1
|
Gremmel T, Frelinger AL, Michelson AD. Platelet Physiology. Semin Thromb Hemost 2024; 50:1173-1186. [PMID: 38653463 DOI: 10.1055/s-0044-1786387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Platelets are the smallest blood cells, numbering 150 to 350 × 109/L in healthy individuals. The ability of activated platelets to adhere to an injured vessel wall and form aggregates was first described in the 19th century. Besides their long-established roles in thrombosis and hemostasis, platelets are increasingly recognized as pivotal players in numerous other pathophysiological processes including inflammation and atherogenesis, antimicrobial host defense, and tumor growth and metastasis. Consequently, profound knowledge of platelet structure and function is becoming more important in research and in many fields of modern medicine. This review provides an overview of platelet physiology focusing particularly on the structure, granules, surface glycoproteins, and activation pathways of platelets.
Collapse
Affiliation(s)
- Thomas Gremmel
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, St. Pölten, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria
| | - Andrew L Frelinger
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Alan D Michelson
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Xu W, Tan X, Li ML, Xu H, Villegas J, Fu H. Von Willebrand factor and hematogenous cancer metastasis under flow. Front Cell Dev Biol 2024; 12:1435718. [PMID: 39282473 PMCID: PMC11401050 DOI: 10.3389/fcell.2024.1435718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Hematogenous metastasis involves cancer cell migration to different locations from the primary tumor through the blood circulation. Von Willebrand factor (VWF) has been shown to play an important role in tumor cell adhesion to and extravasation from the endothelial cell lining of blood vessel walls during cancer metastasis. VWF may contribute to this process by interacting with tumor cells, endothelial cells, and platelets through various cell membrane receptors, such as platelet glycoprotein (GP)Ibα, P-selectin, ανβ3 and αIIbβ3 integrins, and glycocalyx. Blood flow can mechanically extend and activate VWF to bind platelets and associate intermolecularly with other VWF molecules in plasma or on the surface of endothelial cells, cancer cells, or platelets. This suggests a mechanoregulatory role of VWF in mediating the interactions between VWF and these cells to promote cancer cell adhesion to blood vessels. In this review, we will summarize the current knowledge of VWF function and the role of hydrodynamic forces in hematogenous cancer metastasis.
Collapse
Affiliation(s)
- Wenxuan Xu
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Xi Tan
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Morgan L Li
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Hanzhi Xu
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Jasmine Villegas
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Hongxia Fu
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
- Bloodworks Research Institute, Seattle, WA, United States
| |
Collapse
|
3
|
Tabaeian SP, Eshkiki ZS, Dana F, Fayyaz F, Baniasadi M, Agah S, Masoodi M, Safari E, Sedaghat M, Abedini P, Akbari A. Evaluation of tumor-educated platelet long non-coding RNAs (lncRNAs) as potential diagnostic biomarkers for colorectal cancer. J Cancer Res Ther 2024; 20:1453-1458. [PMID: 38261465 DOI: 10.4103/jcrt.jcrt_1212_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 03/03/2023] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Cancer-derived circulating components are increasingly considered as candidate sources for non-invasive diagnostic biomarkers. This study aimed to investigate the expression of tumor-educated platelet (TEP) long non-coding RNAs (lncRNAs) in colorectal cancer (CRC) patients and determine whether it could be served as a potential tool for CRC diagnosis. MATERIALS AND METHODS Relative quantitative real-time PCR (qRT-PCR) was used to detect the expression levels of three cancer-related platelet-derived lncRNAs CCAT1, HOTTIP, and XIST in 75 CRC patients and 42 healthy controls. Quantitative data were analyzed by SPSS (IBM Corp., Armonk, NY, USA) for comparison of cancer and non-cancer individuals. The receiver operating characteristic (ROC) curve analysis was further performed to assess the diagnostic values of lncRNAs within the CRC patients. RESULTS The expression levels of lncRNAs colon cancer associated transcript 1 (CCAT1) ( P = 0.006) and HOXA transcript at the distal tip (HOTTIP) ( P = 0.049), but not X-inactive specific transcript (XIST) ( P = 0.12), were significantly upregulated in CRC patients compared to healthy individuals. However, there were no significant correlations between platelet lncRNAs and clinicopathological characteristics, including sex, age, tumor location, differentiation, and size (all at P > 0.05). The area under the ROC curve (AUC) of the lncRNA CCAT1 was 0.61 (sensitivity, 71%; specificity, 50%). CONCLUSION TEP lncRNA CCAT1 is detectable in the circulation of CRC patients and could be considered as a potential diagnostic biomarker.
Collapse
Affiliation(s)
- Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shokati Eshkiki
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Dana
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farimah Fayyaz
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Baniasadi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Masoodi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Safari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Meghdad Sedaghat
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paria Abedini
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Peng C, Wang Y, Zhang H, Chen P. The platelet-related genes associated with the prognosis of HCC by regulating cycling T cell and prolif-TAMs. Heliyon 2024; 10:e26798. [PMID: 38486758 PMCID: PMC10938119 DOI: 10.1016/j.heliyon.2024.e26798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/15/2024] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
Accumulating evidence highlighted the important roles of platelets in the prognosis and progression of various tumors. Nevertheless, the role of platelet-related genes (PRGs) in HCC remains limited. In this work, 92 differentially expressed PRGs were described in HCC using TCGA and ICGC databases. Then, based on the different expressions of PRGs, we explored two subtypes and developed the PRGs prognostic signature in HCC. The PRGs signature was an independent prognosis factor associated with immune cell infiltration in HCC. Furthermore, two external validation sets verified the expression and prognosis of the PRGs signature gene in HCC. Finally, scRNA-seq analysis demonstrated that the signature genes (CENPE and KIF2C) were mainly expressed in cycling T cells and prolif-TAMs. Enrichment analysis showed that CENPE and KIF2C regulated the cell cycle and p53 pathways in these cells. In conclusion, this study builds the PRGs-related risk signature of HCC and reveals the potential mechanism by which these signature genes regulate the immune microenvironment in HCC.
Collapse
Affiliation(s)
- Chenjia Peng
- School of Mathematics and Computational Science, Hunan First Normal University, Changsha, 410205, PR China
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, PR China
| | - Ying Wang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, PR China
| | - Hengbo Zhang
- Physical Education Department, First Hunan Normal University, Changsha, 410081, PR China
| | - Ping Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, PR China
| |
Collapse
|
5
|
Robinson SD, de Boisanger J, Pearl FMG, Critchley G, Rosenfelder N, Giamas G. A brain metastasis liquid biopsy: Where are we now? Neurooncol Adv 2024; 6:vdae066. [PMID: 38770219 PMCID: PMC11102938 DOI: 10.1093/noajnl/vdae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Brain metastases remain a challenging and feared complication for patients with cancer and research in this area has lagged behind research into metastases to other organs. Due to their location and the risks associated with neurosurgical biopsies, the biology underpinning brain metastases response to treatment and evolution over time remains poorly understood. Liquid biopsies are proposed to overcome many of the limitations present with tissue biopsies, providing a better representation of tumor heterogeneity, facilitating repeated sampling, and providing a noninvasive assessment of tumor biology. Several different liquid biopsy approaches have been investigated including circulating tumor cells, circulating tumor DNA, extracellular vesicles, and tumor-educated platelets; however, these have generally been less effective in assessing brain metastases compared to metastases to other organs requiring improved techniques to investigate these approaches, studies combining different liquid biopsy approaches and/or novel liquid biopsy approaches. Through this review, we highlight the current state of the art and define key unanswered questions related to brain metastases liquid biopsies.
Collapse
Affiliation(s)
- Stephen David Robinson
- Sussex Cancer Centre, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - James de Boisanger
- Neuro-Oncology Unit, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Frances M G Pearl
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Giles Critchley
- Department of Neurosurgery, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Nicola Rosenfelder
- Neuro-Oncology Unit, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| |
Collapse
|
6
|
Cho O. Post-Radiotherapy Exosomal Non-Coding RNA and Hemograms for Early Death Prediction in Patients with Cervical Cancer. Int J Mol Sci 2023; 25:126. [PMID: 38203297 PMCID: PMC10778718 DOI: 10.3390/ijms25010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Concurrent chemo-radiotherapy (CCRT) is linked with accelerated disease progression and early death (ED) in various cancers. This study aimed to assess the association of plasma levels of exosomal non-coding ribonucleic acid (RNA) (ncRNA) and blood cell dynamics with ED prediction in patients with cervical cancer undergoing CCRT. Using propensity score matching, a comparison of complete blood counts (CBCs) was performed among 370 CCRT-treated patients. Differences in ncRNA and messenger RNA (mRNA) expression before and after CCRT in 84 samples from 42 patients (cohort 2) were represented as logarithmic fold change (log2FC). Networks were constructed to link the CBCs to the RNAs whose expression correlated with ED. From the key RNAs selected using multiple regression of all RNA combinations in the network, CBC dynamics-associated ncRNAs were functionally characterized using an enrichment analysis. Cohort 1 (120 patients) exhibited a correlation between elevated absolute neutrophil counts (ANC) and ED. Cohort 2 exhibited a prevalence of microRNA (miR)-574-3p and long intergenic non-protein coding (LINC)01003 ncRNA, whose expression correlated with ANC and hemoglobin values, respectively. Conversely, acyl-coenzyme A thioesterase 9 (ACOT9) mRNA was relevant to all CBC components. An integrative analysis of post-CCRT ncRNA levels and CBC values revealed that the patients with miR-574-3p-LINC01003-ACOT9 log2FC) < 0 had a better prospect of 30-month disease-specific survival. These findings indicate that miR-574-3p and LINC01003 could serve as ED prognostic biomarkers.
Collapse
Affiliation(s)
- Oyeon Cho
- Gynecologic Cancer Center, Department of Radiation Oncology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
7
|
Casari M, Siegl D, Deppermann C, Schuppan D. Macrophages and platelets in liver fibrosis and hepatocellular carcinoma. Front Immunol 2023; 14:1277808. [PMID: 38116017 PMCID: PMC10728659 DOI: 10.3389/fimmu.2023.1277808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
During fibrosis, (myo)fibroblasts deposit large amounts of extracellular matrix proteins, thereby replacing healthy functional tissue. In liver fibrosis, this leads to the loss of hepatocyte function, portal hypertension, variceal bleeding, and increased susceptibility to infection. At an early stage, liver fibrosis is a dynamic and reversible process, however, from the cirrhotic stage, there is significant progression to hepatocellular carcinoma. Both liver-resident macrophages (Kupffer cells) and monocyte-derived macrophages are important drivers of fibrosis progression, but can also induce its regression once triggers of chronic inflammation are eliminated. In liver cancer, they are attracted to the tumor site to become tumor-associated macrophages (TAMs) polarized towards a M2- anti-inflammatory/tumor-promoting phenotype. Besides their role in thrombosis and hemostasis, platelets can also stimulate fibrosis and tumor development by secreting profibrogenic factors and regulating the innate immune response, e.g., by interacting with monocytes and macrophages. Here, we review recent literature on the role of macrophages and platelets and their interplay in liver fibrosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Martina Casari
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Dominik Siegl
- Institute for Translational Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Carsten Deppermann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immune Therapy Forschungszentrum für Immuntherapie (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Detlef Schuppan
- Institute for Translational Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immune Therapy Forschungszentrum für Immuntherapie (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Li Y, Wang S, Xiao H, Lu F, Zhang B, Zhou T. Evaluation and validation of the prognostic value of platelet indices in patients with leukemia. Clin Exp Med 2023; 23:1835-1844. [PMID: 36622510 DOI: 10.1007/s10238-022-00985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 01/10/2023]
Abstract
Platelets (PLTs) are believed to play a role in the process by which tumors can accelerate their growth rate, as well as offer the physical and mechanical support necessary to evade the immunological system and metastasis. There is, however, no literature available if PLTs have a role in leukemia. It is significant for PLTs to play a part in hematological malignancies from a therapeutic standpoint and to have the capacity to serve as a prognostic marker in the evolution of leukemia. This is because PLTs play a crucial role in the development of cancer and tumors. In this study, it will be shown that PLT count can be used to predict long-term prognosis after chemotherapy especially in the case of acute myeloid leukemia patients. Furthermore, low PLT-to-lymphocyte ratio and mean PLT volume, as well as high PLT distribution width, are associated with poor prognosis and may represent a novel independent prognostic factor.
Collapse
Affiliation(s)
- Yuyan Li
- Department of Experimental Diagnostic, Jilin Kingmed for Clinical Laboratory Co., Ltd., Changchun, 130000, China
| | - Shuangge Wang
- Department of Experimental Diagnostic, Jilin Kingmed for Clinical Laboratory Co., Ltd., Changchun, 130000, China
| | - Han Xiao
- Department of Experimental Diagnostic, Jilin Kingmed for Clinical Laboratory Co., Ltd., Changchun, 130000, China
| | - Fang Lu
- Department of Experimental Diagnostic, Jilin Kingmed for Clinical Laboratory Co., Ltd., Changchun, 130000, China
| | - Bin Zhang
- Department of Experimental Diagnostic, Jilin Kingmed for Clinical Laboratory Co., Ltd., Changchun, 130000, China
| | - Tingting Zhou
- Department of Experimental Diagnostic, Jilin Kingmed for Clinical Laboratory Co., Ltd., Changchun, 130000, China.
| |
Collapse
|
9
|
Feka J, Jomrich G, Winkler D, Ilhan-Mutlu A, Kristo I, Paireder M, Rieder E, Bologheanu M, Asari R, Schoppmann SF. Platelets as a prognostic factor for patients with adenocarcinoma of the gastroesophageal junction. Langenbecks Arch Surg 2023; 408:351. [PMID: 37673810 PMCID: PMC10482770 DOI: 10.1007/s00423-023-03093-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the prognostic role of plasma platelet count (PLT), mean platelet volume (MPV), and the combined COP-MPV score in patients with resectable adenocarcinomas of the gastroesophageal junction. BACKGROUND Platelet activation, quantified by PLT and elevated MPV, plays an essential part in the biological process of carcinogenesis and metastasis. An increased preoperative COP-MPV is associated with poor survival in various tumor entities. METHODS Data of 265 patients undergoing surgical resection for adenocarcinoma of the gastroesophageal junction were abstracted. COP-MPV score was defined for each patient. Utilizing univariate and multivariate Cox proportional hazard analyses, survival was determined. RESULTS In univariate analysis, elevated PLT (HR 3.58, 95% CI 2.61-4.80, p<0.001) and increased COP-MPV (HR 0.27, 95% CI 0.17-0.42, p<0.001 and HR 0.42, 95% CI 0.29-0.60, p<0.001) significantly correlated with shorter patients' overall and disease-free survival, for all 256 patients, as well as in the subgroups of neoadjuvantly treated (p<0.001) and primarily resected patients (p<0.001). COP-MPV remained a significant prognostic factor in multivariate analysis for OS. However, PLT alone showed significant diminished OS and DFS in all subgroups (p<0.001) in univariate and multivariate analysis. CONCLUSION PLT is a potent independent prognostic biomarker for survival in a large prospective cohort of patients with resectable adenocarcinoma of the gastroesophageal junction. Additionally, we confirm that the COP-MPV score is significantly associated with worse outcome in these patients, but has no benefit in comparison to PLT.
Collapse
Affiliation(s)
- Joy Feka
- Department of Surgery, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Gerd Jomrich
- Department of Surgery, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Daniel Winkler
- Department of Statistics and Operations Research, University of Vienna, Oskar Morgenstern Platz 1, 1090, Vienna, Austria
| | - Ayseguel Ilhan-Mutlu
- Department of Medicine 1, Comprehensive Cancer Center (CCC), Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Ivan Kristo
- Department of Surgery, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Matthias Paireder
- Department of Surgery, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Erwin Rieder
- Department of Surgery, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Milena Bologheanu
- Department of Surgery, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Reza Asari
- Department of Surgery, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Sebastian F Schoppmann
- Department of Surgery, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
- Upper-GI Unit, Department of Surgery, Division of General Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
10
|
Anderson R, Rapoport BL, Steel HC, Theron AJ. Pro-Tumorigenic and Thrombotic Activities of Platelets in Lung Cancer. Int J Mol Sci 2023; 24:11927. [PMID: 37569299 PMCID: PMC10418868 DOI: 10.3390/ijms241511927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Aside from their key protective roles in hemostasis and innate immunity, platelets are now recognized as having multifaceted, adverse roles in the pathogenesis, progression and outcome of many types of human malignancy. The most consistent and compelling evidence in this context has been derived from the notable association of elevated circulating platelet counts with the onset and prognosis of various human malignancies, particularly lung cancer, which represents the primary focus of the current review. Key topics include an overview of the association of lung cancer with the circulating platelet count, as well as the mechanisms of platelet-mediated, pro-tumorigenic immunosuppression, particularly the role of transforming growth factor beta 1. These issues are followed by a discussion regarding the pro-tumorigenic role of platelet-derived microparticles (PMPs), the most abundant type of microparticles (MPs) in human blood. In this context, the presence of increased levels of PMPs in the blood of lung cancer patients has been associated with tumor growth, invasion, angiogenesis and metastasis, which correlate with disease progression and decreased survival times. The final section of the review addresses, firstly, the role of cancer-related platelet activation and thrombosis in the pathogenesis of secondary cardiovascular disorders and the associated mortality, particularly in lung cancer, which is second only to disease progression; secondly, the review addresses the potential role of antiplatelet agents in the adjunctive therapy of cancer.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (B.L.R.); (H.C.S.); (A.J.T.)
| | - Bernardo L. Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (B.L.R.); (H.C.S.); (A.J.T.)
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (B.L.R.); (H.C.S.); (A.J.T.)
| | - Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (B.L.R.); (H.C.S.); (A.J.T.)
| |
Collapse
|
11
|
Adrover JM, McDowell SAC, He XY, Quail DF, Egeblad M. NETworking with cancer: The bidirectional interplay between cancer and neutrophil extracellular traps. Cancer Cell 2023; 41:505-526. [PMID: 36827980 DOI: 10.1016/j.ccell.2023.02.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
Neutrophils are major effectors and regulators of the immune system. They play critical roles not only in the eradication of pathogens but also in cancer initiation and progression. Conversely, the presence of cancer affects neutrophil activity, maturation, and lifespan. By promoting or repressing key neutrophil functions, cancer cells co-opt neutrophil biology to their advantage. This co-opting includes hijacking one of neutrophils' most striking pathogen defense mechanisms: the formation of neutrophil extracellular traps (NETs). NETs are web-like filamentous extracellular structures of DNA, histones, and cytotoxic granule-derived proteins. Here, we discuss the bidirectional interplay by which cancer stimulates NET formation, and NETs in turn support disease progression. We review how vascular dysfunction and thrombosis caused by neutrophils and NETs underlie an elevated risk of death from cardiovascular events in cancer patients. Finally, we propose therapeutic strategies that may be effective in targeting NETs in the clinical setting.
Collapse
Affiliation(s)
- Jose M Adrover
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Sheri A C McDowell
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada; Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Xue-Yan He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada; Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
12
|
Liu L, Pan Y, Zhao C, Huang P, Chen X, Rao L. Boosting Checkpoint Immunotherapy with Biomaterials. ACS NANO 2023; 17:3225-3258. [PMID: 36746639 DOI: 10.1021/acsnano.2c11691] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The immune checkpoint blockade (ICB) therapy has revolutionized the field of cancer treatment, while low response rates and systemic toxicity limit its clinical outcomes. With the rapid advances in nanotechnology and materials science, various types of biomaterials have been developed to maximize therapeutic efficacy while minimizing side effects by increasing tumor antigenicity, reversing immunosuppressive microenvironment, amplifying antitumor immune response, and reducing extratumoral distribution of checkpoint inhibitors as well as enhancing their retention within target sites. In this review, we reviewed current design strategies for different types of biomaterials to augment ICB therapy effectively and then discussed present representative biomaterial-assisted immune modulation and targeted delivery of checkpoint inhibitors to boost ICB therapy. Current challenges and future development prospects for expanding the ICB with biomaterials were also summarized. We anticipate this review will be helpful for developing emerging biomaterials for ICB therapy and promoting the clinical application of ICB therapy.
Collapse
Affiliation(s)
- Lujie Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074
| | - Chenchen Zhao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore 138673
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
13
|
Abstract
Brain metastases (BMs) often occur in patients with lung cancer, breast cancer, and melanoma and are the leading cause of morbidity and mortality. The incidence of BM has increased with advanced neuroimaging and prolonged overall survival of cancer patients. With the advancement of local treatment modalities, including stereotactic radiosurgery and navigation-guided microsurgery, BM can be controlled long-term, even in cases with multiple lesions. However, radiation/chemotherapeutic agents are also toxic to the brain, usually irreversibly and cumulatively, and it remains difficult to completely cure BM. Thus, we must understand the molecular events that begin and sustain BM to develop effective targeted therapies and tools to prevent local and distant treatment failure. BM most often spreads hematogenously, and the blood-brain barrier (BBB) presents the first hurdle for disseminated tumor cells (DTCs) entering the brain parenchyma. Nevertheless, how the DTCs cross the BBB and settle on relatively infertile central nervous system tissue remains unknown. Even after successfully taking up residence in the brain, the unique tumor microenvironment is marked by restricted aerobic glycolysis metabolism and limited lymphocyte infiltration. Brain organotropism, certain phenotype of primary cancers that favors brain metastasis, may result from somatic mutation or epigenetic modulation. Recent studies revealed that exosome secretion from primary cancer or over-expression of proteolytic enzymes can "pre-condition" brain vasculoendothelial cells. The concept of the "metastatic niche," where resident DTCs remain dormant and protected from systemic chemotherapy and antigen exposure before proliferation, is supported by clinical observation of BM in patients clearing systemic cancer and experimental evidence of the interaction between cancer cells and tumor-infiltrating lymphocytes. This review examines extant research on the metastatic cascade of BM through the molecular events that create and sustain BM to reveal clues that can assist the development of effective targeted therapies that treat established BMs and prevent BM recurrence.
Collapse
Affiliation(s)
- Ho-Shin Gwak
- Department of Cancer Control, National Cancer Center, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.
| |
Collapse
|
14
|
Ke Y, Ma Z, Ye H, Guan X, Xiang Z, Xia Y, Shi Q. Chlorogenic Acid-Conjugated Nanoparticles Suppression of Platelet Activation and Disruption to Tumor Vascular Barriers for Enhancing Drug Penetration in Tumor. Adv Healthc Mater 2022; 12:e2202205. [PMID: 36509084 DOI: 10.1002/adhm.202202205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/25/2022] [Indexed: 12/14/2022]
Abstract
Hypercoagulation threatens the lives of cancer patients and cancer progression. Platelet overactivation attributes to the tumor-associated hypercoagulation and maintenance of the tumor endothelial integrity, leading to limited intratumoral perfusion of nanoagents into solid tumors in spite of the enhanced penetration and retention effect (EPR). Therefore, the clinical application of nanotherapeutics in solid cancer still faces great challenges. Herein, this work establishes platelet inhibiting nanoagents based on FeIII -doped C3 N4 coloaded with the chemotherapy drug and the antiplatelet drug chlorogenic acid (CA), further opening tumor vascular endothelial junctions, thereby disrupting the tumor vascular endothelial integrity, and enhancing drug perfusion. Moreover, CA not only damages the cancer cells but also potentiates the cytotoxicity induced by the chemotherapy drug doxorubicin, synergistically ablating the tumor tissue. Further, the introduction of CA relieves the original causes of the hypercoagulable state such as tissue factor (TF), thrombin, and matrix metalloproteinases (MMPs) secreted by cancer cells. It is anticipated that the hypercoagulation- and platelet-inhibition strategy by integration of phenolic acid CA into chemotherapy provides insights into platelet inhibition-assisted theranostics based on nanomedicines.
Collapse
Affiliation(s)
- Yue Ke
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Hongbo Ye
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xinghua Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
15
|
Yu Y, Cheng Q, Ji X, Chen H, Zeng W, Zeng X, Zhao Y, Mei L. Engineered drug-loaded cellular membrane nanovesicles for efficient treatment of postsurgical cancer recurrence and metastasis. SCIENCE ADVANCES 2022; 8:eadd3599. [PMID: 36490349 PMCID: PMC9733928 DOI: 10.1126/sciadv.add3599] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/02/2022] [Indexed: 05/26/2023]
Abstract
Cancer recurrence and metastasis are still common causes of postsurgery death in patients with solid tumors, suggesting that additional consolidation therapeutic strategies are necessary. We have previously found that oxaliplatin (OXA) treatment causes further up-regulation of CD155, which is abundantly expressed in tumors for resulting in increased sensitivity of cancer to anti-CD155 therapy. Here, we report O-TPNVs, which are TIGIT-expressing cell membrane and platelet cell membrane fusion nanovesicles (TPNVs) loaded with OXA. Platelet-derived membrane components enable O-TPNVs to target postsurgery wounds and interact with circulating tumor cells (CTCs). OXA directly kills residual tumor cells and CTCs, induces immunogenic cell death, and activates the immune system. TPNVs bind to CD155 on tumor cells, block the CD155/TIGIT pathway, and restore CD8+ T cell activity. In vivo analyses reveal that O-TPNVs achieve synergistic chemotherapeutic and immunotherapeutic effects, effectively inhibiting the recurrence and metastasis of triple-negative breast cancer (4T1) after surgery.
Collapse
Affiliation(s)
- Yongkang Yu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Qinzhen Cheng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Xiaoyuan Ji
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Wenfeng Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| |
Collapse
|
16
|
Liu Q, Ma L, Ma H, Yang L, Xu Z. Establishment of a prognostic nomogram for patients with locoregionally advanced nasopharyngeal carcinoma incorporating clinical characteristics and dynamic changes in hematological and inflammatory markers. Front Oncol 2022; 12:1032213. [DOI: 10.3389/fonc.2022.1032213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/11/2022] [Indexed: 12/08/2022] Open
Abstract
BackgroundThis study aims to investigate the prognostic value of changes in hematological and inflammatory markers during induction chemotherapy (IC) and concurrent chemo-radiation (CCRT), thus construct nomograms to predict progression free survival (PFS) of patients with locally advanced nasopharyngeal carcinoma (LANPC).Methods130 patients were included in this prospective analysis. Univariate and multivariate cox regression analyses were conducted to identify prognostic factors. Three multivariate analyses integrating different groups of variables were conducted independently. Concordance indexes (c-index), calibration plots and Kaplan-Meier curves were used to evaluate the nomograms. Bootstrap validation was performed to determine the accuracy of the nomogram using 1000 resamples. The performances of proposed nomograms and TNM staging system were compared to validate the prognostic value of hematological and inflammatory markers.ResultsPretreatment gross tumor volume of nodal disease (GTVn), Δe/bHGB (hemoglobin count at end of treatment/baseline hemoglobin count), and stage were selected as predictors for 3-year PFS in first multivariate analysis of clinical factors. The second multivariate analysis of clinical factors and all hematological variables demonstrated that ΔminLYM (minimum lymphocyte count during CCRT/lymphocyte count post-IC), pretreatment GTVn and stage were associated with 3-year PFS. Final multivariate analysis, incorporating all clinical factors, hematological variables and inflammatory markers, identified the following prognostic factors: pretreatment GTVn, stage, ΔmaxPLR (maximum platelet-to-lymphocyte ratio (PLR) during CCRT/PLR post-IC), and ΔminPLT (minimum platelet count during CCRT/platelet count post-IC). Calibration plots showed agreement between the PFS predicted by the nomograms and actual PFS. Kaplan–Meier curves demonstrated that patients in the high-risk group had shorter PFS than those in the low-risk group (P ≤ 0.001). The c-indexes of the three nomograms for PFS were 0.742 (95% CI, 0.639-0.846), 0.766 (95% CI, 0.661-0.871) and 0.815 (95% CI,0.737-0.893) respectively, while c-index of current TNM staging system was 0.633 (95% CI, 0.531-0.736).ConclusionWe developed and validated a nomogram for predicting PFS in patients with LANPC who received induction chemotherapy and concurrent chemo-radiation. Our study confirmed the prognostic value of dynamic changes in hematological and inflammatory markers. The proposed nomogram outperformed the current TNM staging system in predicting PFS, facilitating risk stratification and guiding individualized treatment plans.
Collapse
|
17
|
Identification of Potential Biomarkers of Platelet RNA in Glioblastoma by Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2488139. [PMID: 35996545 PMCID: PMC9391609 DOI: 10.1155/2022/2488139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022]
Abstract
Objective Glioblastoma is one of the most common and fatal malignancies in adults. Current treatment is still not optimistic. Glioblastoma (GBM) transports RNA to platelets in the blood system via microvesicles, suggesting that platelet RNA can be a potential diagnostic and therapeutic target. The roles of specific platelet RNAs in treatment of GBM are not well understood. Methods Platelet RNA profiling of 8 GBM and 12 normal samples were downloaded from the GEO database. Differentially expressed genes (DEGs) were identified between tumors and normal samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to elucidate the functions of up- and downregulated genes. miRNA was predicted by miRTarBase, TargetScan, and miRDB databases. circBase and circBank were used for circRNA prediction. ceRNA (circRNA-mRNA-miRNA) network was constructed to investigate the potential interactions. Results 22 genes were upregulated and 9 genes were downregulated. There are only two genes (CCR7 and FAM102A) that connect to miRNAs (hsa-let-7a-5p, hsa-miR-1-3p). We assessed the overall survival rates by Kaplan-Meier plotter, and relative expression of GBM and subtypes for overlapped mRNA (CCR7 and FAM102A) were evaluated, and further, we obtained circRNAs (has-circ-0015164, hsa-circ-0003243) by circBank and circBase and bind sites through the CSCD database. Finally, a ceRNA network (circRNA-mRNA-miRNA) was constructed based on 2 miRNAs, 2 mRNAs, and 2 circRNAs by Cytoscape. This study focused on potential mRNA and ceRNA biomarkers to targeted treatment of GBM and provided ideas for clinical treatment through the combination of hematology and oncology. Conclusion The findings of this study contribute to better understand the relationship between GBM and the blood system (platelets) and might lay a solid foundation for improving GBM molecule and gene diagnosis and prognosis.
Collapse
|
18
|
Zhao Z, Yin XN, Wang J, Chen X, Cai ZL, Zhang B. Prognostic significance of hemoglobin, albumin, lymphocyte, platelet in gastrointestinal stromal tumors: A propensity matched retrospective cohort study. World J Gastroenterol 2022; 28:3476-3487. [PMID: 36158264 PMCID: PMC9346454 DOI: 10.3748/wjg.v28.i27.3476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/19/2022] [Accepted: 06/19/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The combined index of hemoglobin, albumin, lymphocyte, and platelet (HALP) can reflect systemic inflammation and nutritional status simultaneously, with some evidence revealing its prognostic value for some tumors. However, the effect of HALP on recurrence-free survival (RFS) in patients with gastrointestinal stromal tumors (GISTs) has not been reported.
AIM To investigate the prognostic value of HALP in GIST patients.
METHODS Data from 591 untreated patients who underwent R0 resection for primary and localized GISTs at West China Hospital between December 2008 and December 2016 were included. Clinicopathological data, preoperative albumin, blood routine information, postoperative treatment, and recurrence status were recorded. To eliminate baseline inequivalence, the propensity scores matching (PSM) method was introduced. Ultimately, the relationship between RFS and preoperative HALP was investigated.
RESULTS The optimal cutoff value for HALP was determined to be 31.5 by X-tile analysis. HALP was significantly associated with tumor site, tumor size, mitosis, Ki67, National Institutes of Health (NIH) risk category, and adjuvant therapy (all P < 0.001). Before PSM, GIST patients with an increased HALP had a significantly poor RFS (P < 0.001), and low HALP was an independent risk factor for poor RFS [hazard ratio (HR): 0.506, 95% confidence interval (95%CI): 0.291-0.879, P = 0.016]. In NIH high-risk GIST patients, GIST patients with low HALP had a worse RFS than patients with high HALP (P < 0.05). After PSM, 458 GIST patients were identified; those with an increased HALP still had significantly poor RFS after PSM (P < 0.001) and low HALP was still an independent risk factor for poor RFS (HR: 0.558, 95%CI: 0.319-0.976, P = 0.041).
CONCLUSION HALP was significantly correlated with postoperative pathology and postoperative treatment. Furthermore, HALP showed a strong ability to predict RFS in GIST patients who underwent radical resection.
Collapse
Affiliation(s)
- Zhou Zhao
- Department of Gastrointestinal Surgery, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Xiao-Nan Yin
- Department of Gastrointestinal Surgery, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Jian Wang
- Department of Gastrointestinal Surgery, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Xin Chen
- Department of Gastrointestinal Surgery, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Zhao-Lun Cai
- Department of Gastrointestinal Surgery, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| | - Bo Zhang
- Department of Gastrointestinal Surgery, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
19
|
Biomimetic Nanotherapeutics: Employing Nanoghosts to fight Melanoma. Eur J Pharm Biopharm 2022; 177:157-174. [PMID: 35787429 DOI: 10.1016/j.ejpb.2022.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022]
Abstract
Melanoma is a cancer of melanocytes present at the basal layer of the skin. Nanomedicine has armed us with competent platform to manage such fatal neoplastic diseases. Nevertheless, it suffers from numerous pitfalls such as rapid clearance and opsonization of surface-functionalized carriers, biocompatibility and idiopathic reactions which could be difficult to predict in the patient. Biomimetic approach, a novel step towards personalized medicine bridges these drawbacks by employing endogenous cell membranes to traverse physiological barriers. Camouflaged carriers coated with natural cell membranes possess unique characteristics such as high circulatory periods, and the absence of allogenic and xenogenic responses. Proteins residing on the cell membranes render a diverse range of utilities to the coated nanoparticles including natural efficiency to identify cellular targets, homologous targeting, reticuloendothelial system evasion, biocompatibility and reduced adverse and idiopathic effects. In the present article, we have focused on cell membrane camouflaged nanocarriers for melanoma management. We have discussed various types of biomimetic systems, their processing and coating approaches, and their characterization. We have also enumerated novel avenues in melanoma treatment and the combination of biomimetic systems with smart nanoparticulate systems with the potential to bring breakthroughs in the near future. Additionally, immunotherapy-based biomimetic systems to combat melanoma have been highlighted. Hurdles towards clinical translation and ways to overcome them have been explained in detail.
Collapse
|
20
|
Zhao J, Ruan J, Lv G, Shan Q, Fan Z, Wang H, Du Y, Ling L. Cell membrane-based biomimetic nanosystems for advanced drug delivery in cancer therapy: A comprehensive review. Colloids Surf B Biointerfaces 2022; 215:112503. [PMID: 35429736 DOI: 10.1016/j.colsurfb.2022.112503] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/08/2022] [Accepted: 04/08/2022] [Indexed: 12/30/2022]
Abstract
Natural types of cells display distinct characteristics with homotypic targeting and extended circulation in the blood, which are worthy of being explored as promising drug delivery systems (DDSs) for cancer therapy. To enhance their delivery efficiency, these cells can be combined with therapeutic agents and artificial nanocarriers to construct the next generation of DDSs in the form of biomimetic nanomedicines. In this review, we present the recent advances in cell membrane-based DDSs (CDDSs) and their applications for efficient cancer therapy. Different sources of cell membranes are discussed, mainly including red blood cells (RBC), leukocytes, cancer cells, stem cells and hybrid cells. Moreover, the extraction methods used for obtaining such cells and the mechanism contributing to the functional action of these biomimetic CDDSs are explained. Finally, a future perspective is proposed to highlight the limitations of CDDSs and the possible resolutions toward clinical transformation of currently developed biomimetic chemotherapies.
Collapse
Affiliation(s)
- Jianing Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Jian Ruan
- Yantai Center for Food and Drug Control, Yantai 264005, China
| | - Guangyao Lv
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Qi Shan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Zhiping Fan
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Yuan Du
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Longbing Ling
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| |
Collapse
|
21
|
Chen X, Zhu J, Sun B, Zhang X, Hu Y, Chen Y. A mass-tagged MOF nanoprobe approach for ultra-sensitive protein quantification in tumor-educated platelets. Chem Commun (Camb) 2022; 58:7160-7163. [PMID: 35667628 DOI: 10.1039/d2cc01815b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mass-tagged metal-organic framework (MOF) nanoprobe approach was developed for ultra-sensitive quantification of platelet protein CD44 by integrating activable aptamer recognition and MOF nanoprobe signal amplification with mass spectrometric detection. This approach offered high sensitivity and quantitative capability for low abundant protein analysis in tumor-educated platelets (TEPs), exhibiting great potential in cancer diagnosis and management.
Collapse
Affiliation(s)
- Xiuyu Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Jianhua Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Bo Sun
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Xian Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Yechen Hu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China. .,State Key Laboratory of Reproductive Medicine, 210029, China.,Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Nanjing, 211166, China
| |
Collapse
|
22
|
Cho U, Sung YE, Kim MS, Lee YS. Prognostic Role of Systemic Inflammatory Markers in Patients Undergoing Surgical Resection for Oral Squamous Cell Carcinoma. Biomedicines 2022; 10:biomedicines10061268. [PMID: 35740290 PMCID: PMC9220324 DOI: 10.3390/biomedicines10061268] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Background: A high platelet−lymphocyte ratio (PLR) is a marker of systemic inflammation and, together with the neutrophil−lymphocyte ratio (NLR), is associated with poor outcomes in several cancers. We investigated the prognostic value of PLR and other systemic inflammatory markers, such as NLR, systemic immune-inflammation index (SII), and systemic inflammation response index (SIRI), in oral squamous cell carcinoma (OSCC) patients undergoing surgical resection. Methods: We derived PLR, NLR, SII, and SIRI from a retrospective chart review of 269 consecutive OSCC patients. The complete blood count examined in the immediate preoperative period was used to compute PLR, NLR, SII, and SIRI. We analyzed the relationship between these systemic inflammatory markers and the clinicopathologic characteristics, disease-specific survival (DSS), and progression-free survival (PFS) of patients. Results: In the univariate analysis, high PLR and SII were significantly associated with worse DSS and PFS (all p < 0.05). In the multivariate analysis, PLR (HR 2.36, 95% CI 1.28−4.36 for DSS; HR 1.80, 95% CI 1.06−3.06 for PFS) was an independent predictor of survival outcomes. When PLR was analyzed as a continuous variable, the relationship between the outcome and preoperative PLR was not monotonically linear. In the subgroup analysis, PLR was more strongly associated with DSS and PFS in patients who were male, had stage III/IV OSCC, or had lymph node metastasis. Conclusion: Our data suggest that in OSCC patients, the pretreatment PLR is an independent predictor of DSS and PFS. The PLR is a readily available biomarker that will improve prognostication and risk stratification in OSCC.
Collapse
Affiliation(s)
- Uiju Cho
- Department of Hospital Pathology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Yeoun-Eun Sung
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Min-Sik Kim
- Department of Otorhinolaryngology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Youn-Soo Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Correspondence:
| |
Collapse
|
23
|
Duo Y, Suo M, Zhu D, Li Z, Zheng Z, Tang BZ. AIEgen-Based Bionic Nanozymes for the Interventional Photodynamic Therapy-Based Treatment of Orthotopic Colon Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26394-26403. [PMID: 35543331 PMCID: PMC9204689 DOI: 10.1021/acsami.2c04210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Relative to traditional photosensitizer (PS) agents, those that exhibit aggregation-induced emission (AIE) properties offer key advantages in the context of photodynamic therapy (PDT). At present, PDT efficacy is markedly constrained by the hypoxic microenvironment within tumors and the limited depth to which lasers can penetrate in a therapeutic context. Herein, we developed platelet-mimicking MnO2 nanozyme/AIEgen composites (PMD) for use in the interventional PDT treatment of hypoxic tumors. The resultant biomimetic nanoparticles (NPs) exhibited excellent stability and were able to efficiently target tumors. Moreover, they were able to generate O2 within the tumor microenvironment owing to their catalase-like activity. Notably, through an interventional approach in which an optical fiber was introduced into the abdominal cavity of mice harboring orthotopic colon tumors, good PDT efficacy was achieved. We thus propose that a novel strategy consisting of a combination of an AIEgen-based bionic nanozyme and a biomimetic cell membrane coating represents an ideal therapeutic platform for targeted antitumor PDT. This study is the first to have combined interventional therapy and AIEgen-based PDT, thereby overcoming the limited light penetration that typically constrains the therapeutic efficacy of this technique, highlighting a promising new AIEgen-based PDT treatment strategy.
Collapse
Affiliation(s)
- Yanhong Duo
- Department
of Radiation Oncology, The Second Clinical
Medical College of Jinan University, 1st Affiliated Hospital of Southern
University of Science and Technology, Shenzhen People’s Hospital, Shenzhen 518020, China
- Department
of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm 17177, Sweden
- Department
of Sports Medicine and Rehabilitation, Shenzhen
Hospital Peking University, Shenzhen 518036, China
| | - Meng Suo
- Department
of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Daoming Zhu
- Department
of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zihuang Li
- Department
of Radiation Oncology, The Second Clinical
Medical College of Jinan University, 1st Affiliated Hospital of Southern
University of Science and Technology, Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Zheng Zheng
- School
of Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
- AnHui
Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid
Functionalized Materials, Anhui University, Hefei 230601, China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
24
|
Liquid biopsy: early and accurate diagnosis of brain tumor. J Cancer Res Clin Oncol 2022; 148:2347-2373. [PMID: 35451698 DOI: 10.1007/s00432-022-04011-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
Noninvasive examination is an emerging area in the field of neuro-oncology. Liquid biopsy captures the landscape of genomic alterations of brain tumors and revolutionizes the traditional diagnosis approaches. Rapidly changing sequencing technologies and more affordable prices put the screws on more application of liquid biopsy in clinical settings. In the past few years, extensive application of liquid biopsy has been seen throughout the whole diagnosis and treatment process of brain tumors, including early and accurate detection, characterization and dynamic monitoring. Here, we summarized and compared the most advanced techniques and target molecules or macrostructures related to brain tumor liquid biopsy. We further reviewed and emphasized recent progression in different clinical settings for brain tumors in blood and CSF. The preferred protocol, potential novel biomarkers and future development are discussed in the last part.
Collapse
|
25
|
Dhas N, García MC, Kudarha R, Pandey A, Nikam AN, Gopalan D, Fernandes G, Soman S, Kulkarni S, Seetharam RN, Tiwari R, Wairkar S, Pardeshi C, Mutalik S. Advancements in cell membrane camouflaged nanoparticles: A bioinspired platform for cancer therapy. J Control Release 2022; 346:71-97. [PMID: 35439581 DOI: 10.1016/j.jconrel.2022.04.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022]
Abstract
The idea of employing natural cell membranes as a coating medium for nanoparticles (NPs) endows man-made vectors with natural capabilities and benefits. In addition to retaining the physicochemical characteristics of the NPs, the biomimetic NPs also have the functionality of source cell membranes. It has emerged as a promising approach to enhancing the properties of NPs for drug delivery, immune evasion, imaging, cancer-targeting, and phototherapy sensitivity. Several studies have been reported with a multitude of approaches to reengineering the surface of NPs using biological membranes. Owing to their low immunogenicity and intriguing biomimetic properties, cell-membrane-based biohybrid delivery systems have recently gained a lot of interest as therapeutic delivery systems. This review summarises different kinds of biomimetic NPs reported so far, their fabrication aspects, and their application in the biomedical field. Finally, it briefs on the latest advances available in this biohybrid concept.
Collapse
Affiliation(s)
- Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Mónica C García
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Ritu Kudarha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Divya Gopalan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Gasper Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchi Tiwari
- Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh 209305, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, 400056, India
| | - Chandrakantsing Pardeshi
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
26
|
AlGhamdi H, Dhont J, Krayem M, De Bruyn P, Engels B, Van Gestel D, Van den Begin R. The Road to Dissemination: The Concept of Oligometastases and the Barriers for Widespread Disease. Cancers (Basel) 2022; 14:2046. [PMID: 35454951 PMCID: PMC9033015 DOI: 10.3390/cancers14082046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022] Open
Abstract
Over the last years, the oligometastatic disease state has gained more and more interest, and randomized trials are now suggesting an added value of stereotactic radiotherapy on all macroscopic disease in oligometastatic patients; but what barriers could impede widespread disease in some patients? In this review, we first discuss the concept of oligometastatic disease and some examples of clinical evidence. We then explore the route to dissemination: the hurdles a tumoral clone has to overtake before it can produce efficient and widespread dissemination. The spectrum theory argues that the range of metastatic patterns encountered in the clinic is the consequence of gradually obtained metastatic abilities of the tumor cells. Tumor clones can obtain these capabilities by Darwinian evolution, hence early in their genetic progression tumors might produce only a limited number of metastases. We illustrate selective dissemination by discussing organ tropism, the preference of different cancer (sub)types to metastasize to certain organs. Finally we discuss biomarkers that may help to distinguish the oligometastatic state.
Collapse
Affiliation(s)
- Hamza AlGhamdi
- Radiotherapy Department, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium; (H.A.); (P.D.B.); (D.V.G.)
- Oncology Center, King Faisal Medical City, Abha 62523, Saudi Arabia
| | - Jennifer Dhont
- Medical Physics Department, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Mohammad Krayem
- Laboratory of Clinical and Experimental Oncology (LOCE), Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Pauline De Bruyn
- Radiotherapy Department, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium; (H.A.); (P.D.B.); (D.V.G.)
| | - Benedikt Engels
- Radiotherapy Department, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Dirk Van Gestel
- Radiotherapy Department, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium; (H.A.); (P.D.B.); (D.V.G.)
| | - Robbe Van den Begin
- Radiotherapy Department, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium; (H.A.); (P.D.B.); (D.V.G.)
| |
Collapse
|
27
|
Zhu L, Zhong Y, Wu S, Yan M, Cao Y, Mou N, Wang G, Sun D, Wu W. Cell membrane camouflaged biomimetic nanoparticles: Focusing on tumor theranostics. Mater Today Bio 2022; 14:100228. [PMID: 35265826 PMCID: PMC8898969 DOI: 10.1016/j.mtbio.2022.100228] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022] Open
Abstract
Nanoparticles (NPs) modified by cell membranes represent an emerging biomimetic platform that can mimic the innate biological functions resulting from the various cell membranes in biological systems. researchers focus on constructing the cell membrane camouflaged NPs using a wide variety of cells, such as red blood cell membranes (RBC), macrophages and cancer cells. Cell membrane camouflaged NPs (CMNPs) inherit the composition of cell membranes, including specific receptors, antigens, proteins, for target delivering to the tumor, escaping immune from clearance, and prolonging the blood circulation time, etc. Combining cell membrane-derived biological functions and the NP cores acted cargo carriers to encapsulate the imaging agents, CMNPs are widely developed to apply in tumor imaging techniques, including computed tomography (CT), magnetic resonance imaging (MRI), fluorescence imaging (FL) and photoacoustic imaging (PA). Herein, in this review, we systematically summarize the superior functions of various CMNPs in tumor imaging, especially highlighting the advanced applications in different imaging techniques, which is to provide the theoretical supports for the development of precise guided imaging and tumor treatment.
Collapse
Affiliation(s)
- Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Shuai Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Meng Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yu Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Nianlian Mou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Da Sun
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
28
|
Londero AP, Bertozzi S, Cedolini C, Neri S, Bulfoni M, Orsaria M, Mariuzzi L, Uzzau A, Risaliti A, Barillari G. Incidence and Risk Factors for Venous Thromboembolism in Female Patients Undergoing Breast Surgery. Cancers (Basel) 2022; 14:cancers14040988. [PMID: 35205736 PMCID: PMC8870485 DOI: 10.3390/cancers14040988] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 01/04/2023] Open
Abstract
Albeit it does not have the highest venous thromboembolism (VTE) incidence compared to other neoplasms, breast cancer contributes to many VTE events because it is the most diagnosed tumor in women. We aim to analyze the occurrence and timing of VTE during the follow-up of patients who underwent breast surgery, the possible correlated factors, and the overall survival. This retrospective study included all female patients diagnosed with mammary pathology and surgically treated in our clinic between January 2002 and January 2012. Of 5039 women who underwent breast surgery, 1056 were found to have no evidence of malignancy, whereas 3983 were diagnosed with breast cancer. VTE rate resulted significantly higher in patients with invasive breast cancer than in women with benign breast disease or carcinoma in situ. Invasive cancers other than lobular or ductal were associated with a higher VTE rate. In addition, chronic hypertension, high BMI, cancer type, and evidence of metastasis turned out to be the most significant risk factors for VTE in women who underwent breast surgery. Moreover, VTE occurrence significantly impacted survival in invasive breast cancer patients. Compared to women with benign mammary pathology, VTE prevalence in women with breast cancer is significantly higher. The knowledge about the risk factors of VTE could be helpful as prognostic information, but also to eventually target preventive treatment strategies for VTE, as far as the co-existence of invasive breast cancer and VTE has a significantly negative impact on survival.
Collapse
Affiliation(s)
- Ambrogio P. Londero
- Academic Unit of Obstetrics and Gynaecology, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Infant Health, University of Genoa, 16132 Genova, Italy
- Ennergi Research (Non-Profit Organisation), 33050 Lestizza, Italy
- Correspondence: (A.P.L.); (S.B.)
| | - Serena Bertozzi
- Ennergi Research (Non-Profit Organisation), 33050 Lestizza, Italy
- Breast Unit, University Hospital of Udine, 33100 Udine, Italy;
- Correspondence: (A.P.L.); (S.B.)
| | - Carla Cedolini
- Breast Unit, University Hospital of Udine, 33100 Udine, Italy;
| | - Silvia Neri
- Clinic of Surgery, University Hospital of Udine, 33100 Udine, Italy; (S.N.); (A.R.)
| | - Michela Bulfoni
- Institute of Pathologic Anatomy, University Hospital of Udine, 33100 Udine, Italy; (M.B.); (M.O.); (L.M.)
| | - Maria Orsaria
- Institute of Pathologic Anatomy, University Hospital of Udine, 33100 Udine, Italy; (M.B.); (M.O.); (L.M.)
| | - Laura Mariuzzi
- Institute of Pathologic Anatomy, University Hospital of Udine, 33100 Udine, Italy; (M.B.); (M.O.); (L.M.)
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy;
| | - Alessandro Uzzau
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy;
| | - Andrea Risaliti
- Clinic of Surgery, University Hospital of Udine, 33100 Udine, Italy; (S.N.); (A.R.)
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy;
| | - Giovanni Barillari
- Center for Hemorrhagic and Thrombotic Diseases, ASUFC “Santa Maria della Misericordia”, 33100 Udine, Italy;
| |
Collapse
|
29
|
Gomes MN, Fru P, Augustine TN, Moyo D, Chivandi E, Daniels WMU. Differential Expression of Platelet Activation Markers, CD62P and CD63, after Exposure to Breast Cancer Cells Treated with Kigelia Africana, Ximenia Caffra and Mimusops Zeyheri Seed Oils In Vitro. Nutr Cancer 2022; 74:3035-3050. [DOI: 10.1080/01635581.2022.2032215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Monica N. Gomes
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| | - Pascaline Fru
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| | - Tanya N. Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| | - Davison Moyo
- Department of Research and Innovation, University of Pretoria, Hatfield, Pretoria, Republic of South Africa
| | - Eliton Chivandi
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| | - William M. U. Daniels
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| |
Collapse
|
30
|
Basci S, Bakirtas M, Candır B, Ulu B, Yaman S, Yiğenoğlu T, Dal M, Çakar M, Altuntaş F. Prognostic value of neutrophil/lymphocyte ratio, lymphocyte/monocyte ratio, lactate dehydrogenase, and mean platelet volume in the diagnosis of patients with diffuse large B-cell lymphoma. THE EGYPTIAN JOURNAL OF HAEMATOLOGY 2022. [DOI: 10.4103/ejh.ejh_14_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
31
|
Ma Y, Li G, Yu M, Sun X, Nian J, Gao Y, Li X, Ding T, Wang X. Prognostic significance of thrombocytosis in lung cancer: a systematic review and meta-analysis. Platelets 2021; 32:919-927. [PMID: 32892682 DOI: 10.1080/09537104.2020.1810653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A potential relationship between poor prognosis and thrombocytosis has been suggested by previous studies in lung cancer, but the conclusions continued to be controversial. Here, we performed a meta-analysis to explore the prognostic impact of thrombocytosis in lung cancer. The Cochrane Library, EMBASE and PubMed databases were comprehensively and systematically retrieved from establishment to May 5, 2020. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were applied to evaluate overall effects. Heterogeneity was assessed using I2 statistics and Cochran's Q test. Sensitivity and subgroup analyses were performed to analyze the sources of heterogeneity. Publication bias was examined using the Egger's test and pooled HR was regulated using the trim-and-fill approach when publication bias was observed. A total of 37 studies including 14,833 patients were enrolled in the meta-analysis. Thrombocytosis was significantly correlated to poor overall survival (HR 1.033; 95% CI 1.017-1.050), disease-free survival (HR 1.568; 95% CI 1.276-1.928), and progression-free survival (HR 1.653; 95% CI 1.069-2.556). Although publication bias was identified, rectification for this bias using the trim-and-fill approach did not change the combined HR substantially. In conclusion, this meta-analysis result suggested that thrombocytosis is a predictor of poor prognosis in lung cancer.
Collapse
Affiliation(s)
- Yunfei Ma
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Guangda Li
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
| | - Mingwei Yu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xu Sun
- The Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jiayun Nian
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yu Gao
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxiao Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Tongjing Ding
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomin Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Konopka K, Micek A, Ochenduszko S, Streb J, Potocki P, Kwinta Ł, Wysocki PJ. Combined Neutrophil-to-Lymphocyte and Platelet-Volume-to-Platelet Ratio (NLR and PVPR Score) Represents a Novel Prognostic Factor in Advanced Gastric Cancer Patients. J Clin Med 2021; 10:3902. [PMID: 34501353 PMCID: PMC8432226 DOI: 10.3390/jcm10173902] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Chemotherapy is a cornerstone of treatment in advanced gastric cancer (GC) with a proven impact on overall survival, however, reliable predictive markers are missing. The role of various inflammatory markers has been tested in gastric cancer patients, but there is still no general consensus on their true clinical applicability. High neutrophil-to-lymphocyte (NLR) and low (medium)-platelets-volume-to-platelet ratio (PVPR) are known markers of unspecific immune system activation, correlating significantly with outcomes in advanced GC patients. METHODS Metastatic GC patients (N:155) treated with chemotherapy +/- trastuzumab were enrolled in this retrospective study. Pre-treatment NLR and PVPR, as well as other inflammatory markers were measured in peripheral blood. Univariate Cox regression was conducted to find markers with a significant impact on overall survival (OS) and progression-free survival (PFS). Spearman correlation and Cohen's kappa was used to analyze multicollinearity. Multiple multivariable Cox regression models were built to study the combined impact of NLR and PVPR, as well as other known prognostic factors on OS. RESULTS Elevated NLR was significantly associated with increased risk of death (HR = 1.95; 95% CI: 1.17-3.24), and lower PVPR was significantly associated with improved outcomes (HR = 0.53; 95% CI: 0.32-0.90). A novel inflammatory marker, based on a combination of NLR and PVPR, allows for the classification of GC patients into three prognostic groups, characterized by median OS of 8.4 months (95% CI 5.8-11.1), 10.5 months (95% CI 8.8-12.1), and 15.9 months (95% CI 13.5-18.3). CONCLUSION The NLR and PVPR score (elevated NLR and decreased PVPR) is a marker of detrimental outcome of advanced GC patients treated with chemotherapy.
Collapse
Affiliation(s)
- Kamil Konopka
- Department of Oncology, Jagiellonian University Medical College, 31-007 Cracow, Poland; (J.S.); (P.P.); (Ł.K.); (P.J.W.)
| | - Agnieszka Micek
- Department of Nursing Management and Epidemiology Nursing, Jagiellonian University Medical College, 31-007 Cracow, Poland;
| | | | - Joanna Streb
- Department of Oncology, Jagiellonian University Medical College, 31-007 Cracow, Poland; (J.S.); (P.P.); (Ł.K.); (P.J.W.)
| | - Paweł Potocki
- Department of Oncology, Jagiellonian University Medical College, 31-007 Cracow, Poland; (J.S.); (P.P.); (Ł.K.); (P.J.W.)
| | - Łukasz Kwinta
- Department of Oncology, Jagiellonian University Medical College, 31-007 Cracow, Poland; (J.S.); (P.P.); (Ł.K.); (P.J.W.)
| | - Piotr J. Wysocki
- Department of Oncology, Jagiellonian University Medical College, 31-007 Cracow, Poland; (J.S.); (P.P.); (Ł.K.); (P.J.W.)
| |
Collapse
|
33
|
Wang X, Luo Y, Chen T, Zhang K. Low-dose aspirin use and cancer-specific mortality: a meta-analysis of cohort studies. J Public Health (Oxf) 2021; 43:308-315. [PMID: 31781767 DOI: 10.1093/pubmed/fdz114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/16/2019] [Accepted: 08/12/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Considering the increased risk of bleeding caused by aspirin, and the observed benefit in all-cause mortality may be due to an improvement in cardiovascular-related mortality. We carried out this meta-analysis to estimate the association of low-dose aspirin use and risk of cancer-specific mortality. METHODS We searched the PubMed and China National Knowledge Infrastructure (CNKI) databases for all articles within a range of published years from 1980 to 2018. RESULTS Finally, 13 published cohort studies with 65 768 patients were available for estimating overall risk of cancer-specific mortality associating with post-diagnosis low-dose aspirin use, and 4 cohort studies were available for pre-diagnosis low-dose aspirin use with 16 654 patients. Overall, statistical evidence of significantly decreased cancer-specific mortality was found to be associated with post-diagnosis low-dose aspirin use (OR = 0.84, 95% CI = 0.75-0.93), but not with pre-diagnosis low-dose aspirin use. In terms of subgroup analyses by cancer type, post-diagnosis low-dose aspirin use was significantly with decreased cancer-specific mortality for digestive tract cancer including colorectal cancer, esophageal cancer and gastric cancer. CONCLUSION Our meta-analysis indicated that post-diagnosis but not pre-diagnosis low-dose aspirin use may reduce cancer-specific mortality.
Collapse
Affiliation(s)
- Xianmin Wang
- Department of Pediatric Cardiology, Chengdu Women's and Children's Central Hospital, Chengdu 610091, People's Republic of China
| | - Yupeng Luo
- West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Tingting Chen
- Department of Pediatric Cardiology, Chengdu Women's and Children's Central Hospital, Chengdu 610091, People's Republic of China
| | - Kui Zhang
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
34
|
Waza AA, Tarfeen N, Majid S, Hassan Y, Mir R, Rather MY, Shah NUD. Metastatic Breast Cancer, Organotropism and Therapeutics: A Review. Curr Cancer Drug Targets 2021; 21:813-828. [PMID: 34365922 DOI: 10.2174/1568009621666210806094410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
The final stage of breast cancer involves spreading breast cancer cells to the vital organs like the brain, liver lungs and bones in the process called metastasis. Once the target organ is overtaken by the metastatic breast cancer cells, its usual function is compromised causing organ dysfunction and death. Despite the significant research on breast cancer metastasis, it's still the main culprit of breast cancer-related deaths. Exploring the complex molecular pathways associated with the initiation and progression of breast cancer metastasis could lead to the discovery of more effective ways of treating the devastating phenomenon. The present review article highlights the recent advances to understand the complexity associated with breast cancer metastases, organotropism and therapeutic advances.
Collapse
Affiliation(s)
- Ajaz Ahmad Waza
- Multidisciplinary Research Unit (MRU), Government Medical College (GMC) Srinagar, J & K, 190010. India
| | - Najeebul Tarfeen
- Centre of Research for Development, University of Kashmir, Srinagar 190006 . India
| | - Sabhiya Majid
- Department of Biochemistry, Government Medical College (GMC) Srinagar, J & K, 190010. India
| | - Yasmeena Hassan
- Division of Nursing, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, J & K. India
| | - Rashid Mir
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Kingdom of Saudi Arabia, Tabuk. Saudi Arabia
| | - Mohd Younis Rather
- Multidisciplinary Research Unit (MRU), Government Medical College (GMC) Srinagar, J & K, 190010. India
| | - Naseer Ue Din Shah
- Centre of Research for Development, University of Kashmir, Srinagar 190006 . India
| |
Collapse
|
35
|
Cheng H, Mai Z, Zhu X, Wang L, Wang J. An innovation idea for SBLOCA mitigation strategy: Self-coagulation system in comparison with human hemostatic mechanism. PROGRESS IN NUCLEAR ENERGY 2021. [DOI: 10.1016/j.pnucene.2021.103832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Multiplexed Prostate Cancer Companion Diagnostic Devices. SENSORS 2021; 21:s21155023. [PMID: 34372259 PMCID: PMC8347987 DOI: 10.3390/s21155023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022]
Abstract
Prostate cancer (PCa) remains one of the most prominent forms of cancer for men. Since the early 1990s, Prostate-Specific Antigen (PSA) has been a commonly recognized PCa-associated protein biomarker. However, PSA testing has been shown to lack in specificity and sensitivity when needed to diagnose, monitor and/or treat PCa patients successfully. One enhancement could include the simultaneous detection of multiple PCa-associated protein biomarkers alongside PSA, also known as multiplexing. If conventional methods such as the enzyme-linked immunosorbent assay (ELISA) are used, multiplexed detection of such protein biomarkers can result in an increase in the required sample volume, in the complexity of the analytical procedures, and in adding to the cost. Using companion diagnostic devices such as biosensors, which can be portable and cost-effective with multiplexing capacities, may address these limitations. This review explores recent research for multiplexed PCa protein biomarker detection using optical and electrochemical biosensor platforms. Some of the novel and potential serum-based PCa protein biomarkers will be discussed in this review. In addition, this review discusses the importance of converting research protocols into multiplex point-of-care testing (xPOCT) devices to be used in near-patient settings, providing a more personalized approach to PCa patients’ diagnostic, surveillance and treatment management.
Collapse
|
37
|
Zhou C, Wang Y, Ma L, Qian X, Yang C, Zeng M. Combined hepatocellular carcinoma-cholangiocarcinoma: MRI features correlated with tumor biomarkers and prognosis. Eur Radiol 2021; 32:78-88. [PMID: 34279688 DOI: 10.1007/s00330-021-08188-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To determine how MRI features are correlated to biomarkers, and to the prognostic factors for recurrence-free survival (RFS) and overall survival (OS) in combined hepatocellular carcinoma-cholangiocarcinoma (cHCC-CCA) patients. METHODS The study enrolled 160 cHCC-CCA patients pathologically confirmed according to the 2019 WHO classification. The preoperative MRI features and clinical data were retrospectively evaluated and compared between patients grouped by AFP or CA19-9 level and with pathological findings. The RFS and OS of cHCC-CCA patients were estimated using Kaplan-Meier survival curves and compared using the log-rank test. Moreover, predictors of RFS and OS were investigated using Cox regression analyses. RESULTS One hundred and sixty patients (mean age, males vs. females: 55.7 ± 10.2 years vs. 54.9 ± 14.0 years) were evaluated. The incidence of nodule-in-nodule architecture, mosaic architecture, intratumoral hemorrhage, hepatic capsule retraction, arterial phase peritumoral enhancement, and portal vein thrombus was significantly higher in patients with AFP > 20 ng/ml (all p < 0.05). Multivariate Cox regression analysis indicated that age (HR 1.031, p = 0.03), CA19-9 > 37 U/ml (HR 1.880, p = 0.04), arterial phase peritumoral enhancement (HR 2.287, p = 0.01), and delayed enhancement (HR 0.377, p = 0.02) were independent predictors of poor RFS, while arterial phase peripheral enhancement (HR 2.391, p = 0.04) was an independent predictor of poor OS. CONCLUSIONS cHCC-CCA imaging features are complex and not correlated with AFP or CA19-9. Age, CA19-9 > 37 U/ml, arterial phase peritumoral enhancement, and delayed enhancement are independent predictors of poor RFS. Arterial phase peripheral enhancement is an independent predictor of poor OS. KEY POINTS • The imaging features of combined hepatocellular carcinoma-cholangiocarcinoma are complex and are not correlated with the alpha fetoprotein or CA19-9 levels. • Age, CA19-9 > 37 U/ml, arterial phase peritumoral enhancement, and delayed enhancement are independent predictors of poor recurrence-free survival in combined hepatocellular carcinoma-cholangiocarcinoma patients. • Arterial phase peripheral enhancement is an independent predictor of poor overall survival in patients with combined hepatocellular carcinoma-cholangiocarcinoma.
Collapse
Affiliation(s)
- Changwu Zhou
- Shanghai Institute of Medical Imaging, Shanghai, China.,Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Yi Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Li Ma
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Xianling Qian
- Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Chun Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Mengsu Zeng
- Shanghai Institute of Medical Imaging, Shanghai, China. .,Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
38
|
Goksel S, Ozcelik N, Telatar G, Ardic C. The Role of Hematological Inflammatory Biomarkers in the Diagnosis of Lung Cancer and in Predicting TNM Stage. Cancer Invest 2021; 39:514-520. [PMID: 34075845 DOI: 10.1080/07357907.2021.1938110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The aim of study is to investigate whether hematological inflammatory biomarkers could be useful to detect patients with lung cancer. METHODS The contribution of hematological biomarkers to the diagnosis of lung cancer and prediction of TNM was examined. RESULTS NLR, PLR, MPV values were found to be higher in patients with lung cancer (all p < .001). NLR and PLR were found to be high, MPV was found to be lower in disease of advanced stage (p < .001). CONCLUSIONS This study found that NLR, PLR and MPV values were significantly higher in patients with lung cancer.
Collapse
Affiliation(s)
- Sibel Goksel
- Department of Nuclear Medicine, Recep Tayyip Erdogan University Training and Research Hospital, Rize, Turkey
| | - Neslihan Ozcelik
- Department of Chest Disease, Recep Tayyip Erdogan University Training and Research Hospital, Rize, Turkey
| | - Gokhan Telatar
- Department of Public Health, Recep Tayyip Erdogan University Training and Research Hospital, Rize, Turkey
| | - Cuneyt Ardic
- Department of Family Medicine, Recep Tayyip Erdogan University Training and Research Hospital, Rize, Turkey
| |
Collapse
|
39
|
Alterations of the Platelet Proteome in Lung Cancer: Accelerated F13A1 and ER Processing as New Actors in Hypercoagulability. Cancers (Basel) 2021; 13:cancers13092260. [PMID: 34066760 PMCID: PMC8125802 DOI: 10.3390/cancers13092260] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The risk of venous thromboembolism in cancer is nine times higher than in the general population and the second leading cause of death in these patients. Tissue factor and downstream plasmatic coagulation cascade are largely responsible for the risk of thrombosis in cancer. In recent years, it has been increasingly recognised that platelets also play a central role in tumour growth and cancer-associated thrombosis. The underlying molecular mechanisms are largely unknown. In order to comprehensively investigate the biochemical changes in platelets from cancers with high risk of thrombosis, we examined the platelet proteome of brain and lung cancer patients in comparison to sex and age-matched healthy controls. However, we only found alterations in lung cancer, where some of these platelet proteins directly promote thrombosis. One example is the increased amount of the enzyme protein disulfide isomerase, which is clinically investigated as an antithrombotic drug target of the plant-based flavonol quercetin. Abstract In order to comprehensively expose cancer-related biochemical changes, we compared the platelet proteome of two types of cancer with a high risk of thrombosis (22 patients with brain cancer, 19 with lung cancer) to 41 matched healthy controls using unbiased two-dimensional differential in-gel electrophoresis. The examined platelet proteome was unchanged in patients with brain cancer, but considerably affected in lung cancer with 15 significantly altered proteins. Amongst these, the endoplasmic reticulum (ER) proteins calreticulin (CALR), endoplasmic reticulum chaperone BiP (HSPA5) and protein disulfide-isomerase (P4HB) were significantly elevated. Accelerated conversion of the fibrin stabilising factor XIII was detected in platelets of patients with lung cancer by elevated levels of a coagulation factor XIII (F13A1) 55 kDa fragment. A significant correlation of this F13A1 cleavage product with plasma levels of the plasmin–α-2-antiplasmin complex and D-dimer suggests its enhanced degradation by the fibrinolytic system. Protein association network analysis showed that lung cancer-related proteins were involved in platelet degranulation and upregulated ER protein processing. As a possible outcome, plasma FVIII, an immediate end product for ER-mediated glycosylation, correlated significantly with the ER-executing chaperones CALR and HSPA5. These new data on the differential behaviour of platelets in various cancers revealed F13A1 and ER chaperones as potential novel diagnostic and therapeutic targets in lung cancer patients.
Collapse
|
40
|
Wilson NR, Lee MT, Gill CD, Serauto Canache A, Donisan T, Balanescu DV, Song J, Palaskas N, Lopez-Mattei J, Cilingiroglu M, Marmagkiolis K, Iliescu CA. Prognostic Factors and Overall Survival After Pericardiocentesis in Patients With Cancer and Thrombocytopenia. Front Cardiovasc Med 2021; 8:638943. [PMID: 33969007 PMCID: PMC8096910 DOI: 10.3389/fcvm.2021.638943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pericardiocentesis is an important diagnostic and therapeutic tool for cancer-associated pericardial effusion. Limited safety and outcomes data exists regarding the management of malignancy-related pericardial effusion in patients with thrombocytopenia. Objectives: Our study aimed to analyze prognostic factors and overall survival (OS) after pericardiocentesis in thrombocytopenic cancer patients. Methods and Results: A retrospective review of 136 thrombocytopenic cancer patients who underwent primary percutaneous pericardiocentesis was performed. Degree of thrombocytopenia was classified by platelet count recorded on day of pericardiocentesis: 75–149 × 103 cells/μL (41%); 50–74 × 103 cells/μL (10%); 25–49 × 103 cells/μL (24%); <25 × 103 cells/μL (25%). Median OS was 2.6 months and median follow-up was 37.4 months. Kaplan-Meier survival analysis showed significant OS differences among thrombocytopenia severity groups (p = 0.023), and worse OS with platelets <100 vs. ≥100 × 103 cells/μL (p = 0.031). By univariate analysis, thrombocytopenia severity was associated with increased risk of death (HR 0.993; 95% CI 0.989–0.997; p = 0.002). Poor prognostic factors for OS were advanced cancer, malignant effusion, elevated international normalized ratio (INR), quantity of platelet transfusions, and platelet transfusion resistance. However, thrombocytopenia severity became insignificant for OS (p = 0.802), after adjusting for advanced cancer and INR. Conclusions: For patients with malignancy-related large pericardial effusion and thrombocytopenia, pericardiocentesis is a feasible intervention and should be considered due to low complication rates. There is no absolute contraindication to pericardiocentesis in case of hemodynamic instability, even with severe thrombocytopenia.
Collapse
Affiliation(s)
- Nathaniel R Wilson
- Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Michelle T Lee
- Division of Cardiology, Department of Internal Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Clarence D Gill
- Division of Cardiology, Department of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Astrid Serauto Canache
- Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Teodora Donisan
- Division of Cardiology, Department of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dinu V Balanescu
- Division of Cardiology, Department of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Juhee Song
- Division of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nicolas Palaskas
- Division of Cardiology, Department of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Juan Lopez-Mattei
- Division of Cardiology, Department of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mehmet Cilingiroglu
- Division of Cardiology, Department of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Konstantinos Marmagkiolis
- Division of Cardiology, Department of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Cezar A Iliescu
- Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States.,Division of Cardiology, Department of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
41
|
Platelet membrane camouflaged nanoparticles: Biomimetic architecture for targeted therapy. Int J Pharm 2021; 598:120395. [PMID: 33639226 DOI: 10.1016/j.ijpharm.2021.120395] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/27/2021] [Accepted: 02/12/2021] [Indexed: 12/31/2022]
Abstract
Cell membrane coating strategy is one of the promising techniques for biomimetic functionalization of nanoparticle. The biomimetic nanoparticles camouflage themselves utilizing the fundamental properties of native cells. Cell membranes are extracted from various cells to cloak the nanoparticles for targeted drug delivery. Platelet membrane is one such cell membrane proposing itself as a potential camouflager to escape the immune surveillance and aid prolonged blood circulation with minimum systemic cytotoxicity. Platelets play a very important role in the physiological functions of the body and also feature in few pathological disorders like cancer, atherosclerosis and rheumatoid arthritis. This review comprises of preparation and characterization of platelet membrane camouflaged nanoparticles and also focuses on their recent developments towards targeted therapy in cancer, immune diseases, atherosclerosis and phototherapy. Although platelet membrane camouflaged nanoparticles are currently in the preliminary stage of development, there is huge potential to explore this biodegradable and biocompatible delivery system.
Collapse
|
42
|
Izci M, Maksoudian C, Manshian BB, Soenen SJ. The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chem Rev 2021; 121:1746-1803. [PMID: 33445874 PMCID: PMC7883342 DOI: 10.1021/acs.chemrev.0c00779] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 02/08/2023]
Abstract
Nanomaterial (NM) delivery to solid tumors has been the focus of intense research for over a decade. Classically, scientists have tried to improve NM delivery by employing passive or active targeting strategies, making use of the so-called enhanced permeability and retention (EPR) effect. This phenomenon is made possible due to the leaky tumor vasculature through which NMs can leave the bloodstream, traverse through the gaps in the endothelial lining of the vessels, and enter the tumor. Recent studies have shown that despite many efforts to employ the EPR effect, this process remains very poor. Furthermore, the role of the EPR effect has been called into question, where it has been suggested that NMs enter the tumor via active mechanisms and not through the endothelial gaps. In this review, we provide a short overview of the EPR and mechanisms to enhance it, after which we focus on alternative delivery strategies that do not solely rely on EPR in itself but can offer interesting pharmacological, physical, and biological solutions for enhanced delivery. We discuss the strengths and shortcomings of these different strategies and suggest combinatorial approaches as the ideal path forward.
Collapse
Affiliation(s)
- Mukaddes Izci
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Christy Maksoudian
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Bella B. Manshian
- Translational
Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan J. Soenen
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| |
Collapse
|
43
|
Geranpayehvaghei M, Dabirmanesh B, Khaledi M, Atabakhshi-Kashi M, Gao C, Taleb M, Zhang Y, Khajeh K, Nie G. Cancer-associated-platelet-inspired nanomedicines for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1702. [PMID: 33538125 DOI: 10.1002/wnan.1702] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/09/2020] [Accepted: 01/08/2021] [Indexed: 01/03/2023]
Abstract
Platelets, with hemostasis and thrombosis activities, are one of the key components in the blood circulation. As a guard, they rapidly respond to any abnormal blood vessel injury signal and release their granules' contents, which induce their adhesion and aggregation on wound site for hemostasis. Recently, increasing evidence has indicated that platelets are critically involved in the growth and metastasis of cancer cells by releasing a variety of cytokines and chemokines to stimulate cancer cell proliferation and various angiogenic regulators to accelerate tumor angiogenesis. Platelets also secrete active transforming growth factor beta (TGF-β) to promote the epithelial-mesenchymal transition of cancer cells and their extravasation from primary site, and form microthrombus on the surface of cancer cells to protect them from immune attack and high-speed shear force in the circulation. Therefore, blocking platelet-cancer cell interaction may be an attractive strategy to treat primary tumor and/or prevent cancer metastasis. However, systemic inhibition or depletion of platelets brings risk of severe bleeding complication. Cancer-associated-platelets-targeted nanomedicines and biomimetic nanomedicines coated with platelet membrane can be used for targeted anticancer drug delivery, due to their natural targeting ability to tumor cells and platelets. In the current review, we first summarized the platelet mechanisms of action in physiological condition and their multiple roles in cancer progression and conventional antiplatelet therapeutics. We then highlighted the recent progress on the design and fabrication of cancer-associated-platelet-targeted nanomedicines and platelet membrane coating nanomedicines for cancer therapy. Finally, we discussed opportunities and challenges and offered our thoughts for the future development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Marzieh Geranpayehvaghei
- Faculty of Biological Sciences, Department of Nanobiotechnology, Tarbiat Modares University, Tehran, Iran.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Bahareh Dabirmanesh
- Faculty of Biological Sciences, Department of Biochemistry, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Khaledi
- Faculty of Biological Sciences, Department of Biochemistry, Tarbiat Modares University, Tehran, Iran
| | - Mona Atabakhshi-Kashi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Chao Gao
- College of Pharmaceutical Science, Jilin University, Changchun, China
| | - Mohammad Taleb
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Khosro Khajeh
- Faculty of Biological Sciences, Department of Nanobiotechnology, Tarbiat Modares University, Tehran, Iran.,Faculty of Biological Sciences, Department of Biochemistry, Tarbiat Modares University, Tehran, Iran
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.,GBA Research Innovation Institute for Nanotechnology, Guangdong, China
| |
Collapse
|
44
|
Duan S, Sun L, Zhang C, Wu L, Nie G, Huang Z, Xing C, Zhang B, Yuan Y. Association of platelet-to-lymphocyte ratio with kidney clinicopathologic features and renal outcomes in patients with diabetic kidney disease. Int Immunopharmacol 2021; 93:107413. [PMID: 33524800 DOI: 10.1016/j.intimp.2021.107413] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Growing evidence points to the pivotal role of inflammation in the pathogenesis of diabetic kidney disease (DKD). However, as an inflammation-based prognostic score, the significance of platelet-to-lymphocyte ratio (PLR) in biopsy-proven DKD remains uncertain. Therefore, the current study aimed to evaluate the association of PLR with the clinicopathological features and the progression of DKD. METHODS In total, 167 patients with biopsy-proven T2DKD were retrospectively recruited. Clinicopathological characteristics were compared according to the tertiles of baseline PLR. Pearson's or Spearman correlations were used to examine the associations between PLR and baseline characteristics. Assessment of the prospective relationship of PLR with the kidney outcomes defined as a doubling of baseline serum creatinine or onset of end stage renal disease (ESRD), were investigated by Kaplan-Meier survival analysis. Moreover, a cubic spline curve was further calculated to explore the significance of PLR in DKD prognosis. On top of that, identification of the risk factors associated with DKD progression was executed by a model of Cox proportional hazards. RESULTS Median follow-up period was 23.77 months, during which 92 (55.1%) patients confronted DKD progression. Pearson's correlation indicated that urinary protein increased along with PLR rising (r = 0.193, P = 0.012). Kaplan-Meier survival curves revealed a significantly increased probability of event-free survival in the lowest tertile of PLR compared to those in the highest tertile (P = 0.018). A statistical linear correlation between PLR and DKD development was demonstrated by a restricted cubic spline analysis (P for nonlinear = 0.784). In addition, the analyses of multivariate Cox regression indicated that elevated PLR had an association with a greater risk of DKD progression (HR 1.004, 95%CI [1.000-1.008], P = 0.035), which was verified to be an independent risk factor for renal outcomes. CONCLUSIONS Our findings demonstrated that the PLR was associated with proteinuria and prognosis in DKD patients. It was an independent risk factor for kidney progression in biopsy-proven DKD.
Collapse
Affiliation(s)
- Suyan Duan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, PR China
| | - Lianqin Sun
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, PR China
| | - Chengning Zhang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, PR China
| | - Lin Wu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, PR China
| | - Guangyan Nie
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, PR China
| | - Zhimin Huang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, PR China
| | - Changying Xing
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, PR China.
| | - Bo Zhang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, PR China.
| | - Yanggang Yuan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
45
|
Wang X, Liu B, Xu M, Jiang Y, Zhou J, Yang J, Gu H, Ruan C, Wu J, Zhao Y. Blocking podoplanin inhibits platelet activation and decreases cancer-associated venous thrombosis. Thromb Res 2021; 200:72-80. [PMID: 33548843 DOI: 10.1016/j.thromres.2021.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/05/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Patients with cancer are at a high risk of venous thromboembolism (VTE), studies have shown that high expression of podoplanin (PDPN) in tumors is associated with increased risk of VTE. METHODS Two human malignant cell lines (NCI-H226 and C8161) expressing high levels of PDPN were selected to explore the role of platelet in cancer-associated venous thrombosis in vitro and in vivo. Immunohistochemical staining using anti-PDPN antibody was performed in the pulmonary carcinoma patients. RESULTS Both NCI-H226 and C8161 cells expressing high PDPN triggered platelet activation via CLEC-2 in vitro, which was abrogated by an anti-PDPN antibody SZ-168. Furthermore, the in vivo study revealed that injection of CHO-PDPN or C8161 in two mouse model of venous thrombosis activated platelets, increased platelet counts and enhanced thrombosis. More importantly, PDPN-enhanced thrombosis was reduced in mice treated with SZ168. A total of 63.3% tumor specimens stained positive for PDPN. High PDPN expression was associated with an increased risk of VTE and poor prognosis. CONCLUSIONS PDPN expression in tumors induced platelet activation and was related to a high risk of VTE via platelet activation. SZ168 inhibited PDPN-induced platelet activation in vitro and decreased the incidence of VTE in mice.
Collapse
Affiliation(s)
- Xia Wang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, Jiangsu, China
| | - Biao Liu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, Jiangsu, China
| | - Mengqiao Xu
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of the Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yizhi Jiang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of the Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jundong Zhou
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, Jiangsu, China
| | - Jun Yang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, Jiangsu, China
| | - Haidi Gu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, Jiangsu, China
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of the Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Jinchang Wu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, Jiangsu, China; The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China.
| | - Yiming Zhao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of the Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
46
|
Zabłocka-Słowińska K, Prescha A, Płaczkowska S, Porębska I, Kosacka M, Pawełczyk K. Serum and Whole Blood Cu and Zn Status in Predicting Mortality in Lung Cancer Patients. Nutrients 2020; 13:nu13010060. [PMID: 33375477 PMCID: PMC7824662 DOI: 10.3390/nu13010060] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
Alterations in circulating Cu and Zn are negative predictors of survival in neoplastic patients and are known during lung cancer. However, no data on predicting mortality of lung cancer patients based on the level of these elements in the blood have been presented to date. The aims of this prospective cohort study were as follows: (i) To evaluate the disturbances in serum and whole blood Cu and Zn, (ii) to assess the relationships between serum and whole blood Cu and Zn status and clinical, sociodemographic, and nutritional data, and (iii) to investigate the association of Cu and Zn status with all-cause mortality in lung cancer. Naïve-treatment lung cancer patients (n = 167) were characterized in terms of sociodemographic, clinical, and anthropometric data and dietary intake and compared with sex-matched control subjects (n = 48). Whole blood and serum Cu and Zn status was determined by atomic absorption spectrometry. Cox proportional hazards models adjusted for multiple confounders/mediators were used to estimate the association between all-cause death and Cu and Zn status. Sex, cardiovascular disease, chronic obstructive pulmonary disease, clinical stage, and hemoglobin, platelet, and glucose concentrations significantly differentiated Cu and Zn status. All-cause mortality in lung cancer patients was positively associated with serum Cu levels, Cu:Zn ratio, and whole blood Zn levels. However, an advanced clinical stage of disease was the strongest predictor of all-cause mortality. Circulatory status of Cu and Zn might be included in routine clinical characteristics of patients with lung cancer patients as additional prognostic variables, but only after further more detail studies.
Collapse
Affiliation(s)
- Katarzyna Zabłocka-Słowińska
- Department of Food Science and Dietetics, Wroclaw Medical University, ul. Borowska 211, 50-556 Wroclaw, Poland;
- Correspondence:
| | - Anna Prescha
- Department of Food Science and Dietetics, Wroclaw Medical University, ul. Borowska 211, 50-556 Wroclaw, Poland;
| | - Sylwia Płaczkowska
- Diagnostics Laboratory for Teaching and Research, Department of Laboratory Diagnostics Wroclaw Medical University, ul. Borowska 211a, 50-556 Wroclaw, Poland;
| | - Irena Porębska
- Department and Clinic of Pulmonology and Lung Cancers, Wroclaw Medical University, ul. Grabiszynska 105, 53-439 Wroclaw, Poland; (I.P.); (M.K.)
| | - Monika Kosacka
- Department and Clinic of Pulmonology and Lung Cancers, Wroclaw Medical University, ul. Grabiszynska 105, 53-439 Wroclaw, Poland; (I.P.); (M.K.)
| | - Konrad Pawełczyk
- Department and Clinic of Thoracic Surgery, Wroclaw Medical University, ul. Grabiszynska 105, 53-439 Wroclaw, Poland;
| |
Collapse
|
47
|
The Dichotomous Role of Bone Marrow Derived Cells in the Chemotherapy-Treated Tumor Microenvironment. J Clin Med 2020; 9:jcm9123912. [PMID: 33276524 PMCID: PMC7761629 DOI: 10.3390/jcm9123912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Bone marrow derived cells (BMDCs) play a wide variety of pro- and anti-tumorigenic roles in the tumor microenvironment (TME) and in the metastatic process. In response to chemotherapy, the anti-tumorigenic function of BMDCs can be enhanced due to chemotherapy-induced immunogenic cell death. However, in recent years, a growing body of evidence suggests that chemotherapy or other anti-cancer drugs can also facilitate a pro-tumorigenic function in BMDCs. This includes elevated angiogenesis, tumor cell proliferation and pro-tumorigenic immune modulation, ultimately contributing to therapy resistance. Such effects do not only contribute to the re-growth of primary tumors but can also support metastasis. Thus, the delicate balance of BMDC activities in the TME is violated following tumor perturbation, further requiring a better understanding of the complex crosstalk between tumor cells and BMDCs. In this review, we discuss the different types of BMDCs that reside in the TME and their activities in tumors following chemotherapy, with a major focus on their pro-tumorigenic role. We also cover aspects of rationally designed combination treatments that target or manipulate specific BMDC types to improve therapy outcomes.
Collapse
|
48
|
Guo M, Sun T, Zhao Z, Ming L. Preoperative Platelet to Albumin Ratio Predicts Outcome of Patients with Non-Small-Cell Lung Cancer. Ann Thorac Cardiovasc Surg 2020; 27:84-90. [PMID: 33162436 PMCID: PMC8058543 DOI: 10.5761/atcs.oa.20-00090] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective: The purpose of this study was to evaluate the predictive power of the platelet to albumin ratio (PAR) on survival outcomes of patients with non-small-cell lung cancer (NSCLC). Patients and Methods: In all, 198 patients with NSCLC were recruited. The X-tile software was performed to identify the optimal cutoff values for PAR, platelet to lymphocyte ratio (PLR), and neutrophil to lymphocyte ratio (NLR). The Kaplan–Meier method, univariate and multivariate analyses Cox regression were used to analyze the prognostic factors for overall survival (OS). Results: In all, 198 patients were enrolled, containing 146 (73.7%) men and 52 (26.3%) women. The optimal cutoff values for PAR, PLR, and NLR were 8.8×109, 147.7, and 3.9, respectively. Patients with PAR > 8.8 × 109 (P <0.001), PLR > 147.7 (P <0.001), and NLR >3.9 (P = 0.007) were associated with poor OS. Multivariate analyses found that PAR was an independent predictor in NSCLC patients (hazard ratio [HR]: 4.604, 95% confidence interval [CI]: 2.557–8.290, P <0.001). Conclusion: Preoperative PAR is a useful and potential prognostic biomarker in NSCLC patients who have received primary resection.
Collapse
Affiliation(s)
- Manman Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Zhuochen Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, China
| |
Collapse
|
49
|
Pather K, Augustine TN. Tamoxifen induces hypercoagulation and alterations in ERα and ERβ dependent on breast cancer sub-phenotype ex vivo. Sci Rep 2020; 10:19256. [PMID: 33159119 PMCID: PMC7648622 DOI: 10.1038/s41598-020-75779-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022] Open
Abstract
Tamoxifen shows efficacy in reducing breast cancer-related mortality but clinically, is associated with increased risk for thromboembolic events. We aimed to determine whether breast tumour sub-phenotype could predict propensity for thrombosis. We present two ex vivo Models of Tamoxifen-therapy, Model 1 in which treatment recapitulates accumulation within breast tissue, by treating MCF7 and T47D cells directly prior to exposure to blood constituents; and Model 2 in which we recreate circulating Tamoxifen by treating blood constituents prior to exposure to cancer cells. Blood constituents included whole blood, platelet-rich plasma and platelet-poor plasma. Hypercoagulation was assessed as a function of thrombin activity, expression of CD62P and CD63 activation markers defined as an index of platelet activation, and platelet morphology; while oestrogen receptor expression was assessed using immunocytochemistry with quantitative analysis. We determined, in concert with clinical studies and contrary to selected laboratory investigations, that Tamoxifen induces hypercoagulation, dependent on sub-phenotypes, with the T47D cell line capacity most enhanced. We determined a weak positive correlation between oestrogen receptor expression, and CD62P and CD63; indicating an association between tumour invasion profiles and hypercoagulation, however, other yet unknown factors may play a predictive role in defining hypercoagulation.
Collapse
Affiliation(s)
- K Pather
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| | - T N Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| |
Collapse
|
50
|
Wilson NR, Khan M, Cox TM, Nassif M, Qiao W, Garg N, Aung FM, Oo TH, Rojas‐Hernandez CM. Bleeding outcomes in thrombocytopenic acute leukemic patients with venous thromboembolism. EJHAEM 2020; 1:448-456. [PMID: 35845011 PMCID: PMC9175819 DOI: 10.1002/jha2.90] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Cancer-associated thrombosis in acute leukemia patients with severe thrombocytopenia (platelets ≤50 × 109/L) poses a management challenge due to competing risks of bleeding and recurrent thrombosis. A retrospective analysis was conducted to determine the occurrence of clinically relevant bleeding (CRB) rates during treatment for acute venous thromboembolic events (VTE) in thrombocytopenic acute leukemic patients. A cohort of 74 patients were subgrouped into three VTE-treatment interventions: anticoagulation (n = 24), inferior vena cava filter placement (n = 22), and observation (n = 28). Multivariate analysis found a significant correlation between CRB occurrence and quantity of overall blood transfusions, chemotherapy administration, and relapsed leukemia presentation. There was no difference in the occurrence of CRB between VTE-treatment subgroups, regardless of initial platelet count at the time of VTE diagnosis. Regarding the hematologic parameters, only the velocity of the platelet count recovery was associated with the risk of bleeding. From this analysis, it appears the trajectory of the platelet count and the factors associated with a slower recovery of it, are the main determinants for the occurrence of hemorrhagic complications during VTE treatment in acute leukemia.
Collapse
Affiliation(s)
- Nathaniel R. Wilson
- Department of Internal MedicineThe University of Texas Health Science Center at HoustonHoustonTexas
| | - Maliha Khan
- Department of Hematology and OncologyThe University of Arkansas for Medical SciencesLittle RockArkansas
| | - Travis M. Cox
- Department of Hematology and OncologyThe University of Texas Health Science Center San AntonioSan AntonioTexas
| | - Mohammed Nassif
- Department of Pediatrics – Research Resource OfficeBaylor College of MedicineHoustonTexas
| | - Wei Qiao
- Department of BiostatisticsThe University of Texas M.D. Anderson Cancer CenterHoustonTexas
| | - Naveen Garg
- Department of Diagnostic RadiologyThe University of Texas M.D. Anderson Cancer CenterHoustonTexas
| | - Fleur M. Aung
- Department of Laboratory MedicineThe University of Texas M.D. Anderson Cancer CenterHoustonTexas
| | - Thein Hlaing Oo
- Section of Benign HematologyThe University of Texas M.D. Anderson Cancer CenterHoustonTexas
| | | |
Collapse
|