1
|
Hribar M, Fošnarič I, Matos A, Šifrer R, Grošelj A, Debeljak M, Zidar N, Strojan P, Jenko K. Clinical Characteristics and Outcomes of Tympanomastoid Paragangliomas: A Report from Slovenia. Cancers (Basel) 2024; 16:3178. [PMID: 39335150 PMCID: PMC11430723 DOI: 10.3390/cancers16183178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: Head and neck paragangliomas are neuroendocrine tumors that typically originate from the parasympathetic nervous system and are predominantly non-secretory. Their clinical manifestations result from their mass effect on the surrounding tissues. The approach to treating these tumors depends on factors such as their location, size, impact on adjacent structures, and the patient's overall health and preferences. (2) Methods: A retrospective analysis of the management of temporal bone paraganglioma classes A and B (according to the modified Fisch classification) was performed at the University Medical Centre, Ljubljana, between 2011 and 2023. (3) Results: We analyzed 23 cases, 19 of which underwent surgery; complete tumor removal was achieved in 18 of them. Four patients were irradiated due to tumor progression to class C. Three of these four patients initially refused surgery and were treated with radiotherapy (RT) 7, 13, and 18 years after diagnosis. In the fourth patient, complete surgical resection was not achieved and she was treated with RT four years after surgery, due to the growth of the tumor to class C. The average follow-up time from diagnosis was 8.9 years (median 6 years; range 1-26 years). (4) Conclusions: The surgical treatment of patients with class A and B paragangliomas is effective and safe. In cases where surgery is refused but the tumor continues to grow to class C, RT is an alternative and efficient method of controlling tumor growth.
Collapse
Affiliation(s)
- Manja Hribar
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Iztok Fošnarič
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Aleš Matos
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Robert Šifrer
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Aleš Grošelj
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Maruša Debeljak
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre Ljubljana, Bohoričeva ulica 20, 1000 Ljubljana, Slovenia
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Primož Strojan
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Department of Radiotherapy, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Klemen Jenko
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Cascón A, Robledo M. Clinical and molecular markers guide the genetics of pheochromocytoma and paraganglioma. Biochim Biophys Acta Rev Cancer 2024; 1879:189141. [PMID: 38908536 DOI: 10.1016/j.bbcan.2024.189141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Over the past two decades, research into the genetic susceptibility behind pheochromocytoma and paraganglioma (PPGL) has surged, ranking them among the most heritable tumors. Massive sequencing combined with careful patient selection has so far identified more than twenty susceptibility genes, leading to an over-detection of variants of unknown significance (VUS) that require precise molecular markers to determine their pathogenic role. Moreover, some PPGL patients remain undiagnosed, possibly due to mutations in regulatory regions of already known genes or mutations in undiscovered genes. Accurate classification of VUS and identification of new genes require well-defined clinical and molecular markers that allow effective genetic diagnosis of most PPGLs.
Collapse
Affiliation(s)
- Alberto Cascón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
3
|
Zhang H, Andreou A, Bhatt R, Whitworth J, Yngvadottir B, Maher ER. Characteristics, aetiology and implications for management of multiple primary renal tumours: a systematic review. Eur J Hum Genet 2024; 32:887-894. [PMID: 38802529 PMCID: PMC11291654 DOI: 10.1038/s41431-024-01628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
In a subset of patients with renal tumours, multiple primary lesions may occur. Predisposition to multiple primary renal tumours (MPRT) is a well-recognised feature of some inherited renal cancer syndromes. The diagnosis of MPRT should therefore provoke a thorough assessment for clinical and genetic evidence of disorders associated with predisposition to renal tumourigenesis. To better define the clinical and genetic characteristics of MPRT, a systematic literature review was performed for publications up to 3 April 2024. A total of 7689 patients from 467 articles were identified with MPRT. Compared to all patients with renal cell carcinoma (RCC), patients with MPRT were more likely to be male (71.8% versus 63%) and have an earlier age at diagnosis (<46 years, 32.4% versus 19%). In 61.1% of cases MPRT were synchronous. The proportion of cases with similar histology and the proportion of cases with multiple papillary renal cell carcinoma (RCC) (16.1%) were higher than expected. In total, 14.9% of patients with MPRT had a family history of cancer or were diagnosed with a hereditary RCC associated syndrome with von Hippel-Lindau (VHL) disease being the most common one (69.7%), followed by Birt-Hogg-Dubé (BHD) syndrome (14.2%). Individuals with a known or likely genetic cause were, on average, younger (43.9 years versus 57.1 years). In rare cases intrarenal metastatic RCC can phenocopy MPRT. We review potential genetic causes of MPRT and their implications for management, suggest an approach to genetic testing for individuals presenting with MPRT and considerations in cases in which routine germline genetic testing does not provide a diagnosis.
Collapse
Affiliation(s)
- Huairen Zhang
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Avgi Andreou
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Rupesh Bhatt
- Department of Urology, Queen Elizabeth Hospital, Birmingham, B15, UK
| | - James Whitworth
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Bryndis Yngvadottir
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Eamonn R Maher
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
4
|
Cui Y, Zhou Y, Gao Y, Ma X, Wang Y, Zhang X, Zhou T, Chen S, Lu L, Zhang Y, Chang X, Tong A, Li Y. Novel alternative tools for metastatic pheochromocytomas/paragangliomas prediction. J Endocrinol Invest 2024; 47:1191-1203. [PMID: 38206552 DOI: 10.1007/s40618-023-02239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/02/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVE The existing prediction models for metastasis in pheochromocytomas/paragangliomas (PPGLs) showed high heterogeneity in different centers. Therefore, this study aimed to establish new prediction models integrating multiple variables based on different algorithms. DESIGN AND METHODS Data of patients with PPGLs undergoing surgical resection at the Peking Union Medical College Hospital from 2007 to 2022 were collected retrospectively. Patients were randomly divided into the training and testing sets in a ratio of 7:3. Subsequently, decision trees, random forest, and logistic models were constructed for metastasis prediction with the training set and Cox models for metastasis-free survival (MFS) prediction with the total population. Additionally, Ki-67 index and tumor size were transformed into categorical variables for adjusting models. The testing set was used to assess the discrimination and calibration of models and the optimal models were visualized as nomograms. Clinical characteristics and MFS were compared between patients with and without risk factors. RESULTS A total of 198 patients with 59 cases of metastasis were included and classified into the training set (n = 138) and testing set (n = 60). Among all models, the logistic regression model showed the best discrimination for metastasis prediction with an AUC of 0.891 (95% CI, 0.793-0.990), integrating SDHB germline mutations [OR: 96.72 (95% CI, 16.61-940.79)], S-100 (-) [OR: 11.22 (95% CI, 3.04-58.51)], ATRX (-) [OR: 8.42 (95% CI, 2.73-29.24)] and Ki-67 ≥ 3% [OR: 7.98 (95% CI, 2.27-32.24)] evaluated through immunohistochemistry (IHC), and tumor size ≥ 5 cm [OR: 4.59 (95% CI, 1.34-19.13)]. The multivariate Cox model including the above risk factors also showed a high C-index of 0.860 (95% CI, 0.810-0.911) in predicting MFS after surgery. Furthermore, patients with the above risk factors showed a significantly poorer MFS (P ≤ 0.001). CONCLUSIONS Models established in this study provided alternative and reliable tools for clinicians to predict PPGLs patients' metastasis and MFS. More importantly, this study revealed for the first time that IHC of ATRX could act as an independent predictor of metastasis in PPGLs.
Collapse
Affiliation(s)
- Y Cui
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Y Zhou
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Y Gao
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - X Ma
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Y Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - X Zhang
- Department of Urology Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - T Zhou
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - S Chen
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - L Lu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Y Zhang
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - X Chang
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| | - A Tong
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| | - Y Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| |
Collapse
|
5
|
Milinkovic M, Soldatovic I, Zivaljevic V, Bozic V, Zivotic M, Tatic S, Dundjerovic D. Comprehensive Investigation of Angiogenesis, PASS Score and Immunohistochemical Factors in Risk Assessment of Malignancy for Paraganglioma and Pheochromocytoma. Diagnostics (Basel) 2024; 14:849. [PMID: 38667494 PMCID: PMC11049119 DOI: 10.3390/diagnostics14080849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
A challenging task in routine practice is finding the distinction between benign and malignant paragangliomas and pheochromocytomas. The aim of this study is to conduct a comparative analysis of angiogenesis by assessing intratumoral microvascular density (MVD) with immunohistochemical (IHC) markers (CD31, CD34, CD105, ERG), and S100 immunoreactivity, Ki67 proliferative index, succinate dehydrogenase B (SDHB) expressiveness, tumor size with one the most utilized score Pheochromocytoma of Adrenal Gland Scales Score (PASS), using tissue microarray (TMA) with 115 tumor samples, 61 benign (PASS < 4) and 54 potentially malignant (PASS ≥ 4). We found no notable difference between intratumoral MVD and potentially malignant behavior. The group of potentially malignant tumors is significantly larger in size, has lower intratumoral MVD, and a decreased number of S100 labeled sustentacular cells. Both groups have low proliferative activity (mean Ki67 is 1.02 and 1.22, respectively). Most tumors maintain SDHB expression, only 6 cases (5.2%) showed a loss of expression (4 of them in PASS < 4 group and 2 in PASS ≥ 4). PASS score is easily available for assessment and complemented with markers of biological behavior to complete the risk stratification algorithm. Size is directly related to PASS score and malignancy. Intratumoral MVD is extensively developed but it is not crucial in evaluating the malignant potential.
Collapse
Affiliation(s)
- Marija Milinkovic
- Department of Pathology, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Ivan Soldatovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Vladan Zivaljevic
- Clinic for Endocrine Surgery, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Vesna Bozic
- Department of Pathology, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Maja Zivotic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.); (S.T.); (D.D.)
| | - Svetislav Tatic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.); (S.T.); (D.D.)
| | - Dusko Dundjerovic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.); (S.T.); (D.D.)
| |
Collapse
|
6
|
Fabozzi F, Carrozzo R, Lodi M, Di Giannatale A, Cipri S, Rosignoli C, Giovannoni I, Stracuzzi A, Rizza T, Montante C, Agolini E, Di Nottia M, Galaverna F, Del Baldo G, Del Bufalo F, Mastronuzzi A, De Ioris MA. Case report: A safeguard in the sea of variants of uncertain significance: a case study on child with high risk neuroblastoma and acute myeloid leukemia. Front Oncol 2024; 13:1324013. [PMID: 38260858 PMCID: PMC10800918 DOI: 10.3389/fonc.2023.1324013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
The increased availability of genetic technologies has significantly improved the detection of novel germline variants conferring a predisposition to tumor development in patients with malignant disease. The identification of variants of uncertain significance (VUS) represents a challenge for the clinician, leading to difficulties in decision-making regarding medical management, the surveillance program, and genetic counseling. Moreover, it can generate confusion and anxiety for patients and their family members. Herein, we report a 5-year-old girl carrying a VUS in the Succinate Dehydrogenase Complex Subunit C (SHDC) gene who had been previously treated for high-risk neuroblastoma and subsequently followed by the development of secondary acute myeloid leukemia. In this context, we describe how functional studies can provide additional insight on gene function determining whether the variant interferes with normal protein function or stability.
Collapse
Affiliation(s)
- Francesco Fabozzi
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Rosalba Carrozzo
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Mariachiara Lodi
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Angela Di Giannatale
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Selene Cipri
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Chiara Rosignoli
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | | | | | - Teresa Rizza
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Claudio Montante
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Michela Di Nottia
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Neuromuscular Disorders Research Unit, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Federica Galaverna
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Giada Del Baldo
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Francesco Del Bufalo
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Angela Mastronuzzi
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | | |
Collapse
|
7
|
Trembath HE, Yeh JJ, Lopez NE. Gastrointestinal Malignancy: Genetic Implications to Clinical Applications. Cancer Treat Res 2024; 192:305-418. [PMID: 39212927 DOI: 10.1007/978-3-031-61238-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Advances in molecular genetics have revolutionized our understanding of the pathogenesis, progression, and therapeutic options for treating gastrointestinal (GI) cancers. This chapter provides a comprehensive overview of the molecular landscape of GI cancers, focusing on key genetic alterations implicated in tumorigenesis across various anatomical sites including GIST, colon and rectum, and pancreas. Emphasis is placed on critical oncogenic pathways, such as mutations in tumor suppressor genes, oncogenes, chromosomal instability, microsatellite instability, and epigenetic modifications. The role of molecular biomarkers in predicting prognosis, guiding treatment decisions, and monitoring therapeutic response is discussed, highlighting the integration of genomic profiling into clinical practice. Finally, we address the evolving landscape of precision oncology in GI cancers, considering targeted therapies and immunotherapies.
Collapse
Affiliation(s)
- Hannah E Trembath
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA
| | - Jen Jen Yeh
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA
| | - Nicole E Lopez
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA.
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA.
| |
Collapse
|
8
|
Rogala J, Zhou M. Hereditary succinate dehydrogenase-deficient renal cell carcinoma. Semin Diagn Pathol 2024; 41:32-41. [PMID: 37981479 DOI: 10.1053/j.semdp.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Succinate dehydrogenase (SDH), formed by four subunits SDHA, SDHB, SDHC, SDHD, and an assembly factor SDHAF2, functions as a key respiratory enzyme. Biallelic inactivation of genes encoding any of the components, almost always in the presence of a germline mutation, causes loss of function of the entire enzyme complex (so-called SDH deficiency) and subsequent development of SDH-deficient neoplasms which include pheochromocytoma/paraganglioma, gastrointestinal stromal tumor, and renal cell carcinoma (RCC). These tumors may occur in the same patient or kindred. SDH-deficient RCC shows distinctive morphological features with vacuolated eosinophilic cytoplasm due to distinctive cytoplasmatic inclusions containing flocculent material. The diagnosis is confirmed by loss of SDHB on immunohistochemistry with positive internal control. The majority of tumors occur in the setting of germline mutations in one of the SDH genes, most commonly SDHB. The prognosis is excellent for low-grade tumors but worse for high-grade tumors with high-grade nuclei, sarcomatoid change, or coagulative necrosis. Awareness of the morphological features and low-threshold for applying SDHB immunohistochemistry help identify patients with SDH-deficient RCC and hereditary SDH-deficient tumor syndromes. In this review we summarize recent development on the clinical and genetic features, diagnostic approach, and pitfalls of SDH-deficient syndrome, focusing on SDH-deficient renal cell carcinomas.
Collapse
Affiliation(s)
- Joanna Rogala
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Czech Republic; Department of Pathology, Regional Specialist Hospital, Wrocław, Poland; Department of Pathology, Public Specialist Hospital, Nowa Sól, Poland
| | - Ming Zhou
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA; Department of Anatomic and Clinical Pathology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
9
|
Guha A, Vicha A, Zelinka T, Kana M, Musil Z, Pacak K, Betka J, Chovanec M, Plzak J, Boucek J. High incidence of occult familial SDHD cases amongst Czech patients with head and neck paragangliomas. Front Endocrinol (Lausanne) 2023; 14:1278175. [PMID: 38144572 PMCID: PMC10739302 DOI: 10.3389/fendo.2023.1278175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/06/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Head and neck paragangliomas (HNPGLs) are rare neuroendocrine tumors, which are mostly benign in nature. Amongst all genes, Succinate Dehydrogenase Subunit D (SDHD) is the most commonly mutated in familial HNPGLs. In about 30% of HNPGLs, germline mutations in SDHD can also occur in the absence of positive family history, thus giving rise to "occult familial" cases. Our aim was to evaluate the pattern of SDHD germline mutations in Czech patients with HNPGLs. Materials and methods We analyzed a total of 105 patients with HNPGLs from the Otorhinolaryngology departments of 2 tertiary centers between 2006 - 2021. All underwent complex diagnostic work-up and were also consented for genetic analysis. Results Eighty patients aged 13-76 years were included; around 60% with multiple PGLs were males. Carotid body tumor was the most frequently diagnosed tumor. Germline SDHD mutation was found in only 12% of the Czech patients; approximately 78% of those harboring the mutation had negative family history. The mutation traits had higher affiliation for multiple tumors with nearly 70% patients of ≤ 40 years of age. Conclusion An SDHD mutation variant was shared amongst unrelated patients but no founder-effect was established. Our findings confirmed that the pattern of SDHD mutation distribution amongst HNPGLs in Czech Republic differs from most studies worldwide.
Collapse
Affiliation(s)
- Anasuya Guha
- Department of Otorhinolaryngology, Charles University, 3 Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czechia
| | - Ales Vicha
- Department of Pediatric Hematology and Oncology, Charles University, 2 Faculty of Medicine and University Hospital Motol, Prague, Czechia
| | - Tomas Zelinka
- 3 Department of Medicine, Department of Endocrinology and Metabolsim of the 1 Faculty of Medicine and General University Hospital in Prague, Prague, Czechia
| | - Martin Kana
- Department of Otorhinolaryngology and Head and Neck Surgery, Charles University, 1 Faculty of Medicine and University Hospital Motol, Prague, Czechia
| | - Zdenek Musil
- Institute of Biology and Medical Genetics of the 1 Faculty of Medicine and General University Hospital in Prague, Prague, Czechia
| | - Karel Pacak
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Jan Betka
- Department of Otorhinolaryngology and Head and Neck Surgery, Charles University, 1 Faculty of Medicine and University Hospital Motol, Prague, Czechia
| | - Martin Chovanec
- Department of Otorhinolaryngology, Charles University, 3 Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czechia
| | - Jan Plzak
- Department of Otorhinolaryngology and Head and Neck Surgery, Charles University, 1 Faculty of Medicine and University Hospital Motol, Prague, Czechia
| | - Jan Boucek
- Department of Otorhinolaryngology and Head and Neck Surgery, Charles University, 1 Faculty of Medicine and University Hospital Motol, Prague, Czechia
| |
Collapse
|
10
|
Liu C, Zhou D, Yang K, Xu N, Peng J, Zhu Z. Research progress on the pathogenesis of the SDHB mutation and related diseases. Biomed Pharmacother 2023; 167:115500. [PMID: 37734265 DOI: 10.1016/j.biopha.2023.115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
With the improvement of genetic testing technology in diseases in recent years, researchers have a more detailed and clear understanding of the source of cancers. Succinate dehydrogenase B (SDHB), a mitochondrial gene, is related to the metabolic activities of cells and tissues throughout the body. The mutations of SDHB have been found in pheochromocytoma, paraganglioma and other cancers, and is proved to affect the occurrence and progress of those cancers due to the important structural functions. The importance of SDHB is attracting more and more attention of researchers, however, reviews on the structure and function of SDHB, as well as on the mechanism of its carcinogenesis is inadequate. This paper reviews the relationship between SDHB mutations and related cancers, discusses the molecular mechanism of SDHB mutations that may lead to tumor formation, analyzes the mutation spectrum, structural domains, and penetrance of SDHB and sorts out some of the previously discovered diseases. For the patients with SDHB mutation, it is recommended that people in SDHB mutation families undergo regular genetic testing or SDHB immunohistochemistry (IHC). The purpose of this paper is hopefully to provide some reference and help for follow-up researches on SDHB.
Collapse
Affiliation(s)
- Chang Liu
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Dayang Zhou
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Kexin Yang
- Department of Surgical oncology, Yunnan Cancer Hospital, 519 Kunzhou Road, Kunming, 650118, China
| | - Ning Xu
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Jibang Peng
- Department of Surgical oncology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Zhu Zhu
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China.
| |
Collapse
|
11
|
Yun J, Kapustin D, Omorogbe A, Rubin SJ, Nicastri DG, De Leacy RA, Khorsandi A, Urken ML. Report of a vagal paraganglioma at the cervicothoracic junction. Head Neck 2023; 45:E36-E43. [PMID: 37548094 DOI: 10.1002/hed.27481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/15/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Vagus nerve paragangliomas are rare tumors, comprising 0.03% of head and neck neoplasms. These tumors are usually located cephalad to the hyoid bone, and there is only one previously reported case that arose from the lower third of the neck. METHODS We describe the second reported case of a lower neck vagus nerve paraganglioma that was managed with a limited sternotomy for access and surgical removal. RESULTS A 66-year-old male presented with a long-standing lesion of the cervicothoracic junction. CT, MRI, and Ga-68 DOTATATE PET/CT showed an avidly enhancing 5.2 × 4.2 × 11.5 cm mass extending from C6 to approximately T4 level. FNA confirmed the diagnosis. The patient underwent catheter angiography and embolization via direct puncture technique followed by excision of the mass via a combined transcervical and limited sternotomy approach. CONCLUSION We describe an unusual case of vagal paraganglioma at the cervicothoracic junction with retrosternal extension requiring a sternotomy for surgical excision.
Collapse
Affiliation(s)
- Jun Yun
- THANC (Thyroid, Head & Neck Cancer) Foundation, New York, New York, USA
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Danielle Kapustin
- THANC (Thyroid, Head & Neck Cancer) Foundation, New York, New York, USA
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aisosa Omorogbe
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Samuel J Rubin
- THANC (Thyroid, Head & Neck Cancer) Foundation, New York, New York, USA
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel G Nicastri
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Reade A De Leacy
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Azita Khorsandi
- Department of Radiology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York, USA
| | - Mark L Urken
- THANC (Thyroid, Head & Neck Cancer) Foundation, New York, New York, USA
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
12
|
Cui X, Liu H, Shi T, Zhao Q, Li F, Lv W, Yu C, Huang H, Tang QQ, Pan D. IFI27 Integrates Succinate and Fatty Acid Oxidation to Promote Adipocyte Thermogenic Adaption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301855. [PMID: 37544897 PMCID: PMC10558685 DOI: 10.1002/advs.202301855] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/16/2023] [Indexed: 08/08/2023]
Abstract
Mitochondria are the pivot organelles to control metabolism and energy homeostasis. The capacity of mitochondrial metabolic adaptions to cold stress is essential for adipocyte thermogenesis. How brown adipocytes keep mitochondrial fitness upon a challenge of cold-induced oxidative stress has not been well characterized. This manuscript shows that IFI27 plays an important role in cristae morphogenesis, keeping intact succinate dehydrogenase (SDH) function and active fatty acid oxidation to sustain thermogenesis in brown adipocytes. IFI27 protein interaction map identifies SDHB and HADHA as its binding partners. IFI27 physically links SDHB to chaperone TNF receptor associated protein 1 (TRAP1), which shields SDHB from oxidative damage-triggered degradation. Moreover, IFI27 increases hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha (HADHA) catalytic activity in β-oxidation pathway. The reduced SDH level and fatty acid oxidation in Ifi27-knockout brown fat results in impaired oxygen consumption and defective thermogenesis. Thus, IFI27 is a novel regulator of mitochondrial metabolism and thermogenesis.
Collapse
Affiliation(s)
- Xuan Cui
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Haojie Liu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ting Shi
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qingwen Zhao
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Feiyan Li
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wenjing Lv
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chao Yu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Haiyan Huang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dongning Pan
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
13
|
Gabiache G, Zadro C, Rozenblum L, Vezzosi D, Mouly C, Thoulouzan M, Guimbaud R, Otal P, Dierickx L, Rousseau H, Trepanier C, Dercle L, Mokrane FZ. Image-Guided Precision Medicine in the Diagnosis and Treatment of Pheochromocytomas and Paragangliomas. Cancers (Basel) 2023; 15:4666. [PMID: 37760633 PMCID: PMC10526298 DOI: 10.3390/cancers15184666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
In this comprehensive review, we aimed to discuss the current state-of-the-art medical imaging for pheochromocytomas and paragangliomas (PPGLs) diagnosis and treatment. Despite major medical improvements, PPGLs, as with other neuroendocrine tumors (NETs), leave clinicians facing several challenges; their inherent particularities and their diagnosis and treatment pose several challenges for clinicians due to their inherent complexity, and they require management by multidisciplinary teams. The conventional concepts of medical imaging are currently undergoing a paradigm shift, thanks to developments in radiomic and metabolic imaging. However, despite active research, clinical relevance of these new parameters remains unclear, and further multicentric studies are needed in order to validate and increase widespread use and integration in clinical routine. Use of AI in PPGLs may detect changes in tumor phenotype that precede classical medical imaging biomarkers, such as shape, texture, and size. Since PPGLs are rare, slow-growing, and heterogeneous, multicentric collaboration will be necessary to have enough data in order to develop new PPGL biomarkers. In this nonsystematic review, our aim is to present an exhaustive pedagogical tool based on real-world cases, dedicated to physicians dealing with PPGLs, augmented by perspectives of artificial intelligence and big data.
Collapse
Affiliation(s)
- Gildas Gabiache
- Department of Radiology, Rangueil University Hospital, 31400 Toulouse, France (F.-Z.M.)
| | - Charline Zadro
- Department of Radiology, Rangueil University Hospital, 31400 Toulouse, France (F.-Z.M.)
| | - Laura Rozenblum
- Department of Nuclear Medicine, Sorbonne Université, AP-HP, Hôpital La Pitié-Salpêtrière, 75013 Paris, France
| | - Delphine Vezzosi
- Department of Endocrinology, Rangueil University Hospital, 31400 Toulouse, France
| | - Céline Mouly
- Department of Endocrinology, Rangueil University Hospital, 31400 Toulouse, France
| | | | - Rosine Guimbaud
- Department of Oncology, Rangueil University Hospital, 31400 Toulouse, France
| | - Philippe Otal
- Department of Radiology, Rangueil University Hospital, 31400 Toulouse, France (F.-Z.M.)
| | - Lawrence Dierickx
- Department of Nuclear Medicine, IUCT-Oncopole, 31059 Toulouse, France;
| | - Hervé Rousseau
- Department of Radiology, Rangueil University Hospital, 31400 Toulouse, France (F.-Z.M.)
| | - Christopher Trepanier
- New York-Presbyterian Hospital/Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Laurent Dercle
- New York-Presbyterian Hospital/Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Fatima-Zohra Mokrane
- Department of Radiology, Rangueil University Hospital, 31400 Toulouse, France (F.-Z.M.)
| |
Collapse
|
14
|
Fischer A, Kloos S, Maccio U, Friemel J, Remde H, Fassnacht M, Pamporaki C, Eisenhofer G, Timmers HJLM, Robledo M, Fliedner SMJ, Wang K, Maurer J, Reul A, Zitzmann K, Bechmann N, Žygienė G, Richter S, Hantel C, Vetter D, Lehmann K, Mohr H, Pellegata NS, Ullrich M, Pietzsch J, Ziegler CG, Bornstein SR, Kroiss M, Reincke M, Pacak K, Grossman AB, Beuschlein F, Nölting S. Metastatic Pheochromocytoma and Paraganglioma: Somatostatin Receptor 2 Expression, Genetics, and Therapeutic Responses. J Clin Endocrinol Metab 2023; 108:2676-2685. [PMID: 36946182 PMCID: PMC10505550 DOI: 10.1210/clinem/dgad166] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/01/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023]
Abstract
CONTEXT Pheochromocytomas and paragangliomas (PPGLs) with pathogenic mutations in the succinate dehydrogenase subunit B (SDHB) are associated with a high metastatic risk. Somatostatin receptor 2 (SSTR2)-dependent imaging is the most sensitive imaging modality for SDHB-related PPGLs, suggesting that SSTR2 expression is a significant cell surface therapeutic biomarker of such tumors. OBJECTIVE Exploration of the relationship between SSTR2 immunoreactivity and SDHB immunoreactivity, mutational status, and clinical behavior of PPGLs. Evaluation of SSTR-based therapies in metastatic PPGLs. METHODS Retrospective analysis of a multicenter cohort of PPGLs at 6 specialized Endocrine Tumor Centers in Germany, The Netherlands, and Switzerland. Patients with PPGLs participating in the ENSAT registry were included. Clinical data were extracted from medical records, and immunohistochemistry (IHC) for SDHB and SSTR2 was performed in patients with available tumor tissue. Immunoreactivity of SSTR2 was investigated using Volante scores. The main outcome measure was the association of SSTR2 IHC positivity with genetic and clinical-pathological features of PPGLs. RESULTS Of 202 patients with PPGLs, 50% were SSTR2 positive. SSTR2 positivity was significantly associated with SDHB- and SDHx-related PPGLs, with the strongest SSTR2 staining intensity in SDHB-related PPGLs (P = .01). Moreover, SSTR2 expression was significantly associated with metastatic disease independent of SDHB/SDHx mutation status (P < .001). In metastatic PPGLs, the disease control rate with first-line SSTR-based radionuclide therapy was 67% (n = 22, n = 11 SDHx), and with first-line "cold" somatostatin analogs 100% (n = 6, n = 3 SDHx). CONCLUSION SSTR2 expression was independently associated with SDHB/SDHx mutations and metastatic disease. We confirm a high disease control rate of somatostatin receptor-based therapies in metastatic PPGLs.
Collapse
Affiliation(s)
- Alessa Fischer
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), CH-8091 Zurich, Switzerland
| | - Simon Kloos
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), CH-8091 Zurich, Switzerland
| | - Umberto Maccio
- Department of Pathology and Molecular Pathology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Juliane Friemel
- Department of Pathology and Molecular Pathology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Hanna Remde
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Martin Fassnacht
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Christina Pamporaki
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Graeme Eisenhofer
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Henri J L M Timmers
- Division of Endocrinology, Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Stephanie M J Fliedner
- First Department of Medicine, University Medical Center Schleswig-Holstein, 23538 Lübeck, Germany
| | - Katharina Wang
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Julian Maurer
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Astrid Reul
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), CH-8091 Zurich, Switzerland
| | - Kathrin Zitzmann
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse, 01307 Dresden, Germany
| | - Gintarė Žygienė
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse, 01307 Dresden, Germany
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse, 01307 Dresden, Germany
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), CH-8091 Zurich, Switzerland
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Diana Vetter
- Department of Visceral and Transplantation Surgery, University Hospital, 8091 Zürich, Switzerland
| | - Kuno Lehmann
- Department of Visceral and Transplantation Surgery, University Hospital, 8091 Zürich, Switzerland
| | - Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Christian G Ziegler
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan R Bornstein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), CH-8091 Zurich, Switzerland
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Matthias Kroiss
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Martin Reincke
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20847, USA
| | - Ashley B Grossman
- Green Templeton College, University of Oxford, Oxford, UK
- NET Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), CH-8091 Zurich, Switzerland
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), CH-8091 Zurich, Switzerland
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| |
Collapse
|
15
|
Mahmood S, Borkar AN, Khan FA, Naab T. Aggressive Malignant Paraganglioma Involving the Pancreas and Vertebral Column. Cureus 2023; 15:e40985. [PMID: 37503488 PMCID: PMC10370504 DOI: 10.7759/cureus.40985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2023] [Indexed: 07/29/2023] Open
Abstract
Paraganglioma (PGL) is a rare neuroendocrine tumor arising from chromaffin cells outside the adrenal medulla. The most common sites are the abdomen and head and neck. Seventy percent (70%) of PGLs are sporadic, and 30% are hereditary; the latter are more often aggressive and malignant and occur in young adults. We report a case of a 36-year-old woman with a history of hypertension and abdominal pheochromocytoma resected at the age of 10 years who presented with back pain. Magnetic resonance imaging of the spine showed vertebral metastasis at L2-L5. Computed tomography of the abdomen showed a mass in the body of the pancreas and a laparoscopic biopsy was performed. The tumor cells had granular eosinophilic/basophilic cytoplasm and showed a nested pattern (Zellballen) with a prominent vascular network and infiltration of dense fibrous connective tissue. Strong and diffuse expression of synaptophysin in tumor cells, S100 expression in sustentacular cells at the periphery of nests, and lack of pancytokeratin expression supported the diagnosis of PGL. Due to limited tissue, it was difficult to determine metastatic vs primary neoplasm of the pancreas. The earlier age of onset and history of abdominal pheochromocytoma suggested the possibility of hereditary PGL associated with succinate dehydrogenase (SDH) deficiency. The tumor cells lacked SDHB expression. Germline mutation testing for SDH was recommended. The patient underwent palliative radiotherapy and systemic chemotherapy. Most PGLs are benign and asymptomatic, but there is an increased risk of cardiovascular mortality secondary to catecholamine secretion, and surgical excision is curative. Malignant PGLs are rare (10-40%), have poor prognosis, and are incurable. Increased size of the tumor, deep tissue infiltration, and high proliferative index increase the risk of malignancy, but metastasis is required for the diagnosis of malignant PGL. The advanced disease is treated with surgical removal of the tumor and combined radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Salahudin Mahmood
- Internal Medicine, Nishtar Medical University and Hospital, Multan, PAK
| | - Abhilasha N Borkar
- Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, USA
| | - Farhan A Khan
- Pathology and Laboratory Medicine, Pathology Specialists of Memphis, Memphis, USA
- Pathology and Laboratory Medicine, Methodist Le Bonheur Healthcare, Memphis, USA
| | - Tammey Naab
- Pathology and Medical Microbiology, Athari Bio + Sciences, Washington DC, USA
| |
Collapse
|
16
|
Lui MS, Clemente-Gutierrez U, Skefos CM, Perrier ND. Succinate Dehydrogenase Mutations as Familial Pheochromocytoma Syndromes. Surg Oncol Clin N Am 2023; 32:289-301. [PMID: 36925186 DOI: 10.1016/j.soc.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
It is recognized that a large portion of pheochromocytoma and paraganglioma cases will have an underlying germline mutation, supporting the recommendation for universal genetic testing in all patients with PPGLs. A mutation in succinate dehydrogenase subunit B is associated with increased rates of developing synchronous and/or metachronous metastatic disease. Patients identified with this mutation require meticulous preoperative evaluation, a personalized surgical plan to minimize the risk of recurrence and tumor spread, and lifelong surveillance.
Collapse
Affiliation(s)
- Michael S Lui
- Department of Surgical Oncology, Division of Surgical Endocrinology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1484, Houston, TX 77030, USA.
| | - Uriel Clemente-Gutierrez
- Department of Surgical Oncology, Division of Surgical Endocrinology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1484, Houston, TX 77030, USA.
| | - Catherine M Skefos
- Clinical Cancer Genetics Program, Division of Surgical Endocrinology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Nancy D Perrier
- Department of Surgical Oncology, Division of Surgical Endocrinology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1484, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Tanaka T, Joraku A, Ishibashi S, Endo K, Emura M, Kikuchi Y, Shikama A, Kimura N, Shimazui T. Abdominal nonfunctional paraganglioma in which succinate dehydrogenase subunit B (SDHB) immunostaining was performed: a case report. J Med Case Rep 2023; 17:106. [PMID: 36945070 PMCID: PMC10031891 DOI: 10.1186/s13256-023-03822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/14/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Abdominal nonfunctional paraganglioma is rare. Malignant potential of paraganglioma is assessed by Grading of Adrenal Pheochromocytoma and Paraganglioma score and genetic testing, but genetic testing is not common. We present a case of abdominal nonfunctional paraganglioma whose malignant potential was assessed by grading of adrenal pheochromocytoma and paraganglioma score and succinate dehydrogenase subunit B staining alternative to genetic testing. CASE PRESENTATION A 39-year-old Japanese man had a right retroperitoneal tumor without symptoms. Uptake in the tumor was shown by 123I-meta-iodobenzylguanidine scintigraphy. There were no metastases. The results of biochemical workups including blood hormones and urinary metanephrines were normal. We performed retroperitoneoscopic surgery. The tumor was positive for chromogranin A staining but negative for tyrosine hydroxylase. On the basis of the preoperative biochemical workups and pathology results, we diagnosed the tumor as nonfunctional paraganglioma. The Grading of Adrenal Pheochromocytoma and Paraganglioma score classified the tumor as moderately differentiated. Furthermore, negative succinate dehydrogenase subunit B staining suggested the patient has the SDHx (SDHA, SDHB, SDHC and SDHD) mutation. CONCLUSION Abdominal nonfunctional PGLs are associated with SDHB mutation, and SDHB staining should be performed as a screening.
Collapse
Affiliation(s)
- Takazo Tanaka
- Department of Urology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| | - Akira Joraku
- Department of Urology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan.
| | - Sayuri Ishibashi
- Department of Urology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| | - Keisuke Endo
- Department of Urology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| | - Masahiro Emura
- Department of Urology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| | - Yusuke Kikuchi
- Department of Endocrinology Diabetes and Metabolism, Ibaraki Prefectural Central Hospital, Kasama, Ibaraki, Japan
| | - Akito Shikama
- Department of Endocrinology Diabetes and Metabolism, Ibaraki Prefectural Central Hospital, Kasama, Ibaraki, Japan
| | - Noriko Kimura
- Department of Pathology, National Hospital Organization Hakodate Hospital, Hakodate, Hokkaido, Japan
| | - Toru Shimazui
- Department of Urology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| |
Collapse
|
18
|
Gaisa NT, Hartmann A, Knüchel-Clarke R. [New WHO classification 2022: urinary bladder cancer]. PATHOLOGIE (HEIDELBERG, GERMANY) 2023; 44:139-148. [PMID: 36826493 DOI: 10.1007/s00292-023-01183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/22/2022] [Indexed: 02/25/2023]
Abstract
The new World Health Organization (WHO) classification of urogenital tumors is still primarily based on anatomic location, but is also a hierarchical taxonomic classification without separate chapters for tumors of the upper urinary tract and the urethra. It clarifies aspects regarding grading and noninvasive entities. It consolidates the use of the Paris system for urinary cytology as well as various subtypes/special types of neoplasms, and incorporates general concepts of the 5th edition of the WHO blue book. In addition to mesenchymal tumors, well-differentiated neuroendocrine tumors and neuroendocrine carcinomas are addressed in separate chapters. Papillary non-invasive low- and high-grade carcinomas and carcinoma in situ remain, while dysplasia and urothelial proliferation of unknown malignant potential (UPUMP) are no longer treated as separate entities. Former variants of urothelial carcinoma are now called subtypes and aberrant differentiation and special types are more precisely defined.
Collapse
Affiliation(s)
- Nadine Therese Gaisa
- Institut für Pathologie, Uniklinik RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Deutschland.
| | - Arndt Hartmann
- Institut für Pathologie, Uniklinikum Erlangen, Erlangen, Deutschland
| | - Ruth Knüchel-Clarke
- Institut für Pathologie, Uniklinik RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Deutschland
| |
Collapse
|
19
|
Gupta S, Erickson LA. Back to Biochemistry: Evaluation for and Prognostic Significance of SDH Mutations in Paragangliomas and Pheochromocytomas. Surg Pathol Clin 2023; 16:119-129. [PMID: 36739159 DOI: 10.1016/j.path.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There is increasing recognition of the high prevalence of hereditary predisposition syndromes in patients diagnosed with paraganglioma/pheochromocytoma. It is widely acknowledged that germline pathogenic alterations of the succinate dehydrogenase complex genes (SDHA, SDHB, SDHC, SDHD, SDHAF2) contribute to the pathogenesis of most of these tumors. Herein, we have provided an update on the biology and diagnosis of succinate dehydrogenase-deficient paraganglioma/pheochromocytoma, including the molecular biology of the succinate dehydrogenase complex, mechanisms and consequences of inactivation of this complex, the prevalence of pathogenic alterations, and patterns of inheritance.
Collapse
Affiliation(s)
- Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
20
|
Inhibition of Succinate Dehydrogenase by Pesticides (SDHIs) and Energy Metabolism. Int J Mol Sci 2023; 24:ijms24044045. [PMID: 36835457 PMCID: PMC9962667 DOI: 10.3390/ijms24044045] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Succinate dehydrogenase (SDH) is one of the enzymes of the tricarboxylic acid cycle (Krebs cycle) and complex II of the mitochondrial respiratory chain. A class of fungicides (SDHIs) targets the complex II reaction in the SDH. A large number of those in use have been shown to inhibit SDH in other phyla, including humans. This raises questions about possible effects on human health and non-target organisms in the environment. The present document will address metabolic consequences in mammals; it is neither a review on SDH nor is it about the toxicology of SDHIs. Most clinically relevant observations are linked to a severe decrease in SDH activity. Here we shall examine the mechanisms for compensating a loss of SDH activity and their possible weaknesses or adverse consequences. It can be expected that a mild inhibition of SDH will be compensated by the kinetic properties of this enzyme, but this implies a proportionate increase in succinate concentration. This would be relevant for succinate signaling and epigenetics (not reviewed here). With regard to metabolism, exposure of the liver to SDHIs would increase the risk for non-alcoholic fatty liver disease (NAFLD). Higher levels of inhibition may be compensated by modification of metabolic fluxes with net production of succinate. SDHIs are much more soluble in lipids than in water; consequently, a different diet composition between laboratory animals and humans is expected to influence their absorption.
Collapse
|
21
|
Branzoli F, Salgues B, Marjańska M, Laloi-Michelin M, Herman P, Le Collen L, Delemer B, Riancho J, Kuhn E, Jublanc C, Burnichon N, Amar L, Favier J, Gimenez-Roqueplo AP, Buffet A, Lussey-Lepoutre C. SDHx mutation and pituitary adenoma: can in vivo 1H-MR spectroscopy unravel the link? Endocr Relat Cancer 2023; 30:ERC-22-0198. [PMID: 36449569 PMCID: PMC9885742 DOI: 10.1530/erc-22-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
Germline mutations in genes encoding succinate dehydrogenase (SDH) are frequently involved in pheochromocytoma/paraganglioma (PPGL) development and were implicated in patients with the '3PAs' syndrome (associating pituitary adenoma (PA) and PPGL) or isolated PA. However, the causality link between SDHx mutation and PA remains difficult to establish, and in vivo tools for detecting hallmarks of SDH deficiency are scarce. Proton magnetic resonance spectroscopy (1H-MRS) can detect succinate in vivo as a biomarker of SDHx mutations in PGL. The objective of this study was to demonstrate the causality link between PA and SDH deficiency in vivo using 1H-MRS as a novel noninvasive tool for succinate detection in PA. Three SDHx-mutated patients suffering from a PPGL and a macroprolactinoma and one patient with an apparently sporadic non-functioning pituitary macroadenoma underwent MRI examination at 3 T. An optimized 1H-MRS semi-LASER sequence (TR = 2500 ms, TE = 144 ms) was employed for the detection of succinate in vivo. Succinate and choline-containing compounds were identified in the MR spectra as single resonances at 2.44 and 3.2 ppm, respectively. Choline compounds were detected in all the tumors (three PGL and four PAs), while a succinate peak was only observed in the three macroprolactinomas and the three PGL of SDHx-mutated patients, demonstrating SDH deficiency in these tumors. In conclusion, the detection of succinate by 1H-MRS as a hallmark of SDH deficiency in vivo is feasible in PA, laying the groundwork for a better understanding of the biological link between SDHx mutations and the development of these tumors.
Collapse
Affiliation(s)
- Francesca Branzoli
- Paris Brain Institute - Institut du Cerveau (ICM), Center for Neuroimaging Research (CENIR), Paris, France
- Sorbonne University, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, Paris, France
| | - Betty Salgues
- Sorbonne University, nuclear medicine department, Pitié-Salpêtrière Hospital, Assistance -Publique Hôpitaux de Paris, Paris, France
- Paris Cardiovascular Research Center (PARCC), Inserm, Paris, France
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marie Laloi-Michelin
- Endocrinology department, Lariboisière Hospital, Assistance -Publique Hôpitaux de Paris, Paris, France
| | - Philippe Herman
- ENT unit, Lariboisière Hospital, Assistance -Publique Hôpitaux de Paris, Paris-Cité University, INSERM U1141, Paris, France
| | - Lauriane Le Collen
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, University of Lille, Lille, France
- Department of Endocrinology Diabetology, University Hospital Center of Reims, Reims, France
- Department of Genetic, University Hospital Center of Reims, Reims, France
| | - Brigitte Delemer
- Department of Endocrinology Diabetology, University Hospital Center of Reims, Reims, France
- CRESTIC EA 3804, University of Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Moulin de La Housse, BP 1039, Reims, France
| | - Julien Riancho
- AP-HP, Hôpital Européen Georges Pompidou, Hypertension Unit, and Reference centre for rare adrenal diseases, Paris, France
| | - Emmanuelle Kuhn
- Pituitary Unit, Pitié-Salpêtrière Hospital APHP, Sorbonne University, Paris, France
| | - Christel Jublanc
- Pituitary Unit, Pitié-Salpêtrière Hospital APHP, Sorbonne University, Paris, France
| | - Nelly Burnichon
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
- Université Paris Cité, Inserm, PARCC, Paris, France
| | - Laurence Amar
- AP-HP, Hôpital Européen Georges Pompidou, Hypertension Unit, and Reference centre for rare adrenal diseases, Paris, France
- Université Paris Cité, Inserm, PARCC, Paris, France
| | | | - Anne-Paule Gimenez-Roqueplo
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
- Université Paris Cité, Inserm, PARCC, Paris, France
| | - Alexandre Buffet
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
- Université Paris Cité, Inserm, PARCC, Paris, France
| | - Charlotte Lussey-Lepoutre
- Sorbonne University, nuclear medicine department, Pitié-Salpêtrière Hospital, Assistance -Publique Hôpitaux de Paris, Paris, France
- Paris Cardiovascular Research Center (PARCC), Inserm, Paris, France
| |
Collapse
|
22
|
Su T, Yang Y, Jiang L, Xie J, Zhong X, Wu L, Jiang Y, Zhang C, Zhou W, Ye L, Ning G, Wang W. SDHB immunohistochemistry for prognosis of pheochromocytoma and paraganglioma: A retrospective and prospective analysis. Front Endocrinol (Lausanne) 2023; 14:1121397. [PMID: 37008946 PMCID: PMC10061060 DOI: 10.3389/fendo.2023.1121397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
INTRODUCTION Pheochromocytomas and paragangliomas (PCC/PGL) are rare neuroendocrine tumors and can secrete catecholamine. Previous studies have found that SDHB immunohistochemistry (IHC) can predict SDHB germline gene mutation, and SDHB mutation is closely associated with tumor progression and metastasis. This study aimed to clarify the potential effect of SDHB IHC as a predictive marker for tumor progression in PCC/PGL patients. METHODS We included PCC/PGL patients diagnosed in Ruijin Hospital, Shanghai Jiao Tong University School of Medicine from 2002 to 2014 for retrospective analysis and discovered that SDHB (-) staining patients had poorer prognoses. Then we examined SDHB protein expression by IHC on all tumors in the prospective series, which was composed of patients from 2015 to 2020 in our center. RESULTS In the retrospective series, the median follow-up was 167 months, and during follow-up, 14.4% (38/264) patients developed metastasis or recurrence, and 8.0% (22/274) patients died. Retrospective analysis revealed that 66.7% (6/9) of participants in the SDHB (-) group and 15.7% (40/255) of those in the SDHB (+) group developed progressive tumors (OR: 10.75, 95% CI: 2.72-52.60, P=0.001), and SDHB (-) was independently associated with poor outcomes after adjusting by other clinicopathological parameters (OR: 11.68, 95% CI: 2.58-64.45, P=0.002). SDHB (-) patients had shorter disease-free survival (DFS) and overall survival (OS) (P<0.001) and SDHB (-) was significantly associated with shorter median DFS (HR: 6.89, 95% CI: 2.41-19.70, P<0.001) in multivariate cox proportional hazard analysis. In the prospective series, the median follow-up was 28 months, 4.7% (10/213) patients developed metastasis or recurrence, and 0.5% (1/217) patient died. For the prospective analysis, 18.8% (3/16) of participants in the SDHB (-) group had progressive tumors compared with 3.6% (7/197) in the SDHB (+) group (RR: 5.28, 95% CI: 1.51-18.47, P=0.009), statistical significance remained (RR: 3.35, 95% CI: 1.20-9.38, P=0.021) after adjusting for other clinicopathological factors. CONCLUSIONS Our findings demonstrated patients with SDHB (-) tumors had a higher possibility of poor outcomes, and SDHB IHC can be regarded as an independent biomarker of prognosis in PCC/PGL.
Collapse
Affiliation(s)
- Tingwei Su
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yifan Yang
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Jiang
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xu Zhong
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Luming Wu
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiran Jiang
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cui Zhang
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiwei Zhou
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Ye
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guang Ning
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Laboratory for Endocrine and Metabolic Diseases of Institute of Health Science, Shanghai Jiaotong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiqing Wang
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Laboratory for Endocrine and Metabolic Diseases of Institute of Health Science, Shanghai Jiaotong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Weiqing Wang,
| |
Collapse
|
23
|
The Classic, the Trendy, and the Refashioned: A Primer for Pathologists on What Is New in Familial Endocrine Tumor Syndromes. Adv Anat Pathol 2023; 30:69-78. [PMID: 36136401 DOI: 10.1097/pap.0000000000000370] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Familial endocrine tumor syndromes are continuously expanding owing to the growing role of genetic testing in routine clinical practice. Pathologists are usually the first on the clinical team to encounter these syndromes at their initial presentation; thus, recognizing them is becoming more pivotal in routine pathology practice to help in properly planning management and further family testing. Our increasing knowledge about them is reflected in the newer syndromes included in the new World Health Organization classification and in the evolving discovery of new endocrine tumors and new familial associations. In many of these syndromes, the clinical features and co-occurrence of multiple neoplasia are the only clues (multiple endocrine neoplasia syndromes). In other syndromes, specific morphologic findings (pituitary blastoma and DICER1 syndrome, cribriform morular thyroid carcinoma, and AFP syndrome) and available ancillary studies (SDHB in SDH-deficient tumor syndromes) can aid pathologists. The aim of this review is to provide a primer on recent updates on familial endocrine tumor syndromes and related tumors, focusing on recent classification changes or tumor syndromes where a clearer role for pathologists is at play.
Collapse
|
24
|
Liu Y, Sun Y, Guo Y, Shi X, Chen X, Feng W, Wu LL, Zhang J, Yu S, Wang Y, Shi Y. An Overview: The Diversified Role of Mitochondria in Cancer Metabolism. Int J Biol Sci 2023; 19:897-915. [PMID: 36778129 PMCID: PMC9910000 DOI: 10.7150/ijbs.81609] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are intracellular organelles involved in energy production, cell metabolism and cell signaling. They are essential not only in the process of ATP synthesis, lipid metabolism and nucleic acid metabolism, but also in tumor development and metastasis. Mutations in mtDNA are commonly found in cancer cells to promote the rewiring of bioenergetics and biosynthesis, various metabolites especially oncometabolites in mitochondria regulate tumor metabolism and progression. And mutation of enzymes in the TCA cycle leads to the unusual accumulation of certain metabolites and oncometabolites. Mitochondria have been demonstrated as the target for cancer treatment. Cancer cells rely on two main energy resources: oxidative phosphorylation (OXPHOS) and glycolysis. By manipulating OXPHOS genes or adjusting the metabolites production in mitochondria, tumor growth can be restrained. For example, enhanced complex I activity increases NAD+/NADH to prevent metastasis and progression of cancers. In this review, we discussed mitochondrial function in cancer cell metabolism and specially explored the unique role of mitochondria in cancer stem cells and the tumor microenvironment. Targeting the OXPHOS pathway and mitochondria-related metabolism emerging as a potential therapeutic strategy for various cancers.
Collapse
Affiliation(s)
- Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yihong Sun
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yadong Guo
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoyun Shi
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Xi Chen
- Xi Chen, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wenfeng Feng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Lei-Lei Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 39216, Jackson, Mississippi, USA
| | - Shibo Yu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.,Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China
| |
Collapse
|
25
|
Capitanio JF, Mortini P. Other Less Prevalent Tumors of the Central Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:607-643. [PMID: 37452956 DOI: 10.1007/978-3-031-23705-8_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The presented tumors in this chapter are somewhat very rare, and their management is still debated due to the scarcity of information about their cell of origin, behavior, and biology. Treatment options are still limited, but we are confident that in the near future by discovering the genetic and biological mechanisms that drive tumor growth we will be able to offer new target therapies that should be flanked by surgery, radiotherapy, and chemotherapeutic agents actually in use. The purpose of this chapter is to highlight the most important known characteristics of these tumors offering the chance to recognize the disease and then offer the best opportunity for treatment to patients. The 5th WHO Classification Central Nervous System features substantial changes by moving further to advance the role of molecular diagnostics in CNS tumor classification, but remaining rooted in other established approaches to tumor characterization, including histology and immunohistochemistry, and probably, the category of many tumors will change. Here, the most important characteristics of each neoplasm are summarized focusing on genetic mechanisms and molecular pathways, their histopathologic footprints, signs and symptoms, radiologic features, therapeutic approaches, and prognosis as well as follow-up protocols. Schematic classifications are also presented to offer a better understanding of the pathology.
Collapse
Affiliation(s)
- Jody Filippo Capitanio
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
26
|
Advances in Adrenal and Extra-adrenal Paraganglioma: Practical Synopsis for Pathologists. Adv Anat Pathol 2023; 30:47-57. [PMID: 36136370 DOI: 10.1097/pap.0000000000000365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adrenal paraganglioma (or "pheochromocytoma") and extra-adrenal paraganglioma, collectively abbreviated PPGL, are rare but spectacular nonepithelial neuroendocrine neoplasms. These are the most inheritable neoplasia of all, with a metastatic potential in a varying degree. As of such, these lesions demand careful histologic, immunohistochemical, and genetic characterization to provide the clinical team with a detailed report taking into account the anticipated prognosis and risk of syndromic/inherited disease. While no histologic algorithm, immunohistochemical biomarker, or molecular aberration single-handedly can identify potentially lethal cases upfront, the combined analysis of various risk parameters may stratify PPGL patients more stringently than previously. Moreover, the novel 2022 WHO Classification of Endocrine and Neuroendocrine Tumors also brings some new concepts into play, not least the reclassification of special neuroendocrine neoplasms (cauda equina neuroendocrine tumor and composite gangliocytoma/neuroma-neuroendocrine tumor) previously thought to belong to the spectrum of PPGL. This review focuses on updated key diagnostic and prognostic concepts that will aid when facing this rather enigmatic tumor entity in clinical practice.
Collapse
|
27
|
Araujo-Castro M, Pascual-Corrales E, Lorca Álvaro J, Mínguez Ojeda C, Pian H, Ruz-Caracuel I, Sanjuanbenito Dehesa A, Serrano Romero A, Alonso-Gordoa T, Molina-Cerrillo J, Gómez Dos Santos V. Manejo quirúrgico y posquirúrgico de paragangliomas abdominales y feocromocitomas. Actas Urol Esp 2022. [DOI: 10.1016/j.acuro.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Zhao H, Lu Y, Zheng J, Xie Y, Li Q. Case report: Intraoperative frozen section analysis of Thyroid paraganglioma. Front Oncol 2022; 12:1038076. [PMID: 36387140 PMCID: PMC9664199 DOI: 10.3389/fonc.2022.1038076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/19/2022] [Indexed: 01/25/2023] Open
Abstract
Paraganglioma (PGL) is a neuroendocrine tumor that arises from the sympathetic or parasympathetic paraganglia. Primary thyroid PGL is extremely rare. PGL may be difficult to diagnose on frozen sections because its histopathological features, such as polygonal tumor cells with eosinophilic cytoplasm arranged irregularly, overlap with those of thyroid follicular adenoma. We present a case of thyroid PGL in a female patient and provide a detailed description of the patient's clinicopathologic characteristics. Cervical computed tomography showed a left thyroid mass with uneven density. Intraoperative frozen section analysis showed an uneven fibrous septa and rich networks of delicate vessels surrounding tumor cell nests. The tumor cells were polygonal or epithelioid with eosinophilic cytoplasm, arranged in a nest, trabecular, or organoid pattern were and diagnosed as thyroid follicular adenoma. However, in postoperative immunohistochemistry, these were diagnosed as thyroid PGL. The postoperative recovery was uneventful. The patient showed no signs of tumor recurrence or metastasis until 16 months of follow-up. Herein, we summarize the characteristic features of thyroid PGL based on frozen section analysis. In the appropriate clinical context, its proper use as diagnostic and differential diagnostic management strategies is recommended.
Collapse
Affiliation(s)
- Huanyu Zhao
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China,*Correspondence: Huanyu Zhao,
| | - Yudie Lu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jingrong Zheng
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yuyao Xie
- Department of Clinical Medicine, The First Clinical College of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Qingchang Li
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
29
|
Loughrey PB, Roncaroli F, Healy E, Weir P, Basetti M, Casey RT, Hunter SJ, Korbonits M. Succinate dehydrogenase and MYC-associated factor X mutations in pituitary neuroendocrine tumours. Endocr Relat Cancer 2022; 29:R157-R172. [PMID: 35938916 PMCID: PMC9513646 DOI: 10.1530/erc-22-0157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
Pituitary neuroendocrine tumours (PitNETs) associated with paragangliomas or phaeochromocytomas are rare. SDHx variants are estimated to be associated with 0.3-1.8% of PitNETs. Only a few case reports have documented the association with MAX variants. Prolactinomas are the most common PitNETs occurring in patients with SDHx variants, followed by somatotrophinomas, clinically non-functioning tumours and corticotrophinomas. One pituitary carcinoma has been described. SDHC, SDHB and SDHA mutations are inherited in an autosomal dominant fashion and tumorigenesis seems to adhere to Knudson's two-hit hypothesis. SDHD and SDHAF2 mutations most commonly have paternal inheritance. Immunohistochemistry for SDHB or MAX and loss of heterozygosity analysis can support the assessment of pathogenicity of the variants. Metabolomics is promising in the diagnosis of SDHx-related disease. Future research should aim to further clarify the role of SDHx and MAX variants or other genes in the molecular pathogenesis of PitNETs, including pseudohypoxic and kinase signalling pathways along with elucidating epigenetic mechanisms to predict tumour behaviour.
Collapse
Affiliation(s)
- Paul Benjamin Loughrey
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast, UK
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast Health & Social Care Trust, Belfast, UK
| | - Federico Roncaroli
- Geoffrey Jefferson Brain Research Centre, Division of Neuroscience and Experimental Psychology, School of Medicine, Manchester University, Manchester, UK
| | - Estelle Healy
- Department of Cellular Pathology, Royal Victoria Hospital, Belfast Health & Social Care Trust, Belfast, UK
| | - Philip Weir
- Department of Neurosurgery, Royal Victoria Hospital, Belfast Health & Social Care Trust, Belfast, UK
| | - Madhu Basetti
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Ruth T Casey
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Steven J Hunter
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast Health & Social Care Trust, Belfast, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
30
|
Yngvadottir B, Andreou A, Bassaganyas L, Larionov A, Cornish AJ, Chubb D, Saunders CN, Smith PS, Zhang H, Cole Y, Research Consortium GE, Larkin J, Browning L, Turajlic S, Litchfield K, Houlston RS, Maher ER. Frequency of pathogenic germline variants in cancer susceptibility genes in 1336 renal cell carcinoma cases. Hum Mol Genet 2022; 31:3001-3011. [PMID: 35441217 PMCID: PMC9433729 DOI: 10.1093/hmg/ddac089] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/25/2022] [Accepted: 04/13/2022] [Indexed: 11/14/2022] Open
Abstract
Renal cell carcinoma (RCC) occurs in a number of cancer predisposition syndromes, but the genetic architecture of susceptibility to RCC is not well defined. We investigated the frequency of pathogenic and likely pathogenic (P/LP) germline variants in cancer susceptibility genes (CSGs) within a large series of unselected RCC participants. Whole-genome sequencing data on 1336 RCC participants and 5834 controls recruited to the UK 100 000 Genomes Project, a nationwide multicentre study, was analyzed to identify rare P/LP short variants (single nucleotide variants and insertions/deletions ranging from 1 to 50 base pairs) and structural variants in 121 CSGs. Among 1336 RCC participants [mean: 61.3 years (±12 SD), range: 13-88 years; 64% male], 85 participants [6.4%; 95% CI (5.1, 7.8)] had one or more P/LP germline variant in a wider range of CSGs than previously recognized. A further 64 intragenic variants in CSGs previously associated with RCC were classified as a variant of uncertain significance (VUS) (24 'hot VUSs') and were considered to be of potential clinical relevance as further evaluation might results in their reclassification. Most patients with P variants in well-established CSGs known to predispose to renal cell carcinoma (RCC-CSGs) were aged <50 years. Burden test analysis for filtered variants in CSGs demonstrated a significant excess of CHEK2 variants in European RCC participants compared with the healthy European controls (P = 0.0019). Approximately, 6% of the patients with RCC unselected for family history have a germline variant requiring additional follow-up analysis. To improve diagnostic yield, we suggest expanding the panel of RCC-CSGs tested to include CHEK2 and all SDHx subunits and raising the eligibility criteria for age-based testing.
Collapse
Affiliation(s)
- Bryndis Yngvadottir
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Avgi Andreou
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Laia Bassaganyas
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Alexey Larionov
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Daniel Chubb
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Charlie N Saunders
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Philip S Smith
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Huairen Zhang
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Yasemin Cole
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Genomics England Research Consortium
- Genomics England, Queen Mary University of London, Dawson Hall, Charterhouse Square, London, EC1M 6BQ, UK
- William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - James Larkin
- Department of Medical Oncology, Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Lisa Browning
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, OX4 2PG, UK
| | - Samra Turajlic
- Department of Medical Oncology, Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, SW7 3RP, UK
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Kevin Litchfield
- Department of Oncology, University College London Cancer Institute, Paul O’Gorman Building, London, WC1E 6DD, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Eamonn R Maher
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
31
|
Schwartz A, Manning DK, Koeller DR, Chittenden A, Isidro RA, Hayes CP, Abraamyan F, Manam MD, Dwan M, Barletta JA, Sholl LM, Yurgelun MB, Rana HQ, Garber JE, Ghazani AA. An integrated somatic and germline approach to aid interpretation of germline variants of uncertain significance in cancer susceptibility genes. Front Oncol 2022; 12:942741. [PMID: 36091175 PMCID: PMC9453486 DOI: 10.3389/fonc.2022.942741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic profiles of tumors are often unique and represent characteristic mutational signatures defined by DNA damage or DNA repair response processes. The tumor-derived somatic information has been widely used in therapeutic applications, but it is grossly underutilized in the assessment of germline genetic variants. Here, we present a comprehensive approach for evaluating the pathogenicity of germline variants in cancer using an integrated interpretation of somatic and germline genomic data. We have previously demonstrated the utility of this integrated approach in the reassessment of pathogenic germline variants in selected cancer patients with unexpected or non-syndromic phenotypes. The application of this approach is presented in the assessment of rare variants of uncertain significance (VUS) in Lynch-related colon cancer, hereditary paraganglioma-pheochromocytoma syndrome, and Li-Fraumeni syndrome. Using this integrated method, germline VUS in PMS2, MSH6, SDHC, SHDA, and TP53 were assessed in 16 cancer patients after genetic evaluation. Comprehensive clinical criteria, somatic signature profiles, and tumor immunohistochemistry were used to re-classify VUS by upgrading or downgrading the variants to likely or unlikely actionable categories, respectively. Going forward, collation of such germline variants and creation of cross-institutional knowledgebase datasets that include integrated somatic and germline data will be crucial for the assessment of these variants in a larger cancer cohort.
Collapse
Affiliation(s)
- Alison Schwartz
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Danielle K. Manning
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Diane R. Koeller
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Anu Chittenden
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Raymond A. Isidro
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Connor P. Hayes
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Feruza Abraamyan
- Harvard Medical School, Boston, MA, United States
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Monica Devi Manam
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Meaghan Dwan
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Justine A. Barletta
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Lynette M. Sholl
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Matthew B. Yurgelun
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Huma Q. Rana
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Judy E. Garber
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Arezou A. Ghazani
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- *Correspondence: Arezou A. Ghazani,
| |
Collapse
|
32
|
Ben Aim L, Maher ER, Cascon A, Barlier A, Giraud S, Ercolino T, Pigny P, Clifton-Bligh RJ, Mirebeau-Prunier D, Mohamed A, Favier J, Gimenez-Roqueplo AP, Schiavi F, Toledo RA, Dahia PL, Robledo M, Bayley JP, Burnichon N. International initiative for a curated SDHB variant database improving the diagnosis of hereditary paraganglioma and pheochromocytoma. J Med Genet 2022; 59:785-792. [PMID: 34452955 PMCID: PMC8882202 DOI: 10.1136/jmedgenet-2020-107652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/18/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND SDHB is one of the major genes predisposing to paraganglioma/pheochromocytoma (PPGL). Identifying pathogenic SDHB variants in patients with PPGL is essential to the management of patients and relatives due to the increased risk of recurrences, metastases and the emergence of non-PPGL tumours. In this context, the 'NGS and PPGL (NGSnPPGL) Study Group' initiated an international effort to collect, annotate and classify SDHB variants and to provide an accurate, expert-curated and freely available SDHB variant database. METHODS A total of 223 distinct SDHB variants from 737 patients were collected worldwide. Using multiple criteria, each variant was first classified according to a 5-tier grouping based on American College of Medical Genetics and NGSnPPGL standardised recommendations and was then manually reviewed by a panel of experts in the field. RESULTS This multistep process resulted in 23 benign/likely benign, 149 pathogenic/likely pathogenic variants and 51 variants of unknown significance (VUS). Expert curation reduced by half the number of variants initially classified as VUS. Variant classifications are publicly accessible via the Leiden Open Variation Database system (https://databases.lovd.nl/shared/genes/SDHB). CONCLUSION This international initiative by a panel of experts allowed us to establish a consensus classification for 223 SDHB variants that should be used as a routine tool by geneticists in charge of PPGL laboratory diagnosis. This accurate classification of SDHB genetic variants will help to clarify the diagnosis of hereditary PPGL and to improve the clinical care of patients and relatives with PPGL.
Collapse
Affiliation(s)
- Laurene Ben Aim
- Genetics Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | | | - Anne Barlier
- Laboratory of Molecular Biology, La Conception Hospital, Marseille, France
| | - Sophie Giraud
- Department of Genetics, Hospices Civils de Lyon, Bron, France
| | - Tonino Ercolino
- Endocrinology Unit, Azienda Ospedaliero-Universitaria Careggi, Firenze, Italy
| | - Pascal Pigny
- Institut de Biochimie & Biologie Moléculaire, Lille University Hospital Center, Lille, France
| | - Roderick J Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| | | | - Amira Mohamed
- Laboratory of Molecular Biology, La Conception Hospital, Marseille, France
| | - Judith Favier
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- Genetics Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Francesca Schiavi
- Familial Cancer Clinic and Oncoendocrinology, IOV IRCCS, Padova, Italy
| | - Rodrigo A Toledo
- CIBERONC, Gastrointestinal and Endocrine Tumors, VHIO, Barcelona, Spain
| | - Patricia L Dahia
- Department of Medicine, Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | - Nelly Burnichon
- Genetics Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| |
Collapse
|
33
|
Preoperative Diagnosis of Abdominal Extra-Adrenal Paragangliomas with Fine-Needle Biopsy. Diagnostics (Basel) 2022; 12:diagnostics12081819. [PMID: 36010170 PMCID: PMC9406649 DOI: 10.3390/diagnostics12081819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Paragangliomas are rare, non-epithelial neuroendocrine neoplasms originating in paraganglia, for instance the adrenal medulla, or at extra-adrenal locations. The aim of this study was to review the literature regarding abdominal extra-adrenal paragangliomas diagnosed pre-operatively with fine-needle biopsy (FNA and/or FNB). The PubMed database was searched to identify such cases, using a specific algorithm and inclusion/exclusion criteria. An unpublished case from our practice was also added to the rest of the data, resulting in a total of 36 cases for analysis. Overall, 24 (67%) lesions were found in females, whereas 12 (33%) in males. Most (21/36; 58.33%) were identified around and/or within the pancreatic parenchyma. FNA and/or FNB reached or suggested a paraganglioma diagnosis in 17/36 cases (47.22%). Of the preoperative misdiagnoses, the most common was an epithelial neuroendocrine tumor (NET). Regarding follow-up, most patients were alive with no reported recurrence; however, 5/36 patients exhibited a recurrence or a widespread disease, whereas one patient died 48 months following her diagnosis. In two patients, transient hypertension was reported during the EUS-FNA procedure. In conclusion, this study showed that the preoperative diagnosis of these lesions is feasible and, while diagnostic pitfalls exist, they could significantly be avoided with the application of immunochemistry.
Collapse
|
34
|
Bayley JP, Devilee P. Hypothesis: Why Different Types of SDH Gene Variants Cause Divergent Tumor Phenotypes. Genes (Basel) 2022; 13:genes13061025. [PMID: 35741787 PMCID: PMC9222429 DOI: 10.3390/genes13061025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Despite two decades of paraganglioma-pheochromocytoma research, the fundamental question of how the different succinate dehydrogenase (SDH)-related tumor phenotypes are initiated has remained unanswered. Here, we discuss two possible scenarios by which missense (hypomorphic alleles) or truncating (null alleles) SDH gene variants determine clinical phenotype. Dysfunctional SDH is a major source of reactive oxygen species (ROS) but ROS are inhibited by rising succinate levels. In scenario 1, we propose that SDH missense variants disrupt electron flow, causing elevated ROS levels that are toxic in sympathetic PPGL precursor cells but well controlled in oxygen-sensing parasympathetic paraganglion cells. We also suggest that SDHAF2 variants, solely associated with HNPGL, may cause the reversal of succinate dehydrogenase to fumarate reductase, producing very high ROS levels. In scenario 2, we propose a modified succinate threshold model of tumor initiation. Truncating SDH variants cause high succinate accumulation and likely initiate tumorigenesis via disruption of 2-oxoglutarate-dependent enzymes in both PPGL and HNPGL precursor tissues. We propose that missense variants (including SDHAF2) cause lower succinate accumulation and thus initiate tumorigenesis only in very metabolically active tissues such as parasympathetic paraganglia, which naturally show very high levels of succinate.
Collapse
Affiliation(s)
- Jean-Pierre Bayley
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Correspondence:
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
35
|
Kimura N, Ishikawa M, Shigematsu K. Colorectal paragangliomas with immunohistochemical deficiency of succinate dehydrogenase subunit B. Endocr J 2022; 69:523-528. [PMID: 34853215 DOI: 10.1507/endocrj.ej21-0630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recent progress in paraganglioma (PGL) revealed genotype-phenotype relationship, especially succinate dehydrogenase complex subunit B (SDHB) gene mutation-related to the extra-adrenal origin and metastasis. SDHB-immunohistochemistry can detect all types of SDH-subunit mutations, and is a useful tool to detect SDH-mutation tumors. PGLs usually occur along with sympathetic, and parasympathetic chains, however, colorectal paraganglioma is extremely rare. We have experienced one sigmoid colon PGL and one rectal PGL. These colorectal PGLs: a sigmoid colon PGL measuring 25 mm associated with a gastrointestinal stromal tumor (GIST) of the stomach, and a rectal PGL measuring 75 × 45 mm with elevated norepinephrine level were analyzed by immunohistochemistry for INSM1, chromogranin A, synaptophysin, tyrosine hydroxylase, dopamine-beta-hydroxylase, and SDHB and SDHA. The tumors were strongly positive for above markers, however, negative for SDHB. Both PGLs negative for SDHB immunohistochemistry were defined SDHB-deficient PGLs. Histologic grading of the PGLs by GAPP was well differentiated in sigmoid PGL versus poorly differentiated in rectal PGL. Although these PGLs were the same Stage II of TNM classification, the patient with sigmoid colon PGL had neither recurrence nor metastasis for 5 years after the operation, however, the patient with rectal PGL suffered the recurrent multiple metastases and expired 5 years after the operation. Herein, we compared these colorectal PGLs in regard to the patients' prognostic factors. Patient prognosis with these colorectal PGLs was mostly related to the tumor size and histologic grade under the same situation of SDH-deficiency.
Collapse
Affiliation(s)
- Noriko Kimura
- Department of Clinical Research, and Department of Diagnostic Pathology, National Hospital Organization Hakodate Hospital, Hakodate 041-8512, Japan
| | - Misawo Ishikawa
- Department of Diagnostic Pathology, Kainan Hospital Aichi Prefectural Welfare Federation of Agricultural Cooperatives, Yatomi 498-8502, Japan
| | - Kazuto Shigematsu
- Department of Pathology, Japanese Red Cross, Nagasaki-Genbaku Hospital, Nagasaki 852-8511, Japan
| |
Collapse
|
36
|
Ding CKC, Chan S, Mak J, Umetsu SE, Simko J, Ruiz-Cordero R, Saunders T, Chan E. An exploration in pitfalls in interpreting SDHB immunohistochemistry. Histopathology 2022; 81:264-269. [PMID: 35546442 DOI: 10.1111/his.14681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
AIMS Mutations and epimutations in genes encoding the succinate dehydrogenase complex (SDHx) are associated with multiple tumor types in which identification of SDH-deficiency has significant management implications. Immunohistochemistry (IHC) for the SDHB subunit can help detect SDH-deficiency, which manifests as complete loss of staining in tumor cells. However, a subset of SDH-deficient tumors can show aberrant cytoplasmic SDHB-IHC staining patterns and be misinterpreted as "retained," a diagnostic pitfall complicating interpretation. Herein, we characterize in detail aberrant SDHB-IHC staining patterns in SDH-deficient tumors. METHODS AND RESULTS We identified 23 tumors from patients with known germline SDHx and/or molecularly confirmed SDHx pathogenic/likely-pathogenic variants in their tumor. Of these, 8 (35%) showed significant SDHB-IHC staining: 1 SDHA-, 1 SDHB-, 3 SDHC- and 3 SDHD-mutated cases. In all 8 cases, closer inspection revealed differences in intensity and intracellular distribution of SDHB-IHC staining in tumor cells compared to adjacent nonneoplastic cells: nonneoplastic cells showed intense cytoplasmic coarse granular staining; tumor cells in 7/8 cases showed weak to focally strong, cytoplasmic blush to fine granular staining, in >80% of cells. The remaining case on initial block showed variably strong nongranular cytoplasmic staining with globular perinuclear accentuation throughout, only subtly distinct from staining pattern of nonneoplastic cells. SDHB-IHC performed on two additional blocks in this latter case revealed significant intratumoral heterogeneity including convincing areas of complete loss. CONCLUSIONS When evaluating SDHB-IHC, care should be taken to distinguish true retained expression from aberrant cytoplasmic expression, which may be difficult to appreciate. Sometimes this may require additional molecular testing.
Collapse
Affiliation(s)
| | - Salina Chan
- Cancer Risk Program, Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco
| | - Julie Mak
- Cancer Risk Program, Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco
| | - Sarah E Umetsu
- Department of Pathology, University of California, San Francisco
| | - Jeffry Simko
- Department of Pathology, University of California, San Francisco
| | | | - Tara Saunders
- Department of Pathology, University of California, San Francisco
| | - Emily Chan
- Department of Pathology, University of California, San Francisco
| |
Collapse
|
37
|
Sclerosing Paragangliomas: Correlations of Histological Features with Patients' Genotype and Vesicular Monoamine Transporter Expression. Head Neck Pathol 2022; 16:998-1011. [PMID: 35524772 PMCID: PMC9729524 DOI: 10.1007/s12105-022-01455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/13/2022] [Indexed: 12/16/2022]
Abstract
Paragangliomas and pheochromocytomas are rare neuroendocrine tumors, carrying a germ-line mutation in 40% patients. Sclerosis is a rare histological feature in these tumors. We investigated the possible correlations between histological findings, first sclerosis, immunoreactivity for vesicular catecholamine transporters (VMAT1/VMAT2) and patients' genotype in a consecutive series of 57 tumors (30 paragangliomas and 27 pheochromocytomas) from 55 patients. The M-GAPP grading system, sclerosis (0-3 scale) and VMAT1/VMAT2 (0-6 scale) immunoreactivity scores were assessed. Germ-line mutations of Succinate Dehydrogenase genes, RET proto-oncogene and Von Hippel Lindau tumor suppressor gene were searched. A germ-line mutation was found in 25/55 (45.5%) patients, mainly with paraganglioma (N = 14/30, 46,66%). Significant (score ≥ 2) tumor sclerosis was found in 9 (16.1%) tumors, i.e., 7 paragangliomas and 2 pheochromocytomas, most of them (8/9) from patients with a germ-line mutation. M-GAPP score was higher in the mutation status (in 76% of patients involving the SDHx genes, in 12% the RET gene and in the remaining 12% the VHL gene) and in tumors with sclerosis (p < 0.05). Spearman's rank correlation showed a strong correlation of germ-line mutations with M-GAPP (p < 0.0001) and sclerosis (p = 0.0027) scores; a significant correlation was also found between sclerosis and M-GAPP scores (p = 0.029). VMAT1 expression was higher in paragangliomas than in pheochromocytomas (p = 0.0006), the highest scores being more frequent in mutation-bearing patients' tumors (p < 0.01). VMAT2 was highly expressed in all but two negative tumors. Sclerosis and VMAT1 expression were higher in paragangliomas than in pheochromocytomas; tumor sclerosis, M-GAPP and VMAT1 scores were associated to germ-line mutations. Sclerosis might represent a histological marker of tumor susceptibility, prompting to genetic investigations in paragangliomas.
Collapse
|
38
|
Kamai T, Murakami S, Arai K, Nishihara D, Uematsu T, Ishida K, Kijima T. Increased expression of Nrf2 and elevated glucose uptake in pheochromocytoma and paraganglioma with SDHB gene mutation. BMC Cancer 2022; 22:289. [PMID: 35300626 PMCID: PMC8931959 DOI: 10.1186/s12885-022-09415-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Background Pheochromocytomas (PCC) and paragangliomas (PGL) are catecholamine-producing neuroendocrine tumors. According to the World Health Organization Classification 2017, all PCC/PGL are considered to have malignant potential. There is growing evidence that PCC/PGL represent a metabolic disease that leads to aerobic glycolysis. Cellular energy metabolism involves both transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and succinate dehydrogenase (SDH) subtypes, but the association of these substances with PCC/PGL is largely unknown. Methods We investigated SDHB gene mutation and protein expressions for SDHB and Nrf2 in surgical specimens from 29 PCC/PGL. We also assessed preoperative maximum standard glucose uptake (SUVmax) on [18F]fluorodeoxy-glucose positron emission tomography and mRNA levels for Nrf2. Results Among 5 PCC/PGL with a PASS Score ≥ 4 or with a moderately to poorly differentiated type in the GAPP Score, 4 were metastatic and found to be SDHB mutants with homogeneous deletion of SDHB protein. SDHB mutants showed a higher expression of Nrf2 protein and a higher preoperative SUVmax than non-SDHB mutants with a PASS < 4 or a well-differentiated GAPP type. Furthermore, protein expression of Nrf2 was positively associated with preoperative SUVmax. The Nrf2 mRNA level positively correlated with malignant phenotype, higher expression for Nrf2 protein and SDHB gene mutant, but negatively correlated with expression for SDHB protein. There was also a positive correlation between Nrf2 mRNA level and SUVmax. Conclusion These results suggest that activation of Nrf2 and elevated metabolism play roles in PCC/PGL with malignant potential that have SDHB gene mutation and SDHB deficiency.
Collapse
Affiliation(s)
- Takao Kamai
- Department of Urology, Dokkyo Medical University, 880 Kitakobayashi Mibu, Tochigi, 321-0293, Japan.
| | - Satoshi Murakami
- Department of Urology, Dokkyo Medical University, 880 Kitakobayashi Mibu, Tochigi, 321-0293, Japan
| | - Kyoko Arai
- Department of Urology, Dokkyo Medical University, 880 Kitakobayashi Mibu, Tochigi, 321-0293, Japan
| | - Daisaku Nishihara
- Department of Urology, Dokkyo Medical University, 880 Kitakobayashi Mibu, Tochigi, 321-0293, Japan
| | - Toshitaka Uematsu
- Department of Urology, Dokkyo Medical University, 880 Kitakobayashi Mibu, Tochigi, 321-0293, Japan
| | - Kazuyuki Ishida
- Department of Diagnostic Pathology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Toshiki Kijima
- Department of Urology, Dokkyo Medical University, 880 Kitakobayashi Mibu, Tochigi, 321-0293, Japan
| |
Collapse
|
39
|
Nölting S, Bechmann N, Taieb D, Beuschlein F, Fassnacht M, Kroiss M, Eisenhofer G, Grossman A, Pacak K. Personalized Management of Pheochromocytoma and Paraganglioma. Endocr Rev 2022; 43:199-239. [PMID: 34147030 PMCID: PMC8905338 DOI: 10.1210/endrev/bnab019] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Indexed: 02/07/2023]
Abstract
Pheochromocytomas/paragangliomas are characterized by a unique molecular landscape that allows their assignment to clusters based on underlying genetic alterations. With around 30% to 35% of Caucasian patients (a lower percentage in the Chinese population) showing germline mutations in susceptibility genes, pheochromocytomas/paragangliomas have the highest rate of heritability among all tumors. A further 35% to 40% of Caucasian patients (a higher percentage in the Chinese population) are affected by somatic driver mutations. Thus, around 70% of all patients with pheochromocytoma/paraganglioma can be assigned to 1 of 3 main molecular clusters with different phenotypes and clinical behavior. Krebs cycle/VHL/EPAS1-related cluster 1 tumors tend to a noradrenergic biochemical phenotype and require very close follow-up due to the risk of metastasis and recurrence. In contrast, kinase signaling-related cluster 2 tumors are characterized by an adrenergic phenotype and episodic symptoms, with generally a less aggressive course. The clinical correlates of patients with Wnt signaling-related cluster 3 tumors are currently poorly described, but aggressive behavior seems likely. In this review, we explore and explain why cluster-specific (personalized) management of pheochromocytoma/paraganglioma is essential to ascertain clinical behavior and prognosis, guide individual diagnostic procedures (biochemical interpretation, choice of the most sensitive imaging modalities), and provide personalized management and follow-up. Although cluster-specific therapy of inoperable/metastatic disease has not yet entered routine clinical practice, we suggest that informed personalized genetic-driven treatment should be implemented as a logical next step. This review amalgamates published guidelines and expert views within each cluster for a coherent individualized patient management plan.
Collapse
Affiliation(s)
- Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland.,Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, 13273 Marseille, France
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland.,Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Martin Fassnacht
- Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Matthias Kroiss
- Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany.,Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ashley Grossman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX2 6HG, UK.,Centre for Endocrinology, Barts and the London School of Medicine, London EC1M 6BQ, UK.,ENETS Centre of Excellence, Royal Free Hospital, London NW3 2QG, UK
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20847, USA
| |
Collapse
|
40
|
Mete O, Asa SL, Gill AJ, Kimura N, de Krijger RR, Tischler A. Overview of the 2022 WHO Classification of Paragangliomas and Pheochromocytomas. Endocr Pathol 2022; 33:90-114. [PMID: 35285002 DOI: 10.1007/s12022-022-09704-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2022] [Indexed: 12/12/2022]
Abstract
This review summarizes the classification of tumors of the adrenal medulla and extra-adrenal paraganglia as outlined in the 5th series of the WHO Classification of Endocrine and Neuroendocrine Tumors. The non-epithelial neuroendocrine neoplasms (NENs) known as paragangliomas produce predominantly catecholamines and secrete them into the bloodstream like hormones, and they represent a group of NENs that have exceptionally high genetic predisposition. This classification discusses the embryologic derivation of the cells that give rise to these lesions and the historical evolution of the terminology used to classify their tumors; paragangliomas can be sympathetic or parasympathetic and the term pheochromocytoma is used specifically for intra-adrenal paragangliomas that represent the classical sympathetic form. In addition to the general neuroendocrine cell biomarkers INSM1, synaptophysin, and chromogranins, these tumors are typically negative for keratins and instead have highly specific biomarkers, including the GATA3 transcription factor and enzymes involved in catecholamine biosynthesis: tyrosine hydroxylase that converts L-tyrosine to L-DOPA as the rate-limiting step in catecholamine biosynthesis, dopamine beta-hydroxylase that is present in cells expressing norepinephrine, and phenylethanolamine N-methyltransferase, which converts norepinephrine to epinephrine and therefore can be used to distinguish tumors that make epinephrine. In addition to these important tools that can be used to confirm the diagnosis of a paraganglioma, new tools are recommended to determine genetic predisposition syndromes; in addition to the identification of precursor lesions, molecular immunohistochemistry can serve to identify associations with SDHx, VHL, FH, MAX, and MEN1 mutations, as well as pseudohypoxia-related pathogenesis. Paragangliomas have a well-formed network of sustentacular cells that express SOX10 and S100, but this is not a distinctive feature, as other epithelial NENs also have sustentacular cells. Indeed, it is the presence of such cells and the association with ganglion cells that led to a misinterpretation of several unusual lesions as paragangliomas; in the 2022 WHO classification, the tumor formerly known as cauda equina paraganglioma is now classified as cauda equina neuroendocrine tumor and the lesion known as gangliocytic paraganglioma has been renamed composite gangliocytoma/neuroma and neuroendocrine tumor (CoGNET). Since the 4th edition of the WHO, paragangliomas have no longer been classified as benign and malignant, as any lesion can have metastatic potential and there are no clear-cut features that can predict metastatic behavior. Moreover, some tumors are lethal without metastatic spread, by nature of local invasion involving critical structures. Nevertheless, there are features that can be used to identify more aggressive lesions; the WHO does not endorse the various scoring systems that are reviewed but also does not discourage their use. The identification of metastases is also complex, particularly in patients with germline predisposition syndromes, since multiple lesions may represent multifocal primary tumors rather than metastatic spread; the identification of paragangliomas in unusual locations such as lung or liver is not diagnostic of metastasis, since these may be primary sites. The value of sustentacular cells and Ki67 labeling as prognostic features is also discussed in this new classification. A staging system for pheochromocytoma and extra-adrenal sympathetic PGLs, introduced in the 8th Edition AJCC Cancer Staging Manual, is now included. This paper also provides a summary of the criteria for the diagnosis of a composite paragangliomas and summarizes the classification of neuroblastic tumors. This review adopts a practical question-answer framework to provide members of the multidisciplinary endocrine oncology team with a most up-to-date approach to tumors of the adrenal medulla and extra-adrenal paraganglia.
Collapse
Affiliation(s)
- Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON, Canada.
- Endocrine Oncology Site, Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Anthony J Gill
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
- Department of Anatomical Pathology, NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, Sydney, Australia
| | - Noriko Kimura
- Department of Clinical Research, Division of Diagnostic Pathology, National Hospital Organization Hakodate Hospital, Hakodate, Japan
| | - Ronald R de Krijger
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arthur Tischler
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
41
|
Nosé V, Gill A, Teijeiro JMC, Perren A, Erickson L. Overview of the 2022 WHO Classification of Familial Endocrine Tumor Syndromes. Endocr Pathol 2022; 33:197-227. [PMID: 35285003 DOI: 10.1007/s12022-022-09705-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2022] [Indexed: 12/16/2022]
Abstract
This review of the familial tumor syndromes involving the endocrine organs is focused on discussing the main updates on the upcoming fifth edition of the WHO Classification of Endocrine and Neuroendocrine Tumors. This review emphasizes updates on histopathological and molecular genetics aspects of the most important syndromes involving the endocrine organs. We describe the newly defined Familial Cancer Syndromes as MAFA-related, MEN4, and MEN5 as well as the newly reported pathological findings in DICER1 syndrome. We also describe the updates done at the new WHO on the syndromic and non-syndromic familial thyroid diseases. We emphasize the problem of diagnostic criteria, mention the new genes that are possibly involved in this group, and at the same time, touching upon the role of some immunohistochemical studies that could support the diagnosis of some of these conditions. As pathologists play an important role in identifying tumors within a familial cancer syndrome, we highlight the most important clues for raising the suspicious of a syndrome. Finally, we highlight the challenges in defining these entities as well as determining their clinical outcome in comparison with sporadic tumors. Instead of the usual subject review, we present the highlights of the updates on familial cancer syndromes by answering select questions relevant to practicing pathologists.
Collapse
Affiliation(s)
- Vania Nosé
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
| | | | - José Manuel Cameselle Teijeiro
- Clinical University Hospital Santiago de Compostela and Medical Faculty, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Aurel Perren
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
42
|
Tabebi M, Kumar Dutta R, Skoglund C, Söderkvist P, Gimm O. Loss of SDHB Induces a Metabolic Switch in the hPheo1 Cell Line toward Enhanced OXPHOS. Int J Mol Sci 2022; 23:560. [PMID: 35008989 PMCID: PMC8745660 DOI: 10.3390/ijms23010560] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Enzymes of tricarboxylic acid (TCA) have recently been recognized as tumor suppressors. Mutations in the SDHB subunit of succinate dehydrogenase (SDH) cause pheochromocytomas and paragangliomas (PCCs/PGLs) and predispose patients to malignant disease with poor prognosis. METHODS Using the human pheochromocytoma cell line (hPheo1), we knocked down SDHB gene expression using CRISPR-cas9 technology. RESULTS Microarray gene expression analysis showed that >500 differentially expressed gene targets, about 54%, were upregulated in response to SDHB knock down. Notably, genes involved in glycolysis, hypoxia, cell proliferation, and cell differentiation were up regulated, whereas genes involved in oxidative phosphorylation (OXPHOS) were downregulated. In vitro studies show that hPheo1 proliferation is not affected negatively and the cells that survive by shifting their metabolism to the use of glutamine as an alternative energy source and promote OXPHOS activity. Knock down of SDHB expression results in a significant increase in GLUD1 expression in hPheo1 cells cultured as monolayer or as 3D culture. Analysis of TCGA data confirms the enhancement of GLUD1 in SDHB mutated/low expressed PCCs/PGLs. CONCLUSIONS Our data suggest that the downregulation of SDHB in PCCs/PGLs results in increased GLUD1 expression and may represent a potential biomarker and therapeutic target in SDHB mutated tumors and SDHB loss of activity-dependent diseases.
Collapse
Affiliation(s)
- Mouna Tabebi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 581 83 Linköping, Sweden; (R.K.D.); (C.S.); (P.S.)
| | - Ravi Kumar Dutta
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 581 83 Linköping, Sweden; (R.K.D.); (C.S.); (P.S.)
| | - Camilla Skoglund
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 581 83 Linköping, Sweden; (R.K.D.); (C.S.); (P.S.)
| | - Peter Söderkvist
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 581 83 Linköping, Sweden; (R.K.D.); (C.S.); (P.S.)
- Clinical Genomics Linköping, Science for Life Laboratory, Linköping University, 581 83 Linköping, Sweden
| | - Oliver Gimm
- Department of Surgery and Department of Biomedical and Clinical Sciences (BKV), Linköping University, 581 83 Linköping, Sweden;
| |
Collapse
|
43
|
Takács-Vellai K, Farkas Z, Ősz F, Stewart GW. Model systems in SDHx-related pheochromocytoma/paraganglioma. Cancer Metastasis Rev 2021; 40:1177-1201. [PMID: 34957538 PMCID: PMC8825606 DOI: 10.1007/s10555-021-10009-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/04/2021] [Indexed: 11/17/2022]
Abstract
Pheochromocytoma (PHEO) and paraganglioma (PGL) (together PPGL) are tumors with poor outcomes that arise from neuroendocrine cells in the adrenal gland, and sympathetic and parasympathetic ganglia outside the adrenal gland, respectively. Many follow germline mutations in genes coding for subunits of succinate dehydrogenase (SDH), a tetrameric enzyme in the tricarboxylic acid (TCA) cycle that both converts succinate to fumarate and participates in electron transport. Germline SDH subunit B (SDHB) mutations have a high metastatic potential. Herein, we review the spectrum of model organisms that have contributed hugely to our understanding of SDH dysfunction. In Saccharomyces cerevisiae (yeast), succinate accumulation inhibits alpha-ketoglutarate-dependent dioxygenase enzymes leading to DNA demethylation. In the worm Caenorhabditis elegans, mutated SDH creates developmental abnormalities, metabolic rewiring, an energy deficit and oxygen hypersensitivity (the latter is also found in Drosophila melanogaster). In the zebrafish Danio rerio, sdhb mutants display a shorter lifespan with defective energy metabolism. Recently, SDHB-deficient pheochromocytoma has been cultivated in xenografts and has generated cell lines, which can be traced back to a heterozygous SDHB-deficient rat. We propose that a combination of such models can be efficiently and effectively used in both pathophysiological studies and drug-screening projects in order to find novel strategies in PPGL treatment.
Collapse
Affiliation(s)
| | - Zsolt Farkas
- Department of Biological Anthropology, Eötvös Loránd University, Budapest, Hungary
| | - Fanni Ősz
- Department of Biological Anthropology, Eötvös Loránd University, Budapest, Hungary
| | - Gordon W Stewart
- Division of Medicine, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
44
|
Kimura N, Shiga K, Kaneko KI, Oki Y, Sugisawa C, Saito J, Tawara S, Akahori H, Sogabe S, Yamashita T, Takekoshi K, Naruse M, Katabami T. Immunohistochemical Expression of Choline Acetyltransferase and Catecholamine-Synthesizing Enzymes in Head-and-Neck and Thoracoabdominal Paragangliomas and Pheochromocytomas. Endocr Pathol 2021; 32:442-451. [PMID: 34743284 DOI: 10.1007/s12022-021-09694-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
Paragangliomas (PGLs) are neural-crest-derived, non-epithelial neuroendocrine tumors distributed along the parasympathetic and sympathetic nerves. Head-and-neck PGLs (HNPGLs) have been recognized as nonchromaffin, nonfunctional, parasympathetic tumors. By contrast, thoracoabdominal paragangliomas and pheochromocytomas (PPGLs) are chromaffin, functional, sympathetic tumors. Although HNPGLs and PPGLs have the same histological structure, the zellballen pattern, composed of chief and sustentacular cells surrounded by abundant capillaries, the pathobiological differences between these types of PGLs remain unclarified. To determine the phenotypic features of these PGLs, we performed an immunohistochemical study using specific antibodies against choline acetyltransferase (ChAT), an enzyme involved in acetylcholine synthesis, and enzymes for the catecholamine-synthesis, tyrosine hydroxylase (TH), and dopamine beta-hydroxylase (DBH), in 34 HNPGLs from 31 patients, 12 thoracoabdominal PGLs from 12 patients, and 26 pheochromocytomas from 22 patients. The expression of ChAT, TH, and DBH was 100%, 23%, and 10% in the HNPGLs; 12%, 100%, and 100% in the pheochromocytomas; and 25%, 67%, and 100% in the thoracoabdominal PGLs, respectively. These results designate HNPGLs as acetylcholine-producing parasympathetic tumors, in contrast to PPGLs being catecholamine-producing tumors. The other most frequently used neuroendocrine markers are synaptophysin and chromogranin A expressed 100% and 80%, respectively, and synaptophysin was superior to chromogranin A in HNPGLs. This is the first report of HNPGLs being acetylcholine-producing tumors. Immunohistochemistry of ChAT could be greatly useful for pathologic diagnosis of HNPGL. Whether measurement of acetylcholine levels in the blood or urine could be a tumor marker of HNPGLs should be investigated soon.
Collapse
Affiliation(s)
- Noriko Kimura
- Department of Clinical Research, Department of Diagnostic Pathology, National Hospital Organization Hakodate Hospital, Hakodate, Japan.
| | - Kiyoto Shiga
- Department of Head & Neck Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Ken-Ichi Kaneko
- Department of Otolaryngology-Head and Neck Surgery, Nagasaki University Graduate School of Bio-Medical Sciences, Nagasaki, Japan
| | - Yutaka Oki
- Department of Endocrinology and Metabolism, Hamamatsu Medical School, Hama-Matsu-Kita Hospital, Hamamatsu, Japan
| | - Chiho Sugisawa
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Jun Saito
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, Japan
| | - Seiich Tawara
- Department of Gastroenterology, Osaka General Medical Center, Osaka, Japan
| | - Hiroshi Akahori
- Department of Endocrinology and Metabolism, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Susumu Sogabe
- Medical Oncology, KKR Sapporo Medical Center, Sapporo, Japan
| | - Takafumi Yamashita
- Kyoto University Graduate School of Medicine, Faculty of Medicine, Department of Diabetes, Endocrinology and Nutrition, Metabolism and Endocrinology, Division of Internal Medicine, Kishiwada City Hospital, Kishiwada, Japan
| | - Kazuhiro Takekoshi
- Division of Sports Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Mitsuhide Naruse
- Department of Endocrinology, Metabolism, and Hypertension, National Hospital Organization, Kyoto Medical Center, and Endocrine Center, Ijinkai Takeda General Hospital Kyoto, Japan
| | - Takayuki Katabami
- Division of Metabolism and Endocrinology, Department of Internal Medicine, St. Marianna University School of Medicine Yokohama City Seibu Hospital, Yokohama, Japan
| |
Collapse
|
45
|
Winzeler B, Challis BG, Casey RT. Precision Medicine in Phaeochromocytoma and Paraganglioma. J Pers Med 2021; 11:jpm11111239. [PMID: 34834591 PMCID: PMC8620689 DOI: 10.3390/jpm11111239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Precision medicine is a term used to describe medical care, which is specifically tailored to an individual patient or disease with the aim of ensuring the best clinical outcome whilst reducing the risk of adverse effects. Phaeochromocytoma and paraganglioma (PPGL) are rare neuroendocrine tumours with uncertain malignant potential. Over recent years, the molecular profiling of PPGLs has increased our understanding of the mechanisms that drive tumorigenesis. A high proportion of PPGLs are hereditary, with non-hereditary tumours commonly harbouring somatic mutations in known susceptibility genes. Through detailed interrogation of genotype-phenotype, correlations PPGLs can be classified into three different subgroups or clusters. Thus, PPGLs serve as an ideal paradigm for developing, testing and implementing precision medicine concepts in the clinic. In this review, we provide an overview of PPGLs and highlight how detailed molecular characterisation of these tumours provides current and future opportunities for precision oncology.
Collapse
Affiliation(s)
- Bettina Winzeler
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland;
- Department of Clinical Research, University of Basel, 4031 Basel, Switzerland
- Department of Medical Genetics, Cambridge Biomedical Campus, Cambridge University, Cambridge CB2 0QQ, UK
| | - Benjamin G. Challis
- Department of Endocrinology, Cambridge University Hospital, Cambridge CB2 0QQ, UK;
| | - Ruth T. Casey
- Department of Medical Genetics, Cambridge Biomedical Campus, Cambridge University, Cambridge CB2 0QQ, UK
- Department of Endocrinology, Cambridge University Hospital, Cambridge CB2 0QQ, UK;
- Correspondence:
| |
Collapse
|
46
|
Garrett A, Loveday C, King L, Butler S, Robinson R, Horton C, Yussuf A, Choi S, Torr B, Durkie M, Burghel GJ, Drummond J, Berry I, Wallace A, Callaway A, Eccles D, Tischkowitz M, Tatton-Brown K, Snape K, McVeigh T, Izatt L, Woodward ER, Burnichon N, Gimenez-Roqueplo AP, Mazzarotto F, Whiffin N, Ware J, Hanson H, Pesaran T, LaDuca H, Buffet A, Maher ER, Turnbull C. Quantifying evidence toward pathogenicity for rare phenotypes: The case of succinate dehydrogenase genes, SDHB and SDHD. Genet Med 2021; 24:41-50. [PMID: 34906457 PMCID: PMC8759765 DOI: 10.1016/j.gim.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 03/26/2021] [Accepted: 08/10/2021] [Indexed: 10/25/2022] Open
Abstract
PURPOSE The weight of the evidence to attach to observation of a novel rare missense variant in SDHB or SDHD in individuals with the rare neuroendocrine tumors, pheochromocytomas and paragangliomas (PCC/PGL), is uncertain. METHODS We compared the frequency of SDHB and SDHD very rare missense variants (VRMVs) in 6328 and 5847 cases of PCC/PGL, respectively, with that of population controls to generate a pan-gene VRMV likelihood ratio (LR). Via windowing analysis, we measured regional enrichments of VRMVs to calculate the domain-specific VRMV-LR (DS-VRMV-LR). We also calculated subphenotypic LRs for variant pathogenicity for various clinical, histologic, and molecular features. RESULTS We estimated the pan-gene VRMV-LR to be 76.2 (54.8-105.9) for SDHB and 14.8 (8.7-25.0) for SDHD. Clustering analysis revealed an SDHB enriched region (ɑɑ 177-260, P = .001) for which the DS-VRMV-LR was 127.2 (64.9-249.4) and an SDHD enriched region (ɑɑ 70-114, P = .000003) for which the DS-VRMV-LR was 33.9 (14.8-77.8). Subphenotypic LRs exceeded 6 for invasive disease (SDHB), head-and-neck disease (SDHD), multiple tumors (SDHD), family history of PCC/PGL, loss of SDHB staining on immunohistochemistry, and succinate-to-fumarate ratio >97 (SDHB, SDHD). CONCLUSION Using methodology generalizable to other gene-phenotype dyads, the LRs relating to rarity and phenotypic specificity for a single observation in PCC/PGL of a SDHB/SDHD VRMV can afford substantial evidence toward pathogenicity.
Collapse
Affiliation(s)
- Alice Garrett
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Chey Loveday
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Laura King
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Samantha Butler
- Central and South Genomic Laboratory Hub, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - Rachel Robinson
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, The Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | | | | | - Subin Choi
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Beth Torr
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Miranda Durkie
- North East and Yorkshire Genomic Laboratory Hub, Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom
| | - George J Burghel
- The Manchester Centre for Genomic Medicine and North West Genomic Laboratory Hub, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - James Drummond
- East Genomic Laboratory Hub, Cambridge University Hospitals Genomic Laboratory, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Ian Berry
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, The Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Andrew Wallace
- The Manchester Centre for Genomic Medicine and North West Genomic Laboratory Hub, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Alison Callaway
- Central and South Genomics Laboratory Hub, Wessex Regional Genetics Laboratory, Salisbury Hospital NHS Foundation Trust, Salisbury District Hospital, Salisbury, United Kingdom
| | - Diana Eccles
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Marc Tischkowitz
- Department of Medical Genetics, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; East Anglian Medical Genetics Unit, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Katrina Tatton-Brown
- St. George's University, London, United Kingdom; Department of Clinical Genetics, St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Katie Snape
- St. George's University, London, United Kingdom; Department of Clinical Genetics, St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Terri McVeigh
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Louise Izatt
- Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Emma R Woodward
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre (MAHSC), Manchester University NHS Foundation Trust, Manchester, United Kingdom; Division of Evolution and Genomic Sciences, School of Biological Sciences, Manchester Academic Health Sciences Centre (MAHSC), University of Manchester, Manchester, United Kingdom
| | - Nelly Burnichon
- University of Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, Paris, France; Genetics Department, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- University of Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, Paris, France; Genetics Department, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Francesco Mazzarotto
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom; Royal Brompton and Harefield Hospitals, London, United Kingdom
| | - Nicola Whiffin
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; The Centre for Personalised Medicine, St Anne's College, University of Oxford, Oxford, United Kingdom
| | - James Ware
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom; Royal Brompton and Harefield Hospitals, London, United Kingdom
| | - Helen Hanson
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, United Kingdom; Department of Clinical Genetics, St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | | | | | - Alexandre Buffet
- University of Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, Paris, France; Genetics Department, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, United Kingdom; Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | | |
Collapse
|
47
|
Snezhkina A, Pavlov V, Dmitriev A, Melnikova N, Kudryavtseva A. Potential Biomarkers of Metastasizing Paragangliomas and Pheochromocytomas. Life (Basel) 2021; 11:1179. [PMID: 34833055 PMCID: PMC8619623 DOI: 10.3390/life11111179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Paragangliomas and pheochromocytomas (PPGLs) are rare neuroendocrine tumors originating from paraganglionic tissue in many sites of the body. Most PPGLs are characterized by nonaggressive behavior but all of them have the potential to metastasize. PPGLs represent a great diagnostic dilemma as it is difficult to recognize tumors that are likely to be metastasizing; criteria of malignancy can be found both in benign and metastatic forms. This review aims to analyze the current knowledge of the nature of metastasizing PPGLs paying particular attention to head and neck paragangliomas (HNPGLs). Potential predictors of the malignancy risk for PPGLs were summarized and discussed. These data may also help in the development of diagnostic and prognostic strategies, as well as in the identification of novel potential therapeutic targets for patients with PPGLs.
Collapse
Affiliation(s)
- Anastasiya Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.P.); (A.D.); (N.M.)
| | | | | | | | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.P.); (A.D.); (N.M.)
| |
Collapse
|
48
|
Milionis V, Goutas D, Vlachodimitropoulos D, Katsoulas N, Kyriazis ID, Liatsikos EN, Marinakis N, Joanne T, Lazaris AC, Goutas N. SDH-deficient renal cell carcinoma: A case report associated with a novel germline mutation. Clin Case Rep 2021; 9:e04605. [PMID: 34703596 PMCID: PMC8522490 DOI: 10.1002/ccr3.4605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
The highly syndromic nature of succinate dehydrogenase-deficient RCCs constitutes their active surveillance and molecular profiling the alpha and omega.
Collapse
Affiliation(s)
| | - Dimitrios Goutas
- First Department of PathologySchool of MedicineThe National and Kapodistrian University of Athens–"Laikon" General Hospital of AthensAthenesGreece
| | - Dimitrios Vlachodimitropoulos
- Istomedica S.AAthensGreece
- Laboratory of Forensic Medicine and ToxicologyThe National and Kapodistrian University of AthensAthensGreece
| | - Nikolaos Katsoulas
- First Department of PathologySchool of MedicineThe National and Kapodistrian University of Athens–"Laikon" General Hospital of AthensAthenesGreece
| | | | | | - Nikolaos Marinakis
- Laboratory of Medical GeneticsNational and Kapodistrian University of AthensSt. Sophia Children's HospitalAthensGreece
| | - Traeger‐Synodinos Joanne
- Laboratory of Medical GeneticsNational and Kapodistrian University of AthensSt. Sophia Children's HospitalAthensGreece
| | - Andreas C. Lazaris
- First Department of PathologySchool of MedicineThe National and Kapodistrian University of Athens–"Laikon" General Hospital of AthensAthenesGreece
| | - Nikolaos Goutas
- Istomedica S.AAthensGreece
- Laboratory of Forensic Medicine and ToxicologyThe National and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
49
|
Huang WK, Shi H, Akçakaya P, Zeljic K, Gangaev A, Caramuta S, Yeh CN, Bränström R, Larsson C, Lui WO. Imatinib Regulates miR-483-3p and Mitochondrial Respiratory Complexes in Gastrointestinal Stromal Tumors. Int J Mol Sci 2021; 22:ijms221910600. [PMID: 34638938 PMCID: PMC8508888 DOI: 10.3390/ijms221910600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolic adaptation to increased oxidative phosphorylation (OXPHOS) has been found in gastrointestinal stromal tumor (GIST) upon imatinib treatment. However, the underlying mechanism of imatinib-induced OXPHOS is unknown. Discovering molecules that mediate imatinib-induced OXPHOS may lead to the development of therapeutic strategies synergizing the efficacy of imatinib. In this study, we explored the role of microRNAs in regulating OXPHOS in GIST upon imatinib treatment. Using a microarray approach, we found that miR-483-3p was one of the most downregulated miRNAs in imatinib-treated tumors compared to untreated tumors. Using an extended series of GIST samples, we further validated the downregulation of miR-483-3p in imatinib-treated GIST samples by RT-qPCR. Using both gain- and loss-of-function experiments, we showed that miR-483-3p could regulate mitochondrial respiratory Complex II expression, suggesting its role in OXPHOS regulation. Functionally, miR-483-3p overexpression could rescue imatinib-induced cell death. These findings provide the molecular link for imatinib-induced OXPHOS expression and the biological role of miR-483-3p in regulating cell viability upon imatinib treatment.
Collapse
Affiliation(s)
- Wen-Kuan Huang
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum J6:20, Karolinska University Hospital, 171 64 Solna, Sweden; (H.S.); (P.A.); (K.Z.); (A.G.); (S.C.); (C.L.)
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
- Correspondence: (W.-K.H.); (W.-O.L.)
| | - Hao Shi
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum J6:20, Karolinska University Hospital, 171 64 Solna, Sweden; (H.S.); (P.A.); (K.Z.); (A.G.); (S.C.); (C.L.)
| | - Pinar Akçakaya
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum J6:20, Karolinska University Hospital, 171 64 Solna, Sweden; (H.S.); (P.A.); (K.Z.); (A.G.); (S.C.); (C.L.)
| | - Katarina Zeljic
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum J6:20, Karolinska University Hospital, 171 64 Solna, Sweden; (H.S.); (P.A.); (K.Z.); (A.G.); (S.C.); (C.L.)
| | - Anastasia Gangaev
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum J6:20, Karolinska University Hospital, 171 64 Solna, Sweden; (H.S.); (P.A.); (K.Z.); (A.G.); (S.C.); (C.L.)
| | - Stefano Caramuta
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum J6:20, Karolinska University Hospital, 171 64 Solna, Sweden; (H.S.); (P.A.); (K.Z.); (A.G.); (S.C.); (C.L.)
| | - Chun-Nan Yeh
- Department of Surgery, Chang Gung Memorial Hospital and GIST Team at Linkou, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan;
| | - Robert Bränström
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden;
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum J6:20, Karolinska University Hospital, 171 64 Solna, Sweden; (H.S.); (P.A.); (K.Z.); (A.G.); (S.C.); (C.L.)
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum J6:20, Karolinska University Hospital, 171 64 Solna, Sweden; (H.S.); (P.A.); (K.Z.); (A.G.); (S.C.); (C.L.)
- Correspondence: (W.-K.H.); (W.-O.L.)
| |
Collapse
|
50
|
Daumova M, Svajdler M, Fabian P, Kren L, Babankova I, Jezova M, Sedivcova M, Vanecek T, Behenska K, Michal M, Daum O. SDHC Methylation Pattern in Patients With Carney Triad. Appl Immunohistochem Mol Morphol 2021; 29:599-605. [PMID: 33624983 DOI: 10.1097/pai.0000000000000920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/26/2021] [Indexed: 11/26/2022]
Abstract
Carney triad is a multitumor syndrome affecting almost exclusively young women in a nonfamilial setting, which manifests by multifocal gastric gastrointestinal stromal tumors, paragangliomas, and pulmonary chondroma. The Carney triad-associated tumors are characterized by a deficiency of the mitochondrial succinate dehydrogenase enzymatic complex. Recently, it has been observed that the deficiency results from epigenetic silencing of the SDHC gene by its promoter hypermethylation. To elucidate anatomic distribution of SDHC promoter methylation in Carney triad patients and thus to shed some light on the possible natural development of this epigenetic change, both neoplastic and available non-neoplastic tissues of 3 patients with Carney triad were tested for hypermethylation at the SDHC promoter site. SDHC promoter hypermethylation was proven in all tumors studied. Lack of SDHC epigenetic silencing in the non-neoplastic lymphoid and duodenal tissue (ie, tissues not involved in the development of Carney triad-associated tumors) together with the finding of SDHC promoter hypermethylation in the non-neoplastic gastric wall favors the hypothesis of postzygotic somatic mosaicism as the biological background of Carney triad; it also offers an explanation of the multifocality of gastrointestinal stromal tumors of the stomach occurring in this scenario as well. However, the precise mechanism responsible for the peculiar organ-specific distribution of Carney triad-associated tumors is still unknown.
Collapse
Affiliation(s)
- Magdalena Daumova
- Sikl's Institute of Pathology, Faculty of Medicine and Teaching Hospital in Plzen, Charles University
- Bioptical Laboratory Ltd, Plzen
| | - Marian Svajdler
- Sikl's Institute of Pathology, Faculty of Medicine and Teaching Hospital in Plzen, Charles University
- Bioptical Laboratory Ltd, Plzen
| | - Pavel Fabian
- Department of Oncological Pathology, Masaryk Memorial Cancer Institute
| | - Leos Kren
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Iva Babankova
- Department of Oncological Pathology, Masaryk Memorial Cancer Institute
| | - Marta Jezova
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | - Tomas Vanecek
- Sikl's Institute of Pathology, Faculty of Medicine and Teaching Hospital in Plzen, Charles University
- Bioptical Laboratory Ltd, Plzen
| | - Kristyna Behenska
- Sikl's Institute of Pathology, Faculty of Medicine and Teaching Hospital in Plzen, Charles University
| | - Michal Michal
- Sikl's Institute of Pathology, Faculty of Medicine and Teaching Hospital in Plzen, Charles University
| | - Ondrej Daum
- Sikl's Institute of Pathology, Faculty of Medicine and Teaching Hospital in Plzen, Charles University
- Bioptical Laboratory Ltd, Plzen
| |
Collapse
|