrated combination of functional capabilities, or hallmarks, which requires complex signalling networks that often exceed the tumour boundaries. Based on latest research on environmental health and aiming to provide cancer with a coherent set of organizing principles, we propose an integrative model of carcinogenesis founded on tumour growth activation by the central nervous system as an adaptive, allostatic response to both environmental and emotional challenges. In this way, chronicity of physical as well as psychological stressors may be directly involved in cancer genesis and progression, after an early inflammatory stage. The model also contemplates accidental activation of the tumour growth programme following direct DNA damage, but as a rare event that does not account for most cancers in humans. Bodily and cellular mechanisms designed to facilitate tumorigenesis may include exacerbation of the sympathetic activity, overexpression of membrane ion channels, promotion of selected mutations and methylations, degradation of the mitochondria and reprogramming of adult stem cells.
Collapse
Affiliation(s)
- Alberto Recio
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
33
|
Geerlinks A, Keis J, Ngan B, Shammas A, Vali R, Hitzler J. Unusual lymphoid malignancy and treatment response in two children with Down syndrome. Pediatr Blood Cancer 2019; 66:e27822. [PMID: 31136091 DOI: 10.1002/pbc.27822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND Lymphoid malignancies other than acute lymphoblastic leukemia (ALL) are rare in children with Down syndrome (DS). Information about the toxicity of chemotherapy and prognosis is largely derived from the experience of children with DS and ALL or children without DS. PROCEDURE We describe the treatment and outcome of two unusual lymphoid malignancies in children with DS. One patient was diagnosed with Burkitt lymphoma (BL) and the second, after treatment for B precursor ALL, with T-cell EBV-positive proliferative disorder (LPD). RESULTS BL was treated with standard doses of LMB group B therapy subsequently intensified to group C therapy, including high-dose methotrexate (HD-MTX, 3-8 g/m2 ). The patient did not experience excessive toxicity and remains in complete remission 13 months later. Despite presentation with disseminated disease the patient with T-cell EBV-positive LPD after treatment for B precursor ALL responded to dexamethasone and rituximab and remains in complete remission two years later. CONCLUSIONS Upfront reduction of the high treatment intensity, which is associated with excellent survival outcomes in BL, may not be warranted in all children with DS. Response to therapy and prognosis of T-cell EBV-positive LPD in a patient with DS was not predicted by reported experience in the absence of DS.
Collapse
Affiliation(s)
- Ashley Geerlinks
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Keis
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Bo Ngan
- Division of Pathology, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amer Shammas
- Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Reza Vali
- Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Johann Hitzler
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Tweats D, Eastmond DA, Lynch AM, Elhajouji A, Froetschl R, Kirsch-Volders M, Marchetti F, Masumura K, Pacchierotti F, Schuler M. Role of aneuploidy in the carcinogenic process: Part 3 of the report of the 2017 IWGT workgroup on assessing the risk of aneugens for carcinogenesis and hereditary diseases. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:403032. [PMID: 31699349 DOI: 10.1016/j.mrgentox.2019.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/10/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Aneuploidy is regarded as a hallmark of cancer, however, its role is complex with both pro- and anti-carcinogenic effects evident. In this IWGT review, we consider the role of aneuploidy in cancer biology; cancer risk associated with constitutive aneuploidy; rodent carcinogenesis with known chemical aneugens; and chemotherapy-related malignant neoplasms. Aneuploidy is seen at various stages in carcinogenesis. However, the relationship between induced aneuploidy occurring after exposure and clonal aneuploidy present in tumours is not clear. Recent evidence indicates that the induction of chromosomal instability (CIN), may be more important than aneuploidy per se, in the carcinogenic process. Down Syndrome, trisomy 21, is associated with altered hematopoiesis in utero which, in combination with subsequent mutations, results in an increased risk for acute megakaryoblastic and lymphoblastic leukemias. In contrast, there is reduced cancer risk for most solid tumours in Down Syndrome. Mouse models with high levels of aneuploidy are also associated with increased cancer risk for particular tumours with long latencies, but paradoxically other types of tumour often show decreased incidence. The aneugens reviewed that induce cancer in humans and animals all possess other carcinogenic properties, such as mutagenicity, clastogenicity, cytotoxicity, organ toxicities, hormonal and epigenetic changes which likely account for, or interact with aneuploidy, to cause carcinogenesis. Although the role that aneuploidy plays in carcinogenesis has not been fully established, in many cases, it may not play a primary causative role. Tubulin-disrupting aneugens that do not possess other properties linked to carcinogenesis, were not carcinogenic in rodents. Similarly, in humans, for the tubulin-disrupting aneugens colchicine and albendazole, there is no reported association with increased cancer risk. There is a need for further mechanistic studies on agents that induce aneuploidy, particularly by mechanisms other than tubulin disruption and to determine the role of aneuploidy in pre-neoplastic events and in early and late stage neoplasia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kanagawa, Japan
| | - Francesca Pacchierotti
- Health Protection Technology Division, Laboratory of Biosafety and Risk Assessment, ENEA, CR Casaccia, Rome, Italy
| | | |
Collapse
|
35
|
Haas OA. Primary Immunodeficiency and Cancer Predisposition Revisited: Embedding Two Closely Related Concepts Into an Integrative Conceptual Framework. Front Immunol 2019; 9:3136. [PMID: 30809233 PMCID: PMC6379258 DOI: 10.3389/fimmu.2018.03136] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Common understanding suggests that the normal function of a "healthy" immune system safe-guards and protects against the development of malignancies, whereas a genetically impaired one might increase the likelihood of their manifestation. This view is primarily based on and apparently supported by an increased incidence of such diseases in patients with specific forms of immunodeficiencies that are caused by high penetrant gene defects. As I will review and discuss herein, such constellations merely represent the tip of an iceberg. The overall situation is by far more varied and complex, especially if one takes into account the growing difficulties to define what actually constitutes an immunodeficiency and what defines a cancer predisposition. The enormous advances in genome sequencing, in bioinformatic analyses and in the functional in vitro and in vivo assessment of novel findings together with the availability of large databases provide us with a wealth of information that steadily increases the number of sequence variants that concur with clinically more or less recognizable immunological problems and their consequences. Since many of the newly identified hard-core defects are exceedingly rare, their tumor predisposing effect is difficult to ascertain. The analyses of large data sets, on the other hand, continuously supply us with low penetrant variants that, at least in statistical terms, are clearly tumor predisposing, although their specific relevance for the respective carriers still needs to be carefully assessed on an individual basis. Finally, defects and variants that affect the same gene families and pathways in both a constitutional and somatic setting underscore the fact that immunodeficiencies and cancer predisposition can be viewed as two closely related errors of development. Depending on the particular genetic and/or environmental context as well as the respective stage of development, the same changes can have either a neutral, predisposing and, in some instances, even a protective effect. To understand the interaction between the immune system, be it "normal" or "deficient" and tumor predisposition and development on a systemic level, one therefore needs to focus on the structure and dynamic functional organization of the entire immune system rather than on its isolated individual components alone.
Collapse
Affiliation(s)
- Oskar A. Haas
- Department of Clinical Genetics, Children's Cancer Research Institute, Vienna, Austria
| |
Collapse
|
36
|
Nikkilä A, Raitanen J, Lohi O, Auvinen A. Radiation exposure from computerized tomography and risk of childhood leukemia: Finnish register-based case-control study of childhood leukemia (FRECCLE). Haematologica 2018; 103:1873-1880. [PMID: 29976736 PMCID: PMC6278981 DOI: 10.3324/haematol.2018.187716] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 06/26/2018] [Indexed: 12/31/2022] Open
Abstract
The only well-established risk factors for childhood leukemia are high-dose ionizing radiation and Down syndrome. Computerized tomography is a common source of low-dose radiation. In this study, we examined the magnitude of the risk of childhood leukemia after pediatric computed tomography examinations. We evaluated the association of computed tomography scans with risk of childhood leukemia in a nationwide register-based case-control study. Cases (n=1,093) were identified from the population-based Finnish Cancer Registry and three controls, matched by gender and age, were randomly selected for each case from the Population Registry. Information was also obtained on birth weight, maternal smoking, parental socioeconomic status and background gamma radiation. Data on computed tomography scans were collected from the ten largest hospitals in Finland, covering approximately 87% of all pediatric computed tomography scans. Red bone marrow doses were estimated with NCICT dose calculation software. The data were analyzed using exact conditional logistic regression analysis. A total of 15 cases (1.4%) and ten controls (0.3%) had undergone one or more computed tomography scans, excluding a 2-year latency period. For one or more computed tomography scans, we observed an odds ratio of 2.82 (95% confidence interval: 1.05 – 7.56). Cumulative red bone marrow dose from computed tomography scans showed an excess odds ratio of 0.13 (95% confidence interval: 0.02 – 0.26) per mGy. Our results are consistent with the notion that even low doses of ionizing radiation observably increase the risk of childhood leukemia. However, the observed risk estimates are somewhat higher than those in earlier studies, probably due to random error, although unknown predisposing factors cannot be ruled out.
Collapse
Affiliation(s)
- Atte Nikkilä
- Faculty of Medicine and Biosciences, University of Tampere
| | - Jani Raitanen
- Faculty of Social Sciences, University of Tampere.,UKK Institute for Health Promotion Research, Tampere
| | - Olli Lohi
- Faculty of Medicine and Biosciences, University of Tampere.,Tampere Center for Child Health Research, University of Tampere and Tampere University Hospital
| | - Anssi Auvinen
- Faculty of Social Sciences, University of Tampere.,UKK Institute for Health Promotion Research, Tampere.,STUK - Radiation and Nuclear Safety Authority, Helsinki, Finland
| |
Collapse
|
37
|
Recomendaciones para la atención a los adultos con síndrome de Down. Revisión de la literatura. Semergen 2018; 44:342-350. [DOI: 10.1016/j.semerg.2017.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/28/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022]
|
38
|
Brás A, Rodrigues AS, Gomes B, Rueff J. Down syndrome and microRNAs. Biomed Rep 2017; 8:11-16. [PMID: 29403643 DOI: 10.3892/br.2017.1019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/18/2017] [Indexed: 12/27/2022] Open
Abstract
In recent years numerous studies have indicated the importance of microRNAs (miRNA/miRs) in human pathology. Down syndrome (DS) is the most prevalent survivable chromosomal disorder and is attributed to trisomy 21 and the subsequent alteration of the dosage of genes located on this chromosome. A number of miRNAs are overexpressed in down syndrome, including miR-155, miR-802, miR- 125b-2, let-7c and miR-99a. This overexpression may contribute to the neuropathology, congenital heart defects, leukemia and low rate of solid tumor development observed in patients with DS. MiRNAs located on other chromosomes and with associated target genes on or off chromosome 21 may also be involved in the DS phenotype. In the present review, an overview of miRNAs and the haploinsufficiency and protein translation of specific miRNA targets in DS are discussed. This aimed to aid understanding of the pathogenesis of DS, and may contribute to the development of novel strategies for the prevention and treatment of the pathologies of DS.
Collapse
Affiliation(s)
- Aldina Brás
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - António S Rodrigues
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - Bruno Gomes
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - José Rueff
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| |
Collapse
|
39
|
Ebnet K. Junctional Adhesion Molecules (JAMs): Cell Adhesion Receptors With Pleiotropic Functions in Cell Physiology and Development. Physiol Rev 2017; 97:1529-1554. [PMID: 28931565 DOI: 10.1152/physrev.00004.2017] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023] Open
Abstract
Junctional adhesion molecules (JAM)-A, -B and -C are cell-cell adhesion molecules of the immunoglobulin superfamily which are expressed by a variety of tissues, both during development and in the adult organism. Through their extracellular domains, they interact with other adhesion receptors on opposing cells. Through their cytoplasmic domains, they interact with PDZ domain-containing scaffolding and signaling proteins. In combination, these two properties regulate the assembly of signaling complexes at specific sites of cell-cell adhesion. The multitude of molecular interactions has enabled JAMs to adopt distinct cellular functions such as the regulation of cell-cell contact formation, cell migration, or mitotic spindle orientation. Not surprisingly, JAMs regulate diverse processes such as epithelial and endothelial barrier formation, hemostasis, angiogenesis, hematopoiesis, germ cell development, and the development of the central and peripheral nervous system. This review summarizes the recent progress in the understanding of JAMs, including their characteristic structural features, their molecular interactions, their cellular functions, and their contribution to a multitude of processes during vertebrate development and homeostasis.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, Cells-In-Motion Cluster of Excellence (EXC1003-CiM), and Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
| |
Collapse
|
40
|
Jin H, Wang C, Jin G, Ruan H, Gu D, Wei L, Wang H, Wang N, Arunachalam E, Zhang Y, Deng X, Yang C, Xiong Y, Feng H, Yao M, Fang J, Gu J, Cong W, Qin W. Regulator of Calcineurin 1 Gene Isoform 4, Down-regulated in Hepatocellular Carcinoma, Prevents Proliferation, Migration, and Invasive Activity of Cancer Cells and Metastasis of Orthotopic Tumors by Inhibiting Nuclear Translocation of NFAT1. Gastroenterology 2017; 153:799-811.e33. [PMID: 28583823 DOI: 10.1053/j.gastro.2017.05.045] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 05/27/2017] [Accepted: 05/27/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Individuals with Down syndrome have a low risk for many solid tumors, prompting the search for tumor suppressor genes on human chromosome 21 (HSA21). We aimed to identify and explore potential mechanisms of tumor suppressors on HSA21 in hepatocellular carcinoma (HCC). METHODS We compared expression of HSA21 genes in 14 pairs of primary HCC and adjacent noncancer liver tissues using the Affymetrix HG-U133 Plus 2.0 array (Affymetrix, Santa Clara, CA). HCC tissues and adjacent normal liver tissues were collected from 108 patients at a hospital in China for real-time polymerase chain reaction and immunohistochemical analyses; expression levels of regulator of calcineurin 1 (RCAN1) isoform 4 (RCAN1.4) were associated with clinical features. We overexpressed RCAN1.4 from lentiviral vectors in MHCC97H and HCCLM3 cells and knocked expression down using small interfering RNAs in SMMC7721 and Huh7 cells. Cells were analyzed in proliferation, migration, and invasion assays. HCC cells that overexpressed RCAN1.4 or with RCAN1.4 knockdown were injected into livers or tail veins of nude mice; tumor growth and numbers of lung metastases were quantified. We performed bisulfite pyrosequencing and methylation-specific polymerase chain reaction analyses to analyze CpG island methylation. We measured phosphatase activity of calcineurin in HCC cells. RESULTS RCAN1.4 mRNA and protein levels were significantly decreased in primary HCC compared with adjacent noncancer liver tissues. Reduced levels of RCAN1.4 mRNA were significantly associated with advanced tumor stages, poor differentiation, larger tumor size, and vascular invasion. Kaplan-Meier survival analysis showed that patients with HCCs with lower levels of RCAN1.4 mRNA had shorter time of overall survival and time to recurrence than patients whose tumors had high levels of RCAN1.4 mRNA. In HCC cell lines, expression of RCAN1.4 significantly reduced proliferation, migration, and invasive activity. HCC cells that overexpressed RCAN1.4 formed smaller xenograft tumors, with fewer metastases and blood vessels, than control HCC cells. In HCC cells, RCAN1.4 inhibited expression of insulin-like growth factor 1 and vascular endothelial growth factor A by reducing calcineurin activity and blocking nuclear translocation of nuclear factor of activated T cells (NFAT1). HCC cells incubated with the calcineurin inhibitor cyclosporin A had decreased nuclear level of NFAT1. HCC cells had hypermethylation of a CpG island in the 5' regulatory region of RCAN1.4, which reduced its expression. CONCLUSIONS RCAN1.4 is down-regulated in HCC tissues, compared with non-tumor liver tissues. RCAN1.4 prevents cell proliferation, migration, and invasion in vitro; overexpressed RCAN1.4 in HCC cells prevents growth, angiogenesis, and metastases of xenograft tumors by inhibiting calcineurin activity and nuclear translocation of NFAT1.
Collapse
Affiliation(s)
- Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangzhi Jin
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Haoyu Ruan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dishui Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathophysiology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong, China
| | - Lin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Einthavy Arunachalam
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; The School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surry, UK
| | - Yurong Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Deng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism and College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hugang Feng
- Department of Life Science, Imperial College, London, UK
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyuan Fang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianren Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
41
|
Abstract
In this article we discuss the occurrence of myeloid neoplasms in patients with a range of syndromes that are due to germline defects of the RAS signaling pathway and in patients with trisomy 21. Both RAS mutations and trisomy 21 are common somatic events contributing to leukemogenis. Thus, the increased leukemia risk observed in children affected by these conditions is biologically highly plausible. Children with myeloid neoplasms in the context of these syndromes require different treatments than children with sporadic myeloid neoplasms and provide an opportunity to study the role of trisomy 21 and RAS signaling during leukemogenesis and development.
Collapse
Affiliation(s)
- Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.
| | - Shai Izraeli
- The Genes, Development and Environment Institute for Pediatric Research, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Human Molecular Genetics and Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
42
|
Therapy reduction in patients with Down syndrome and myeloid leukemia: the international ML-DS 2006 trial. Blood 2017; 129:3314-3321. [DOI: 10.1182/blood-2017-01-765057] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/29/2017] [Indexed: 11/20/2022] Open
Abstract
Key Points
Reducing therapy intensity in the ML-DS 2006 trial did not impair the excellent prognosis in ML-DS compared with the historical control. Early treatment response and gain of chromosome 8 are independent prognostic factors.
Collapse
|
43
|
Suppressors and activators of JAK-STAT signaling at diagnosis and relapse of acute lymphoblastic leukemia in Down syndrome. Proc Natl Acad Sci U S A 2017; 114:E4030-E4039. [PMID: 28461505 DOI: 10.1073/pnas.1702489114] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Children with Down syndrome (DS) are prone to development of high-risk B-cell precursor ALL (DS-ALL), which differs genetically from most sporadic pediatric ALLs. Increased expression of cytokine receptor-like factor 2 (CRLF2), the receptor to thymic stromal lymphopoietin (TSLP), characterizes about half of DS-ALLs and also a subgroup of sporadic "Philadelphia-like" ALLs. To understand the pathogenesis of relapsed DS-ALL, we performed integrative genomic analysis of 25 matched diagnosis-remission and -relapse DS-ALLs. We found that the CRLF2 rearrangements are early events during DS-ALL evolution and generally stable between diagnoses and relapse. Secondary activating signaling events in the JAK-STAT/RAS pathway were ubiquitous but highly redundant between diagnosis and relapse, suggesting that signaling is essential but that no specific mutations are "relapse driving." We further found that activated JAK2 may be naturally suppressed in 25% of CRLF2pos DS-ALLs by loss-of-function aberrations in USP9X, a deubiquitinase previously shown to stabilize the activated phosphorylated JAK2. Interrogation of large ALL genomic databases extended our findings up to 25% of CRLF2pos, Philadelphia-like ALLs. Pharmacological or genetic inhibition of USP9X, as well as treatment with low-dose ruxolitinib, enhanced the survival of pre-B ALL cells overexpressing mutated JAK2. Thus, somehow counterintuitive, we found that suppression of JAK-STAT "hypersignaling" may be beneficial to leukemic B-cell precursors. This finding and the reduction of JAK mutated clones at relapse suggest that the therapeutic effect of JAK specific inhibitors may be limited. Rather, combined signaling inhibitors or direct targeting of the TSLP receptor may be a useful therapeutic strategy for DS-ALL.
Collapse
|
44
|
Ishida H, Chayama K, Kanamitsu K, Washio K, Tanaka T, Shimada A. Desmoid-type fibromatosis in a boy with Down syndrome. Pediatr Int 2017; 59:624-626. [PMID: 28417531 DOI: 10.1111/ped.13241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 10/19/2022]
Abstract
Patients with Down syndrome (DS) have a markedly higher incidence of childhood leukemia, but a lower incidence of most solid tumors, compared with age-matched euploid individuals. Trisomy 21 might be protective against tumorigenesis because of several tumor suppressive mechanisms. Desmoid-type fibromatosis (DF) is a rare monoclonal, fibroblastic proliferation characterized by a variable clinical course. In recent reports, almost all cases of DF involved genomic alterations associated with activation of the Wnt/β-catenin pathway. Here, we report the case of a boy with DS who developed DF without activation of the Wnt/β-catenin pathway. To the best of our knowledge, this is the first case of DS involving DF.
Collapse
Affiliation(s)
- Hisashi Ishida
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Kousuke Chayama
- Department of Pediatrics, Toyonaka Municipal Hospital, Toyonaka, Japan
| | | | - Kana Washio
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Takehiro Tanaka
- Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Akira Shimada
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
45
|
Lum SH, Choong SS, Krishnan S, Mohamed Z, Ariffin H. GATA1 mutations in a cohort of Malaysian children with Down syndrome-associated myeloid disorder. Singapore Med J 2017; 57:320-4. [PMID: 27353457 DOI: 10.11622/smedj.2016106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Children with Down syndrome (DS) are at increased risk of developing distinctive clonal myeloid disorders, including transient abnormal myelopoiesis (TAM) and myeloid leukaemia of DS (ML-DS). TAM connotes a spontaneously resolving congenital myeloproliferative state observed in 10%-20% of DS newborns. Following varying intervals of apparent remission, a proportion of children with TAM progress to develop ML-DS in early childhood. Therefore, TAM and ML-DS represent a biological continuum. Both disorders are characterised by recurring truncating somatic mutations of the GATA1 gene, which are considered key pathogenetic events. METHODS We herein report, to our knowledge, the first observation on the frequency and nature of GATA1 gene mutations in a cohort of Malaysian children with DS-associated TAM (n = 9) and ML-DS (n = 24) encountered successively over a period of five years at a national referral centre. RESULTS Of the 29 patients who underwent GATA1 analysis, GATA1 mutations were observed in 15 (51.7%) patients, including 6 (75.0%) out of 8 patients with TAM, and 9 (42.9%) of 21 patients with ML-DS. All identified mutations were located in exon 2 and the majority were sequence-terminating insertions or deletions (66.7%), including several hitherto unreported mutations (12 out of 15). CONCLUSION The low frequency of GATA1 mutations in ML-DS patients is unusual and potentially indicates distinctive genomic events in our patient cohort.
Collapse
Affiliation(s)
- Su Han Lum
- Department of Paediatrics, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Soo Sin Choong
- Department of Paediatrics, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Shekhar Krishnan
- Department of Paediatrics, University Malaya Medical Centre, Kuala Lumpur, Malaysia.,University Malaya Cancer Research Institute, Faculty of Medicine, Kuala Lumpur, Malaysia
| | - Zulqarnain Mohamed
- Unit of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Hany Ariffin
- Department of Paediatrics, University Malaya Medical Centre, Kuala Lumpur, Malaysia.,University Malaya Cancer Research Institute, Faculty of Medicine, Kuala Lumpur, Malaysia
| |
Collapse
|
46
|
Efficacy of Ifosfamide-Cisplatin-Etoposide (ICE) Chemotherapy for a CNS Germinoma in a Child With Down Syndrome. J Pediatr Hematol Oncol 2017; 39:e39-e42. [PMID: 27879538 DOI: 10.1097/mph.0000000000000711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Intracranial germ cell tumor is sometimes associated with Down syndrome; however, no optimal treatment has been developed due to the high risk of recurrence and treatment-related mortality. Here, we report on a patient with an intracranial germinoma in the bilateral basal ganglia. The patient received 3 courses of ifosfamide-cisplatin-etoposide in combination with whole-brain irradiation (24 Gy), with no serious complications. The patient is alive and disease free 16 months after the initial diagnosis. This regimen is a feasible treatment for intracranial germ cell tumor associated with Down syndrome, although careful attention must be paid to the increased risk for severe infection.
Collapse
|
47
|
Mangum R, Varga E, Boué DR, Capper D, Benesch M, Leonard J, Osorio DS, Pierson CR, Zumberge N, Sahm F, Schrimpf D, Pfister SM, Finlay JL. SHH desmoplastic/nodular medulloblastoma and Gorlin syndrome in the setting of Down syndrome: case report, molecular profiling, and review of the literature. Childs Nerv Syst 2016; 32:2439-2446. [PMID: 27444290 DOI: 10.1007/s00381-016-3185-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/07/2016] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Individuals with Down syndrome (DS) have an increased risk of acute leukemia compared to a markedly decreased incidence of solid tumors. Medulloblastoma, the most common malignant brain tumor of childhood, is particularly rare in the DS population, with only one published case. As demonstrated in a mouse model, DS is associated with cerebellar hypoplasia and a decreased number of cerebellar granule neuron progenitor cells (CGNPs) in the external granule cell layer (EGL). Treatment of these mice with sonic hedgehog signaling pathway (Shh) agonists promote normalization of CGNPs and improved cognitive functioning. CASE REPORT We describe a 21-month-old male with DS and concurrent desmoplastic/nodular medulloblastoma (DNMB)-a tumor derived from Shh dysregulation and over-activation of CGNPs. Molecular profiling further classified the tumor into the new consensus SHH molecular subgroup. Additional testing revealed a de novo heterozygous germ line mutation in the PTCH1 gene encoding a tumor suppressor protein in the Shh pathway. DISCUSSION The developmental failure of CGNPs in DS patients offers a plausible explanation for the rarity of medulloblastoma in this population. Conversely, patients with PTCH1 germline mutations experience Shh overstimulation resulting in Gorlin (Nevoid Basal Cell Carcinoma) syndrome and an increased incidence of malignant transformation of CGNPs leading to medulloblastoma formation. This represents the first documented report of an individual with DS simultaneously carrying PTCH1 germline mutation. CONCLUSION We have observed a highly unusual circumstance in which the PTCH1 mutation appears to "trump" the effects of DS in causation of Shh-activated medulloblastoma.
Collapse
Affiliation(s)
- Ross Mangum
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA.
| | - Elizabeth Varga
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Daniel R Boué
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - David Capper
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Benesch
- Division of Pediatric Hematology/Oncology, Medical University of Graz, Graz, Austria
| | - Jeffrey Leonard
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Diana S Osorio
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Christopher R Pierson
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Nicholas Zumberge
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Felix Sahm
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniel Schrimpf
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan M Pfister
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonathan L Finlay
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| |
Collapse
|
48
|
Paul S, Kantarjian H, Jabbour EJ. Adult Acute Lymphoblastic Leukemia. Mayo Clin Proc 2016; 91:1645-1666. [PMID: 27814839 DOI: 10.1016/j.mayocp.2016.09.010] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 02/08/2023]
Abstract
Conventional cytotoxic chemotherapy used to treat acute lymphoblastic leukemia (ALL) results in high cure rates in pediatric patients but is suboptimal in the treatment of adult patients. The 5-year overall survival is approximately 90% in children and 30% to 40% in adults and elderly patients. Adults with ALL tend to have higher risk factors at diagnosis, more comorbidities, and increasing age that often requires dose reductions. Major advancements have been made in redefining the pathologic classification of ALL, identifying new cytogenetic-molecular abnormalities, and developing novel targeted agents in order to improve survival. The addition of new monoclonal antibodies and tyrosine kinase inhibitors to conventional chemotherapy in the frontline setting has resulted in increased rates of complete remission and overall survival. These new developments are changing the treatment of adult ALL from a "one therapy fits all" approach to individualized treatment based on patient's cytogenetic and molecular profile.
Collapse
Affiliation(s)
- Shilpa Paul
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hagop Kantarjian
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elias J Jabbour
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
49
|
de Paula Silva N, de Souza Reis R, Garcia Cunha R, Pinto Oliveira JF, Santos MDO, Pombo-de-Oliveira MS, de Camargo B. Maternal and Birth Characteristics and Childhood Embryonal Solid Tumors: A Population-Based Report from Brazil. PLoS One 2016; 11:e0164398. [PMID: 27768709 PMCID: PMC5074509 DOI: 10.1371/journal.pone.0164398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/23/2016] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Several maternal and birth characteristics have been reported to be associated with an increased risk of many childhood cancers. Our goal was to evaluate the risk of childhood embryonal solid tumors in relation to pre- and perinatal characteristics. METHODS A case-cohort study was performed using two population-based datasets, which were linked through R software. Tumors were classified as central nervous system (CNS) or non-CNS-embryonal (retinoblastoma, neuroblastoma, renal tumors, germ cell tumors, hepatoblastoma and soft tissue sarcoma). Children aged <6 years were selected. Adjustments were made for potential confounders. Odds ratios (OR) with 95% confidence intervals (CI) were computed by unconditional logistic regression analysis using SPSS. RESULTS Males, high maternal education level, and birth anomalies were independent risk factors. Among children diagnosed older than 24 months of age, cesarean section (CS) was a significant risk factor. Five-minute Apgar ≤8 was an independent risk factor for renal tumors. A decreasing risk with increasing birth order was observed for all tumor types except for retinoblastoma. Among children with neuroblastoma, the risk decreased with increasing birth order (OR = 0.82 (95% CI 0.67-1.01)). Children delivered by CS had a marginally significantly increased OR for all tumors except retinoblastoma. High maternal education level showed a significant increase in the odds for all tumors together, CNS tumors, and neuroblastoma. CONCLUSION This evidence suggests that male gender, high maternal education level, and birth anomalies are risk factors for childhood tumors irrespective of the age at diagnosis. Cesarean section, birth order, and 5-minute Apgar score were risk factors for some tumor subtypes.
Collapse
Affiliation(s)
- Neimar de Paula Silva
- Pediatric Hematology and Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro-RJ, Brazil
| | - Rejane de Souza Reis
- Divisão de Vigilância e Análise de Situação Coordenação de Prevenção e Vigilância, Instituto Nacional do Câncer, Rio de Janeiro-RJ, Brazil
| | - Rafael Garcia Cunha
- Divisão de Vigilância e Análise de Situação Coordenação de Prevenção e Vigilância, Instituto Nacional do Câncer, Rio de Janeiro-RJ, Brazil
| | - Júlio Fernando Pinto Oliveira
- Divisão de Vigilância e Análise de Situação Coordenação de Prevenção e Vigilância, Instituto Nacional do Câncer, Rio de Janeiro-RJ, Brazil
| | - Marceli de Oliveira Santos
- Divisão de Vigilância e Análise de Situação Coordenação de Prevenção e Vigilância, Instituto Nacional do Câncer, Rio de Janeiro-RJ, Brazil
| | - Maria S. Pombo-de-Oliveira
- Pediatric Hematology and Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro-RJ, Brazil
| | - Beatriz de Camargo
- Pediatric Hematology and Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro-RJ, Brazil
| |
Collapse
|
50
|
Kay LJ, Smulders-Srinivasan TK, Soundararajan M. Understanding the Multifaceted Role of Human Down Syndrome Kinase DYRK1A. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 105:127-71. [PMID: 27567487 DOI: 10.1016/bs.apcsb.2016.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The dual-specificity tyrosine (Y) phosphorylation-regulated kinase DYRK1A, also known as Down syndrome (DS) kinase, is a dosage-dependent signaling kinase that was originally shown to be highly expressed in DS patients as a consequence of trisomy 21. Although this was evident some time ago, it is only in recent investigations that the molecular roles of DYRK1A in a wide range of cellular processes are becoming increasingly apparent. Since initial knowledge on DYRK1A became evident through minibrain mnb, the Drosophila homolog of DYRK1A, this review will first summarize the scientific reports on minibrain and further expand on the well-established neuronal functions of mammalian and human DYRK1A. Recent investigations across the current decade have provided rather interesting and compelling evidence in establishing nonneuronal functions for DYRK1A, including its role in infection, immunity, cardiomyocyte biology, cancer, and cell cycle control. The latter part of this review will therefore focus in detail on the emerging nonneuronal functions of DYRK1A and summarize the regulatory role of DYRK1A in controlling Tau and α-synuclein. Finally, the emerging role of DYRK1A in Parkinson's disease will be outlined.
Collapse
Affiliation(s)
- L J Kay
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - T K Smulders-Srinivasan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - M Soundararajan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|