1
|
Wang QX, Li ZL, Gong YC, Xiong XY. The effects of ligand distribution and density on the targeting properties of dual-targeting folate/biotin Pluronic F127/Poly (lactic acid) polymersomes. Eur J Pharm Biopharm 2025; 206:114598. [PMID: 39617357 DOI: 10.1016/j.ejpb.2024.114598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/15/2024]
Abstract
Targeted drug delivery systems modified with two or more ligands were expected to have better anti-tumor ability than those with just one ligand due to the complexity and heterogeneity of tumors. Thus, dual-targeting Pluronic/poly (lactic acid) polymersomes containing biotin (BT) and folic acid (FA) ligands (BT/FA-F127-PLA) were designed to study their targeting properties over human ovarian cancer cells (OVCAR-3). Two kinds of dual-ligand targeting polymersomes, BT/FA-F127-PLA and (BT + FA)-F127-PLA, were prepared to study the effect of the dual-ligand distribution on the cell targeting of polymersomes. BT/FA-F127-PLA had two ligands distributed in the same polymersomes whereas (BT + FA)-F127-PLA had two ligands distributed in different polymersomes. The in vitro cytotoxicity and cellular uptake, and in vivo pharmacokinetic behaviors of BT/FA-F127-PLA were superior to those of (BT + FA)-F127-PLA. It suggested that biotin and folate ligands distributed on the same polymersomes could have the targeting effect of synergistic promotion. Further experiments on cell uptake mechanisms of polymersomes showed that the uptake of targeted polymersomes was associated with energy-dependent endocytosis, involving clathrin, caveolin protein, macropinocytosis and ligand receptor-mediated endocytosis. In addition, the effect of different density ratios of dual ligands for BT/FA-F127-PLA was further studied. The results showed that the cellular targeting effect of BT/FA-F127-PLA was the strongest when the molar ratio of biotin to folic acid was 7.5 %: 7.5 %. In conclusion, BT/FA-F127-PLA dual-targeting polymersomes could be good candidates as targeted drug delivery carriers.
Collapse
Affiliation(s)
- Qing Xiao Wang
- School of Life Science, Jiangxi Science and Technology Normal University, Jiangxi Key Laboratory of Natural Microbial Medicine Research, Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Nanchang 330013, China
| | - Zi Ling Li
- School of Life Science, Jiangxi Science and Technology Normal University, Jiangxi Key Laboratory of Natural Microbial Medicine Research, Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Nanchang 330013, China
| | - Yan Chun Gong
- School of Life Science, Jiangxi Science and Technology Normal University, Jiangxi Key Laboratory of Natural Microbial Medicine Research, Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Nanchang 330013, China
| | - Xiang Yuan Xiong
- School of Life Science, Jiangxi Science and Technology Normal University, Jiangxi Key Laboratory of Natural Microbial Medicine Research, Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Nanchang 330013, China.
| |
Collapse
|
2
|
Seo SY, Ju WS, Kim K, Kim J, Yu JO, Ryu JS, Kim JS, Lee HA, Koo DB, Choo YK. Quercetin Induces Mitochondrial Apoptosis and Downregulates Ganglioside GD3 Expression in Melanoma Cells. Int J Mol Sci 2024; 25:5146. [PMID: 38791186 PMCID: PMC11121576 DOI: 10.3390/ijms25105146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Malignant melanoma represents a form of skin cancer characterized by a bleak prognosis and heightened resistance to traditional therapies. Quercetin has demonstrated notable anti-carcinogenic, anti-inflammatory, anti-oxidant, and pharmacological effects across various cancer types. However, the intricate relationship between quercetin's anti-cancer properties and ganglioside expression in melanoma remains incompletely understood. In this study, quercetin manifests specific anti-proliferative, anti-migratory, and cell-cycle arrest effects, inducing mitochondrial dysfunction and apoptosis in two melanoma cancer cell lines. This positions quercetin as a promising candidate for treating malignant melanoma. Moreover, our investigation indicates that quercetin significantly reduces the expression levels of ganglioside GD3 and its synthetic enzyme. Notably, this reduction is achieved through the inhibition of the FAK/paxillin/Akt signaling pathway, which plays a crucial role in cancer development. Taken together, our findings suggest that quercetin may be a potent anti-cancer drug candidate for the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Sang Young Seo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea; (S.Y.S.); (W.S.J.); (K.K.); (J.K.); (J.O.Y.)
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun 55365, Jeonbuk, Republic of Korea
| | - Won Seok Ju
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea; (S.Y.S.); (W.S.J.); (K.K.); (J.K.); (J.O.Y.)
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun 55365, Jeonbuk, Republic of Korea
| | - Kyongtae Kim
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea; (S.Y.S.); (W.S.J.); (K.K.); (J.K.); (J.O.Y.)
| | - Juhwan Kim
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea; (S.Y.S.); (W.S.J.); (K.K.); (J.K.); (J.O.Y.)
| | - Jin Ok Yu
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea; (S.Y.S.); (W.S.J.); (K.K.); (J.K.); (J.O.Y.)
| | - Jae-Sung Ryu
- Division of Biodrug Evaluation, New Drug Development Center, Osong Medical Innovation Foundation (K-Bio Health), Cheongju 28160, Chungbuk, Republic of Korea;
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56216, Jeonbuk, Republic of Korea;
| | - Hyun-A Lee
- Center for Animal Resources Development, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan 38453, Gyeongbuk, Republic of Korea;
| | - Young-Kug Choo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea; (S.Y.S.); (W.S.J.); (K.K.); (J.K.); (J.O.Y.)
- Institute for Glycoscience, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea
| |
Collapse
|
3
|
Fang Z, Xue Y, Leng Y, Zhang L, Ren X, Yang N, Chen J, Chen L, Wang H. Erzhi pills reverse PD-L1-mediated immunosuppression in melanoma microenvironment. Heliyon 2024; 10:e24988. [PMID: 38317912 PMCID: PMC10839997 DOI: 10.1016/j.heliyon.2024.e24988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Background Cancer immunotherapies aimed at activating immune system, especially by blocking immune checkpoints, have become a successful modality for treating patients with advanced cancers. However, its clinical practice is frequently conceded by high outcomes, low initial response rates and severe side effects. New strategies are necessary to complement and advance this biological therapy. Erzhi Pills (EZP) have diverse pharmaceutical effects including immune regulation, anti-tumor and anti-senescence. We hypothesized that EZP could exert its antitumor effect through immunomodulation. Purpose The aim of this study was to investigate the effects of EZP on anti-tumor activities, and define its molecular mechanisms. Methods By applying melanoma model with high immune infiltrates, we determined the anti-melanoma effect of EZP. To identify whether this effect was mediated by direct targeting tumor cells, cell viability and apoptosis were examined in vitro. Network pharmacology analysis was used to predict the potential mechanisms of EZP for melanoma via immune response. Flow cytometry, immunohistochemistry (IHC), enzyme-linked immunosorbent assay (ELISA) and crystal violet (CV) experiments were performed to detect T cell infiltrations and functions mediated by EZP. The mechanism of EZP was further investigated by western blotting both in vivo and in vitro. Results The administration of EZP significantly inhibited tumor weight and volume. EZP extract could only slightly reduce cell viability and induce melanoma apoptosis. Network pharmacology analysis predicted that JAK-STAT signaling pathway and T cell receptor signaling pathway might be involved during EZP treatment. Flow cytometry and IHC analyses showed that EZP increased the number of CD4+ T cells and enhanced the function of CD8+ T cells. In co-culture experiments, EZP elevated killing ability of T cells. Western blotting showed that EZP treatment reduced PD-L1 signaling pathway. Conclusion These findings indicated that EZP exerted anti-melanoma effects by inducing apoptosis and blocking PD-L1 to activate T cells. EZP might represent a promising candidate drug for cancer immunotherapies.
Collapse
Affiliation(s)
- Zhirui Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Yuejin Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Yuze Leng
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Lusha Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Xiuyun Ren
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Ning Yang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Department of Dermatology, 300250, Tianjin, China
| | - Jing Chen
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Department of Dermatology, 300250, Tianjin, China
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
- Instrumental Analysis and Research Center, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Hong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| |
Collapse
|
4
|
Paclitaxel-Loaded Lipid-Coated Magnetic Nanoparticles for Dual Chemo-Magnetic Hyperthermia Therapy of Melanoma. Pharmaceutics 2023; 15:pharmaceutics15030818. [PMID: 36986678 PMCID: PMC10055620 DOI: 10.3390/pharmaceutics15030818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Melanoma is the most aggressive and metastasis-prone form of skin cancer. Conventional therapies include chemotherapeutic agents, either as small molecules or carried by FDA-approved nanostructures. However, systemic toxicity and side effects still remain as major drawbacks. With the advancement of nanomedicine, new delivery strategies emerge at a regular pace, aiming to overcome these challenges. Stimulus-responsive drug delivery systems might considerably reduce systemic toxicity and side-effects by limiting drug release to the affected area. Herein, we report the development of paclitaxel-loaded lipid-coated manganese ferrite magnetic nanoparticles (PTX-LMNP) as magnetosomes synthetic analogs, envisaging the combined chemo-magnetic hyperthermia treatment of melanoma. PTX-LMNP physicochemical properties were verified, including their shape, size, crystallinity, FTIR spectrum, magnetization profile, and temperature profile under magnetic hyperthermia (MHT). Their diffusion in porcine ear skin (a model for human skin) was investigated after intradermal administration via fluorescence microscopy. Cumulative PTX release kinetics under different temperatures, either preceded or not by MHT, were assessed. Intrinsic cytotoxicity against B16F10 cells was determined via neutral red uptake assay after 48 h of incubation (long-term assay), as well as B16F10 cells viability after 1 h of incubation (short-term assay), followed by MHT. PTX-LMNP-mediated MHT triggers PTX release, allowing its thermal-modulated local delivery to diseased sites, within short timeframes. Moreover, half-maximal PTX inhibitory concentration (IC50) could be significantly reduced relatively to free PTX (142,500×) and Taxol® (340×). Therefore, the dual chemo-MHT therapy mediated by intratumorally injected PTX-LMNP stands out as a promising alternative to efficiently deliver PTX to melanoma cells, consequently reducing systemic side effects commonly associated with conventional chemotherapies.
Collapse
|
5
|
Prajapat VM, Mahajan S, Paul PG, Aalhate M, Mehandole A, Madan J, Dua K, Chellappan DK, Singh SK, Singh PK. Nanomedicine: A pragmatic approach for tackling melanoma skin cancer. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Zhao Z, Fang L, Lv D, Chen L, Zhang B, Wu D. Design and synthesis of Ag NPs/chitosan-starch nano-biocomposite as a modern anti-human malignant melanoma drug. Int J Biol Macromol 2023; 236:123823. [PMID: 36842739 DOI: 10.1016/j.ijbiomac.2023.123823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023]
Abstract
In recent years, the unprecedented increase in various cancers such as melanoma has caused researchers to focus more on the formulation of newer drugs with less side effects. In this study, we herein indicate the biogenic nanoarchitechtonics of Ag NPs template over chitosan/starch mixed hydrogel having notable reducing potential and anti-malignant melanoma effects. The two biopolymers also could stabilize as-synthesized Ag NPs. Physicochemical features of the material were further characterized over a range of advanced methods like X-ray diffraction (XRD), elemental mapping, dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and Fourier transformed infrared spectroscopy (FT-IR). TEM analysis showed the spherical-shaped nanocomposite with the mean diameter in the range of 5-15 nm. Thereafter, the nanocomposite was exploited in the anti-malignant melanoma and cytotoxicity effects studies against various human malignant melanoma cell lines (HT144, RPMI7951, SKMEL2, UACC3074, WM266-4 and MUM2C) in situ. The bio-composite corresponding IC50 values were 193, 102, 227, 250, 301, and 203 μg/mL against MUM2C, WM266-4, UACC3074, SKMEL2, RPMI7951, and HT144 cell lines, respectively. A significantly high IC50 value offered an excellent antioxidant capacity of bio-composite. According to the above results, Ag NPs/CS-Starch nanomaterial can be utilized as an efficient drug to treat malignant melanoma in humans after doing clinical trial studies.
Collapse
Affiliation(s)
- Zunjiang Zhao
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Anhui 241004, China; Department of Burns and Plastic Surgery, Lu'an People's Hospital, Anhui Medical University, Anhui 237005, China.
| | - Linsen Fang
- Department of Burns and Wound Repair Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui 230022, China
| | - Dalun Lv
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Anhui 241004, China
| | - Lei Chen
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Anhui 241004, China
| | - Baode Zhang
- Department of Burns and Plastic Surgery, Lu'an People's Hospital, Anhui Medical University, Anhui 237005, China
| | - Dejin Wu
- Department of Burns and Plastic Surgery, Lu'an People's Hospital, Anhui Medical University, Anhui 237005, China
| |
Collapse
|
7
|
Chen C, Zhang X. Glycolysis regulator PFKP induces human melanoma cell proliferation and tumor growth. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023:10.1007/s12094-023-03096-7. [PMID: 36792847 DOI: 10.1007/s12094-023-03096-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023]
Abstract
PURPOSE Cutaneous melanoma is an aggressive and deadly cancer resulting from malignant transformation of cells involved in skin pigmentation. Glycolysis is widely implicated in cancer progression, but its precise role in melanoma has not been extensively studied. Here, we investigated the role of the glycolysis regulator phosphofructokinase 1 platelet isoform (PFKP) in melanoma progression. METHODS PFKP expression in human melanoma tissues was analyzed by immunohistochemistry. Knockdown of PFKP by siRNA and overexpression of PFKP were performed to evaluate its functions in vitro. CCK-8 assay was used to assess cell proliferation. Glycolytic activity was determined via measurement of extracellular acidification rate (ECAR), lactic acid level, and ATP content. A tumor xenograft model was used to test the function of PFKP in vivo. RESULTS PFKP upregulation was observed in human melanoma tissues and correlated with poor patient survival. Knockdown of PFKP in human melanoma cells suppressed cell proliferation and reduced ECAR, ATP levels, and lactic acid levels, while overexpression of PFKP displayed the opposite effects. In vivo, knockdown of PFKP in melanoma cells markedly reduced tumorigenesis. Inhibitory effects on cell proliferation, glycolysis, and tumorigenesis due to PFKP knockdown were further augmented upon treatment with the glycolysis inhibitor 2-deoxy-D-glucose (2-DG). CONCLUSION Collectively, these results indicate that PFKP expression in melanoma cells increases proliferation and glycolytic activity in vitro and promotes tumorigenesis in vivo, suggesting that suppression of PKFP and inhibition of glycolysis may potently suppress melanoma progression.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Fenglin Rd No.180, Shanghai, 200032, China
| | - Xuejun Zhang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Fenglin Rd No.180, Shanghai, 200032, China.
| |
Collapse
|
8
|
Chen H, Hou K, Yu J, Wang L, Chen X. Nanoparticle-Based Combination Therapy for Melanoma. Front Oncol 2022; 12:928797. [PMID: 35837089 PMCID: PMC9273962 DOI: 10.3389/fonc.2022.928797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
Melanoma is a cutaneous carcinoma, and its incidence is rapidly increasing with every year. The treatment options for melanoma have been comprehensively studied. Conventional treatment methods (e.g., radiotherapy, chemotherapy and photodynamic therapy) with surgical removal inevitably cause serious complications; moreover, resistance is common. Nanoparticles (NPs) combined with conventional methods are new and promising options to treat melanoma, and many combinations have been achieving good success. Due to their physical and biological features, NPs can help target intended melanoma cells more efficiently with less damage. This creates new hope for a better treatment strategy for melanoma with minimum damage and maximum efficacy.
Collapse
Affiliation(s)
- Hongbo Chen
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Hou
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Le Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Chen
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Wang QX, Chen X, Li ZL, Gong YC, Xiong XY. Transferrin/folate dual-targeting Pluronic F127/poly(lactic acid) polymersomes for effective anticancer drug delivery. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1140-1156. [PMID: 35179085 DOI: 10.1080/09205063.2022.2044434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
A novel dual-targeting Pluronic/poly(lactic acid) polymersome containing transferrin and folic acid ligands (Tf/FA-F127-PLA) has been designed to study its application in the targeted drug delivery system. Both biotin and folic acid conjugated Biotin/FA-F127-PLA polymersomes (Ps) were prepared as the precursor. The dual-targeting behaviors of Tf/FA-F127-PLA over C6 glioma cells were then fulfilled through connecting the precursor with biotinylated transferrin by using a three-step biotin-avidin technique. Paclitaxel (PTX) was loaded successfully into Biotin/FA-F127-PLA and showed a burst release followed by a slow-release process in vitro. It was also obtained that Tf/FA-F127-PLA had higher cytotoxicity and cellular uptake amount than non-targeted and single-targeted Ps did. These results could be because more PTX-loaded Tf/FA-F127-PLA Ps entered C6 cells through both FA-folate receptor (FR) and Tf-transferrin receptor (TfR) specific affinity and thus possessed the better anti-tumor ability. It was further proved that the uptake of Ps by C6 cells was through the endocytosis related to clathrin, caveolae, lysosome, etc. Furthermore, it was demonstrated that the uptake of dual-targeting Tf/FA-F127-PLA Ps by C6 cells was related to the endocytosis mediated by both FR and TfR. These findings indicated that dual-targeting Tf/FA-F127-PLA Ps could be a potential carrier in targeted drug delivery systems.
Collapse
Affiliation(s)
- Qing Xiao Wang
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, PR China
| | - Xiang Chen
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, PR China
| | - Zi Ling Li
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, PR China
| | - Yan Chun Gong
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, PR China
| | - Xiang Yuan Xiong
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, PR China
| |
Collapse
|
10
|
Wang L, Wang L, Zhang Y, Zhao Z, Liu C, Li M, Liu J, Wang S, Yang D, Luo F, Yan J. LS-HB-Mediated Photodynamic Therapy Inhibits Proliferation and Induces Cell Apoptosis in Melanoma. Mol Pharm 2022; 19:2607-2619. [PMID: 35485954 DOI: 10.1021/acs.molpharmaceut.2c00302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chlorin e6-C-15-ethyl ester (LS-HB), a newly identified photosensitizer, was isolated from chlorin e6. The mechanism of tumor cell death induced by photodynamic therapy with LS-HB (LS-HB-PDT) is still unknown. Here, we investigated the photophysical properties of LS-HB, evaluated the antitumor effect on melanoma in vitro and in vivo, and explored its possible mechanisms. LS-HB not only has an optimal spectral band of red wavelength (660 nm) for photosensitization but also has favorable photostability. More importantly, LS-HB-PDT elicited a potent dose-dependent phototoxic effect in vitro. We discovered that LS-HB located in the mitochondria of B16F10 cells was able to generate excess reactive oxygen species, which subsequently resulted in mitochondrial membrane potential loss and induced apoptosis via caspase-9 and caspase-3 pathways. Moreover, PDT with LS-HB markedly inhibited the growth of melanoma in vivo. Therefore, LS-HB is expected to be an effective potential photosensitizer in antitumor therapy.
Collapse
Affiliation(s)
- Lanlan Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Li Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yang Zhang
- Fuzhou Neuro-Psychiatric Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian 350008, China
| | - Zhiyu Zhao
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Cong Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Mengqi Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiajing Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Shengyu Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Dong Yang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Fanghong Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Jianghua Yan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
11
|
Revisiting the melanomagenic pathways and current therapeutic approaches. Mol Biol Rep 2022; 49:9651-9671. [DOI: 10.1007/s11033-022-07412-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
|
12
|
García-Hevia L, Casafont Í, Oliveira J, Terán N, Fanarraga ML, Gallo J, Bañobre-López M. Magnetic lipid nanovehicles synergize the controlled thermal release of chemotherapeutics with magnetic ablation while enabling non-invasive monitoring by MRI for melanoma theranostics. Bioact Mater 2022; 8:153-164. [PMID: 34541393 PMCID: PMC8424388 DOI: 10.1016/j.bioactmat.2021.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/20/2021] [Accepted: 06/07/2021] [Indexed: 01/13/2023] Open
Abstract
Nowadays, a number of promising strategies are being developed that aim at combining diagnostic and therapeutic capabilities into clinically effective formulations. Thus, the combination of a modified release provided by an organic encapsulation and the intrinsic physico-chemical properties from an inorganic counterpart opens new perspectives in biomedical applications. Herein, a biocompatible magnetic lipid nanocomposite vehicle was developed through an efficient, green and simple method to simultaneously incorporate magnetic nanoparticles and an anticancer drug (doxorubicin) into a natural nano-matrix. The theranostic performance of the final magnetic formulation was validated in vitro and in vivo, in melanoma tumors. The systemic administration of the proposed magnetic hybrid nanocomposite carrier enhanced anti-tumoral activity through a synergistic combination of magnetic hyperthermia effects and antimitotic therapy, together with MRI reporting capability. The application of an alternating magnetic field was found to play a dual role, (i) acting as an extra layer of control (remote, on-demand) over the chemotherapy release and (ii) inducing a local thermal ablation of tumor cells. This combination of chemotherapy with thermotherapy establishes a synergistic platform for the treatment of solid malignant tumors under lower drug dosing schemes, which may realize the dual goal of reduced systemic toxicity and enhanced anti-tumoral efficacy.
Collapse
Affiliation(s)
- Lorena García-Hevia
- Advanced (Magnetic) Theranostic Nanostructures Lab. International Iberian Nanotechnology Laboratory, Avda. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Íñigo Casafont
- Grupo de Nanomedicina. Universidad de Cantabria-IDIVAL, Herrera Oria s/n, 39011, Santander, Spain
| | - Jessica Oliveira
- Advanced (Magnetic) Theranostic Nanostructures Lab. International Iberian Nanotechnology Laboratory, Avda. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Nuria Terán
- Grupo de Nanomedicina. Universidad de Cantabria-IDIVAL, Herrera Oria s/n, 39011, Santander, Spain
| | - Mónica L. Fanarraga
- Grupo de Nanomedicina. Universidad de Cantabria-IDIVAL, Herrera Oria s/n, 39011, Santander, Spain
| | - Juan Gallo
- Advanced (Magnetic) Theranostic Nanostructures Lab. International Iberian Nanotechnology Laboratory, Avda. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Manuel Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Lab. International Iberian Nanotechnology Laboratory, Avda. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| |
Collapse
|
13
|
Abstract
Melanoma is a relentless type of skin cancer which involves myriad signaling pathways which regulate many cellular processes. This makes melanoma difficult to treat, especially when identified late. At present, therapeutics include chemotherapy, surgical resection, biochemotherapy, immunotherapy, photodynamic and targeted approaches. These interventions are usually administered as either a single-drug or in combination, based on tumor location, stage, and patients' overall health condition. However, treatment efficacy generally decreases as patients develop treatment resistance. Genetic profiling of melanocytes and the discovery of novel molecular factors involved in the pathogenesis of melanoma have helped to identify new therapeutic targets. In this literature review, we examine several newly approved therapies, and briefly describe several therapies being assessed for melanoma. The goal is to provide a comprehensive overview of recent developments and to consider future directions in the field of melanoma.
Collapse
Affiliation(s)
- Pavan Kumar Dhanyamraju
- Department of Pediatrics and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Pavan Kumar Dhanyamraju, Department of Pediatrics and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA17033, USA. Tel: +1-6096474712, E-mail:
| | - Trupti N. Patel
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
14
|
Chang X, Lin YY, Bai LN, Zhu W. miR-302a-3p suppresses melanoma cell progression via targeting METTL3. J Chemother 2021; 34:55-66. [PMID: 34286671 DOI: 10.1080/1120009x.2021.1953886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The miRNA-302 family plays a critical role in carcinogenesis. As an enzyme that regulates the N6-methyladenosine modification, methyltransferase-like 3 (METTL3) plays important roles in the development and progression of various tumours. However, the upstream regulatory mechanisms of METTL3 in melanoma have not yet been fully investigated. Herein, we investigated the functions of miR-302a-3p and its target RNA METTL3 on proliferation, apoptosis, and invasion of melanoma. Quantitative real-time PCR and immunofluorescence staining were used to measure the expression of METTL3 mRNA and protein level after transfection. miR-302a-3p expression was determined by quantitative reverse transcription-PCR. The cell proliferation, cell cycle progression, apoptosis, colony formation, migration, and cell invasion ability were determined using MTT assay, propidium iodide (PI) staining, Annexin V/PI flow cytometry, plate clone assay, and Transwell migration and invasion assays, respectively. Melanoma cell metastasis was also evaluated using an in vivo model. The effect of METTL3 on the phosphorylation of PI3K and AKT was measured with western blot analysis. Our results showed that miR-302a-3p was significantly downregulated in melanoma and exerted a tumour suppressive role against melanoma progression. We identified METTL3 as a direct target of miR-302a-3p in melanoma cells using bioinformatics analysis and luciferase assay. Furthermore, the enforced overexpression of METTL3 promoted the proliferation, cell cycle progression, cell invasion, migration, expression of epithelial-to-mesenchymal transition markers, and the PI3K-AKT signalling pathway as well as suppressed the apoptosis of melanoma cells. Meanwhile, silencing the expression of METTL3 with specific shRNA demonstrated reverse outcomes of the above phenotypes in melanoma cells. By rescue experiments, we found that the restoration of METTL3 expression in miR-302a-3p-overexpressing melanoma cells successfully recovered the miR-302a-3p-mediated melanoma suppression. The in vivo results also showed that miR-302a-3p substantially inhibited melanoma cell growth and metastasis. In summary, this study demonstrated that miR-302a-3p targets METTL3 and plays tumour suppressive roles in the proliferation, apoptosis, invasion, and migration of melanoma cells.
Collapse
Affiliation(s)
- Xiao Chang
- Department of Dermatology and Venereal Disease, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Yu-Ying Lin
- Department of Dermatology and Venereal Disease, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Li-Na Bai
- Department of Dermatology and Venereal Disease, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Wei Zhu
- Department of Dermatology and Venereal Disease, Xuan Wu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Chen X, Wang M, Hu Y, Gong T, Zhang ZR, Yu R, Fu Y. Low-dose paclitaxel via hyaluronan-functionalized bovine serum albumin nanoparticulate assembly for metastatic melanoma treatment. J Mater Chem B 2021; 8:2139-2147. [PMID: 32090232 DOI: 10.1039/c9tb02780g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Due to the critical role of CD44 in mediating cell adhesion and migration, CD44-targeted drug delivery via hyaluronan has been extensively explored. Herein, cationic bovine serum albumin nanoparticles were assembled with hyaluronan (HA) of various molecular weights via simple electrostatic interaction to afford hierarchical nanoparticles (HNPs) with various size distributions and structures. Next, HNPs obtained using 49 kDa HA have been used to encapsulate paclitaxel (PTX-HNPs), which demonstrated selective lung accumulation due to both size effect and CD44-mediated targetability. Biodistribution studies showed that HNPs enhanced the lung specific accumulation of HNPs in the C57BL/6 mice melanoma lung metastasis model. In the antitumor studies, compared with the Taxol or bovine serum albumin nanoparticle (NP) groups, PTX-HNPs significantly inhibited B16F10 lung metastasis at a relatively low dose. Additionally, cell migration and invasion experiments in vitro further confirmed that PTX-HNPs significantly inhibited the migration of B16F10 cells compared to Taxol or paclitaxel-loaded NP groups. Overall, our results suggest that PTX-HNPs represent a highly promising strategy for the treatment of lung metastatic melanoma.
Collapse
Affiliation(s)
- Xue Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Mou Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ying Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Zhi-Rong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ruilian Yu
- Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Bekeschus S. Combined Toxicity of Gas Plasma Treatment and Nanoparticles Exposure in Melanoma Cells In Vitro. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:806. [PMID: 33809825 PMCID: PMC8004114 DOI: 10.3390/nano11030806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/31/2022]
Abstract
Despite continuous advances in therapy, cancer remains a deadly disease. Over the past years, gas plasma technology emerged as a novel tool to target tumors, especially skin. Another promising anticancer approach are nanoparticles. Since combination therapies are becoming increasingly relevant in oncology, both gas plasma treatment and nanoparticle exposure were combined. A series of nanoparticles were investigated in parallel, namely, silica, silver, iron oxide, cerium oxide, titanium oxide, and iron-doped titanium oxide. For gas plasma treatment, the atmospheric pressure argon plasma jet kINPen was utilized. Using three melanoma cell lines, the two murine non-metastatic B16F0 and metastatic B16F10 cells and the human metastatic B-Raf mutant cell line SK-MEL-28, the combined cytotoxicity of both approaches was identified. The combined cytotoxicity of gas plasma treatment and nanoparticle exposure was consistent across all three cell lines for silica, silver, iron oxide, and cerium oxide. In contrast, for titanium oxide and iron-doped titanium oxide, significantly combined cytotoxicity was only observed in B16F10 cells.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| |
Collapse
|
17
|
Zhan X, Teng W, Sun K, He J, Yang J, Tian J, Huang X, Zhou L, Zhou C. CD47-mediated DTIC-loaded chitosan oligosaccharide-grafted nGO for synergistic chemo-photothermal therapy against malignant melanoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112014. [PMID: 33812633 DOI: 10.1016/j.msec.2021.112014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/11/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022]
Abstract
Nano-graphene oxide (nGO), an effective drug nanocarrier, is used for simultaneous photothermal therapy (PTT) and near-infrared fluorescence imaging. Dacarbazine (DTIC) is used in the treatment of melanoma with limited clinical efficacy. PTT shows promise in the treatment of skin cancer. Herein, chitosan oligosaccharide (COS)-grafted nGO was further modified with CD47 antibody, and loaded DTIC was prepared using a versatile nanoplatform (nGO-COS-CD47/DTIC) for the treatment of melanoma as a synergistic targeted chemo-photothermal therapy. The in vitro results demonstrated that nGO-COS-CD47/DTIC nanocarriers have excellent biocompatibility, photothermal conversion efficiency, high targeting efficiency, fast drug release under NIR irradiation, and tumor cell killing efficiency. Notably, nGO-COS-CD47/DTIC plus NIR irradiation significantly promoted early cell apoptosis through the mitochondrial apoptosis pathway and exhibited a significant joint function of antitumor efficacy. The demonstrated nGO-COS-CD47/DTIC can provide a highly efficient malignant melanoma therapy using this multifunctional intelligent nanoplatform.
Collapse
Affiliation(s)
- Xiaozhen Zhan
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, PR China.
| | - Wanqing Teng
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, PR China
| | - Kai Sun
- College of Chemistry and Material Science, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Jiexiang He
- College of Chemistry and Material Science, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Jie Yang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Jinhuan Tian
- College of Chemistry and Material Science, Jinan University, Guangzhou, Guangdong 510632, PR China.
| | - Xun Huang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, PR China.
| | - Lin Zhou
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, PR China.
| | - Changren Zhou
- College of Chemistry and Material Science, Jinan University, Guangzhou, Guangdong 510632, PR China.
| |
Collapse
|
18
|
Liu SR, Yang X, Qi L, Zhu Z, Ji YZ. SMARCA4 promotes benign skin malignant transformation into melanoma through Adherens junction signal transduction. Clin Transl Oncol 2021; 23:591-600. [PMID: 32720055 DOI: 10.1007/s12094-020-02453-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/04/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Melanoma is a malignant skin tumor, and its incidence is rising. To explore the specific differences in benign and malignant melanoma at the genetic level, we performed a series of bioinformatics analyses, including differential gene analysis, co-expression analysis, enrichment analysis, and regulatory prediction. METHODS The microarray data of benign and malignant melanocytes were downloaded from GEO, and 1917 differential genes were obtained by differential analysis (p < 0.05). Weighted gene co-expression network analysis obtained three functional barrier modules. The essential genes of each module are SMARTA4, HECA, and C1R. RESULTS The results of the enrichment analysis showed that the dysfunctional module gene was mainly associated with RNA splicing and Adherens junction. Through the pivotal analysis of ncRNA, it was found that miR-448, miR-152-3p, and miR-302b-3p essentially regulate three modules, which we consider to be critical regulators. In the pivot analysis of TF, more control modules include ARID3A, E2F1, E2F3, and E2F8. CONCLUSIONS We believe that the regulator (miR-448, miR-152-3p, miR-302b-3p) regulates the expression of the core gene SMARCA4, which in turn affects the signal transduction of the Adherens junction. It eventually leads to the deterioration of benign skin spasms into melanoma.
Collapse
Affiliation(s)
- S-R Liu
- Department of Dermatology, The Second Hospital of Jilin University, No.218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China
| | - X Yang
- Department of Urology, The Second Hospital of Jilin University, Changchun, 130041, Jilin, People's Republic of China
| | - L Qi
- Department of Dermatology, The Second Hospital of Jilin University, No.218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China
| | - Z Zhu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, 130041, Jilin, People's Republic of China
| | - Y-Z Ji
- Department of Dermatology, The Second Hospital of Jilin University, No.218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China.
| |
Collapse
|
19
|
Concentration-Dependent Pro- and Antitumor Activities of Quercetin in Human Melanoma Spheroids: Comparative Analysis of 2D and 3D Cell Culture Models. Molecules 2021; 26:molecules26030717. [PMID: 33573155 PMCID: PMC7866537 DOI: 10.3390/molecules26030717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/06/2023] Open
Abstract
Quercetin, a dietary flavonoid found in fruits and vegetables, has been described as a substance with many anti-cancer properties in a variety of preclinical investigations. In the present study, we demonstrate that 2D and 3D melanoma models exhibit not only different sensitivities to quercetin, but also opposite, cancer-promoting effects when metastatic melanoma spheroids are treated with quercetin. Higher concentrations of quercetin reduce melanoma growth in three tested cell lines, whereas low concentrations induce the opposite effect in metastatic melanoma spheroids but not in the non-metastatic cell line. High (>12.5 µM) or low (<6.3 µM) quercetin concentrations decrease or enhance cell viability, spheroid size, and cell proliferation, respectively. Additionally, melanoma cells cultivated in 2D already show significant caspase 3 activity at very low concentrations (>0.4 µM), whereas in 3D spheroids apoptotic cells, caspase 3 activity can only be detected in concentrations ≥12.5 µM. Further, we show that the tumor promoting or repressing effect in the 3D metastatic melanoma spheroids are likely to be elicited by a precisely controlled regulation of Nrf2/ARE-mediated cytoprotective genes, as well as ERK and NF-κB phosphorylation. According to the results obtained here, further studies are needed to better characterize the mechanisms of action underlying the pro- and anti-carcinogenic effects of quercetin on human melanomas.
Collapse
|
20
|
Chillà A, Margheri F, Biagioni A, Del Rosso T, Fibbi G, Del Rosso M, Laurenzana A. Cell-Mediated Release of Nanoparticles as a Preferential Option for Future Treatment of Melanoma. Cancers (Basel) 2020; 12:cancers12071771. [PMID: 32630815 PMCID: PMC7408438 DOI: 10.3390/cancers12071771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 01/15/2023] Open
Abstract
Targeted and immune therapies have unquestionably improved the prognosis of melanoma patients. However the treatment of this neoplasm still requires approaches with a higher therapeutic index, in order to reduce shortcomings related to toxic effects and aspecific targeting. This means developing therapeutic tools derived with high affinity molecules for tumor components differentially expressed in melanoma cells with respect to their normal counterpart. Nanomedicine has sought to address this problem owing to the high modulability of nanoparticles. This approach exploits not only the enhanced permeability and retention effect typical of the tumor microenvironment (passive targeting), but also the use of specific "molecular antennas" that recognize some tumor-overexpressed molecules (active targeting). This line of research has given rise to the so-called "smart nanoparticles," some of which have already passed the preclinical phase and are under clinical trials in melanoma patients. To further improve nanoparticles partition within tumors, for some years now a line of thought is exploiting the molecular systems that regulate the innate tumor-homing activity of platelets, granulocytes, monocytes/macrophages, stem cells, endothelial-colony-forming cells, and red blood cells loaded with nanoparticles. This new vision springs from the results obtained with some of these cells in regenerative medicine, an approach called "cell therapy." This review takes into consideration the advantages of cell therapy as the only one capable of overcoming the limits of targeting imposed by the increased interstitial pressure of tumors.
Collapse
Affiliation(s)
- Anastasia Chillà
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
| | - Tommaso Del Rosso
- Department of Physics, Pontifical Catholic University of Rio de Janeiro, 22451-900 Rio de Janeiro-RJ, Brazil;
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
- Correspondence: (M.D.R.); (A.L.)
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
- Correspondence: (M.D.R.); (A.L.)
| |
Collapse
|
21
|
Mohammad Jafari R, Ala M, Goodarzi N, Dehpour AR. Does Pharmacodynamics of Drugs Change After Presenting them as Nanoparticles Like their Pharmacokinetics? Curr Drug Targets 2020; 21:807-818. [DOI: 10.2174/1389450121666200128113547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
:
Nowadays, the breakthrough in different medical branches makes it feasible to designate
new methods of drug delivery to achieve the most cost-effective and the least unpleasant consequenceimposing
solutions to overcome a wide range of diseases.
:
Nanoparticle (NP) drugs entered the therapeutic system, especially in cancer chemotherapy. These
drugs are quite well-known for two traits of being long-acting and less toxic. For a long time, it has
been investigated how NPs will change the kinetics of drugs. However, there are a few studies that inclined
their attention to how NPs affect the dynamics of drugs. In this review, the latter point will
mainly be discussed in an example-based manner. Besides, other particular features of NPs will be
briefly noted.
:
NPs are capable of affecting the biologic system as much as a drug. Moreover, NPs could arise a wide
variety of effects by triggering their own receptors. NPs are able to change a receptor function and
manipulate its downstream signaling cascade.
Collapse
Affiliation(s)
- Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Goodarzi
- Nanotechnology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Iron Oxide/Salicylic Acid Nanoparticles as Potential Therapy for B16F10 Melanoma Transplanted on the Chick Chorioallantoic Membrane. Processes (Basel) 2020. [DOI: 10.3390/pr8060706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Unfavorable prognoses and low survival rates are specific features of metastatic melanoma that justify the concern for the development of new therapeutic strategies. Lately, nanotechnology has become an attractive field of study due to recent advances in nanomedicine. Using a chick chorioallantoic membrane (CAM) implanted with xenografts harvested from C57BL/6 mice with B16F10 melanoma cells, we studied the effects of iron oxide nanoparticles functionalized with salicylic acid (SaMNPs) as a form of therapy on the local development of xenotransplants and CAM vessels. The SaMNPs induced an anti-angiogenic effect on the CAM vessels, which accumulated preferentially in the melanoma cells and induced apoptosis and extensive xenograft necrosis. As a result, this slowed the increase in the xenograft volume and reduced the melanoma cells’ ability to metastasize locally and distally. Further, we demonstrate the use of the chick CAM model as a tool for testing the action of newly synthesized nanocomposites on melanoma xenotransplants. The SaMNPs had a therapeutic effect on B16F10 melanoma due to the synergistic action of the two components of its structure: the coating of the salicylic acid with antiangiogenic and chemotherapeutic action and the core of iron oxides with cytotoxic action.
Collapse
|
23
|
Li C, Han X. Co-delivery of Dacarbazine and All-Trans Retinoic Acid (ATRA) Using Lipid Nanoformulations for Synergistic Antitumor Efficacy Against Malignant Melanoma. NANOSCALE RESEARCH LETTERS 2020; 15:113. [PMID: 32430641 PMCID: PMC7237551 DOI: 10.1186/s11671-020-3293-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Malignant melanoma is a highly aggressive skin cancer responsible for 80% of mortality, and the overall median survival in patients with metastatic melanoma is only 6-9 months. Combination treatment through the simultaneous administration of dual drugs in a single nanocarrier has been demonstrated to be elegant and effective in combatting cancer. Herein, we employ a combination therapy based on dacarbazine (DBZ), FDA approved drug for melanoma and all-trans retinoic acid (ATRA), promising anticancer agents loaded on lipid nanoformulations (RD-LNF) as a new treatment strategy for malignant melanoma. We have successfully encapsulated both the drugs in lipid nanoformulations and showed a controlled release of payload over time. We demonstrated that the simultaneous delivery of DBZ and ATRA could effectively reduce cell proliferation in a concentration-dependent manner. The combinational nanoparticles significantly reduced the colony formation ability of B16F10 melanoma cells. Flow cytometer analysis showed that RD-LNF induced a greater proportion of apoptosis cells with significant inhibition of cell cycle progression and cell migration. These results suggest the promising potential of RD-LNF in the treatment of malignant melanoma with high efficacy.
Collapse
Affiliation(s)
- Chenyang Li
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Xiuping Han
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
24
|
Xu P, Yao J, Li Z, Wang M, Zhou L, Zhong G, Zheng Y, Li N, Zhai Z, Yang S, Wu Y, Zhang D, Dai Z. Therapeutic Effect of Doxorubicin-Chlorin E6-Loaded Mesoporous Silica Nanoparticles Combined with Ultrasound on Triple-Negative Breast Cancer. Int J Nanomedicine 2020; 15:2659-2668. [PMID: 32368047 PMCID: PMC7183747 DOI: 10.2147/ijn.s243037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/06/2020] [Indexed: 01/09/2023] Open
Abstract
Introduction Sonodynamic Therapy (SDT) has good targeting and non-invasive advantages in solid cancers, but its antitumor effect is not sufficient to replace traditional treatments. Some studies that combined SDT with chemotherapy or nanoparticles have managed to enhance its efficiency and overcome the side effects of chemotherapy. Materials and Methods In this study, we synthesized and characterized mesoporous silica nanoparticles (MSN-DOX-Ce6) loaded with doxorubicin (DOX) and sonosensitizer, chlorin e6 (Ce6). Then, we conducted in vitro and in vivo experiments to explore the antitumor effect of MSN-DOX-Ce6 under ultrasound (US) treatment. Results The characterization tests showed that the nanoparticles are uniformly sized spheres with mesoporous structure, resulting in a high drug-loading efficiency. In the in vitro experiments, MSN-DOX-Ce6 could effectively inhibit cell proliferation under US but not more than other treatment groups. However, the in vivo studies showed that MSN-DOX-Ce6+US has better antitumor effect than DOX+Ce6+US or DOX alone on xenograft tumor-bearing mice. Conclusion In summary, MSNs showed a great potential for DOX and Ce6 delivery. We concluded that under US, MSN-DOX-Ce6 nanocomposites increase the antitumor effect of DOX and SDT and thereby are a potential treatment for solid tumors.
Collapse
Affiliation(s)
- Peng Xu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Jia Yao
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Zhen Li
- Department of Student Affairs, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Linghui Zhou
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Guansheng Zhong
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Yi Zheng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Na Li
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Zhen Zhai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Si Yang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Ying Wu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Dai Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| |
Collapse
|
25
|
Cen D, Wan Z, Fu Y, Pan H, Xu J, Wang Y, Wu Y, Li X, Cai X. Implantable fibrous 'patch' enabling preclinical chemo-photothermal tumor therapy. Colloids Surf B Biointerfaces 2020; 192:111005. [PMID: 32315920 DOI: 10.1016/j.colsurfb.2020.111005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/06/2020] [Accepted: 03/28/2020] [Indexed: 12/11/2022]
Abstract
Localized drug delivery systems (LDDSs), in the forms of fibers or hydrogel, have emerged as an alternative approach for effective cancer treatment, but suffer challenges in the limited efficacy originated from sole therapeutic functionality. Herein, a multifunctional LDDS, showing feasibility for minimally-invasive implantation, was designed and synthesized for on-site chemo-photothermal synergistic therapy. In this system, polydopamine (PDA) nanoparticles, loaded with doxorubicin (DOX), were assembled at the surface of electrospun PCL-gelatin (PG) fibers (PG@PDA-DOX). The composite PG@PDA-DOX nanofibers could effectively transform NIR light into heat and present excellent photostability. In addition, low pH and NIR irradiation enabled remarkably accelerated DOX release. The in vitro study of PG@PDA-DOX fibers showed effective anti-cancer effect with irradiation of 808 nm NIR by inducing cell apoptosis and suppressing cell proliferation. The in vivo study, by implanting PG@PDA-DOX nanofibers in the patient derived xenograft (PDX) model via minimally-invasive surgery, presented that the composite fibers can effectively inhabit tumor growth by the combined chemo-photothermal effect without clear systematic side-effects. This study has therefore demonstrated a minimally-invasive platform, in a fibrous mesh form, with both high therapeutic efficacy and considerable potential in clinical translation for liver cancer treatment.
Collapse
Affiliation(s)
- Dong Cen
- Department of General Surgery, Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Zhe Wan
- Department of General Surgery, Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Yike Fu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Haoqi Pan
- Department of General Surgery, Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Junjie Xu
- Department of General Surgery, Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Yifan Wang
- Department of General Surgery, Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Yongjun Wu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Xiujun Cai
- Department of General Surgery, Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
26
|
Qi S, Lu L, Zhou F, Chen Y, Xu M, Chen L, Yu X, Chen WR, Zhang Z. Neutrophil infiltration and whole-cell vaccine elicited by N-dihydrogalactochitosan combined with NIR phototherapy to enhance antitumor immune response and T cell immune memory. Am J Cancer Res 2020; 10:1814-1832. [PMID: 32042338 PMCID: PMC6993227 DOI: 10.7150/thno.38515] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022] Open
Abstract
Melanoma is one of the deadliest malignancies with a high risk of relapse and metastasis. Long-term, tumor-specific, and systemic immunity induced by local intervention is ideal for personalized cancer therapy. Laser immunotherapy (LIT), a combination of local irradiation of laser and local administration of an immunostimulant, was developed to achieve such an immunity. Although LIT showed promising efficacy on tumors, its immunological mechanism is still not understood, especially its spatio-temporal dynamics. Methods: In this study, we investigated LIT-induced immunological responses using a 980-nm laser and a novel immunostimulant, N-dihydrogalactochitosan (GC). Then we followed the functions of key immune cells spatially and temporally using intravital imaging and immunological assays. Results: Immediately after LIT, GC induced a rapid infiltration of neutrophils which ingested most GC in tumors. The cytokines released to the serum peaked at 12 h after LIT. Laser irradiations produced photothermal effects to ablate the tumor, release damage-associated molecular patterns, and generate whole-cell tumor vaccines. LIT-treated tumor-bearing mice efficiently resisted the rechallenged tumor and prevented lung metastasis. Intravital imaging of tumor at rechallenging sites in LIT-treated mice revealed that the infiltration of tumor-infiltrating lymphocytes (TILs) increased with highly active motility. Half of TILs with arrest and confined movements indicated that they had long-time interactions with tumor cells. Furthermore, LIT has synergistic effect with checkpoint blockade to improve antitumor efficacy. Conclusion: Our research revealed the important role of LIT-induced neutrophil infiltration on the in situ whole-cell vaccine-elicited antitumor immune response and long-term T cell immune memory.
Collapse
|
27
|
Csányi E, Bakonyi M, Kovács A, Budai-Szűcs M, Csóka I, Berkó S. Development of Topical Nanocarriers for Skin Cancer Treatment Using Quality by Design Approach. Curr Med Chem 2019; 26:6440-6458. [PMID: 30444194 DOI: 10.2174/0929867325666181116143713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 06/04/2018] [Accepted: 11/11/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND One of the most compelling medical challenges of this century is the treatment of cancer and among them, skin cancer is the most common type. Thus, current treatments need to be renewed continuously to handle this challenge. OBJECTIVE This review presents considerations which can be employed during the development of nanosized formulations dedicated to the topical treatment of skin cancer. We aimed to collect and organize literature data on the treatment options for skin cancer in order to determine the required quality attributes of an effective dermal anticancer formulation. METHOD With the consideration of the Quality by Design (QbD) approach related to the development of new pharmaceutical formulations, a cost-saving process ensuring a high-quality product taking into account patient expectations, industrial and regulatory aspects can be achieved. Furthermore, this concept is highly recommended by regulatory agencies. RESULTS Our work discusses the current therapies, active agents, drug carrier systems, and evaluation methods in connection with the treatment of skin cancer and outlines Critical Quality Attributes which need to be considered during the development of a nanosized dermal anticancer formulation. CONCLUSION The first part of this review summarizes the most important topical treatment therapies for skin cancer and highlights the future therapeutic perspectives, focusing on the benefits of nanotechnology and dermal administration. The second part outlines the critical points of nanosized dermal anticancer formulation development in the view of QbD approach. Our research emphasizes the application of QbD method for a rationalized and more effective anticancer formulation development process.
Collapse
Affiliation(s)
- Erzsébet Csányi
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Mónika Bakonyi
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| |
Collapse
|
28
|
Feng X, Xu W, Li Z, Song W, Ding J, Chen X. Immunomodulatory Nanosystems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900101. [PMID: 31508270 PMCID: PMC6724480 DOI: 10.1002/advs.201900101] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/21/2019] [Indexed: 05/15/2023]
Abstract
Immunotherapy has emerged as an effective strategy for the prevention and treatment of a variety of diseases, including cancer, infectious diseases, inflammatory diseases, and autoimmune diseases. Immunomodulatory nanosystems can readily improve the therapeutic effects and simultaneously overcome many obstacles facing the treatment method, such as inadequate immune stimulation, off-target side effects, and bioactivity loss of immune agents during circulation. In recent years, researchers have continuously developed nanomaterials with new structures, properties, and functions. This Review provides the most recent advances of nanotechnology for immunostimulation and immunosuppression. In cancer immunotherapy, nanosystems play an essential role in immune cell activation and tumor microenvironment modulation, as well as combination with other antitumor approaches. In infectious diseases, many encouraging outcomes from using nanomaterial vaccines against viral and bacterial infections have been reported. In addition, nanoparticles also potentiate the effects of immunosuppressive immune cells for the treatment of inflammatory and autoimmune diseases. Finally, the challenges and prospects of applying nanotechnology to modulate immunotherapy are discussed.
Collapse
Affiliation(s)
- Xiangru Feng
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- University of Science and Technology of ChinaHefei230026P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Zhongmin Li
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- Department of Gastrointestinal Colorectal and Anal SurgeryChina–Japan Union Hospital of Jilin UniversityChangchun130033P. R. China
| | - Wantong Song
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| |
Collapse
|
29
|
Wu F, Zhu J, Li G, Wang J, Veeraraghavan VP, Krishna Mohan S, Zhang Q. Biologically synthesized green gold nanoparticles from Siberian ginseng induce growth-inhibitory effect on melanoma cells (B16). ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3297-3305. [PMID: 31379212 DOI: 10.1080/21691401.2019.1647224] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Fenglian Wu
- Department of Burn and Plastic Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Plastic Surgery, The First Hospital of Qin Huangdao, Qinhuangdao, Hebei, China
| | - Jun Zhu
- Department of Plastic Surgery, Ever Care Medical and Beauty Hospital, Harbin, Heilongjiang, China
| | - Guoliang Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiaxin Wang
- Department of Burn and Plastic Surgery, The First Hospital of Qin Huangdao, Qinhuangdao., Hebei, China
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Surapaneni Krishna Mohan
- Department of Medical Biochemistry, College of Applied Medical Sciences - Jubail (CAMSJ), Imam Abdulrahman Bin Faisal University, Jubail Industrial City, Al Jubail, Kingdom of Saudi Arabia (KSA)
| | - Qingfu Zhang
- Department of Burn and Plastic Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
30
|
Wang C, Wang X, Liu J, Huang Z, Li C, Liu Y, Sang X, Yang L, Wang S, Su Y, Liu C, Liu Y, Wang Z. Embryonic stem cell microenvironment suppresses the malignancy of cutaneous melanoma cells by down-regulating PI3K/AKT pathway. Cancer Med 2019; 8:4265-4277. [PMID: 31173492 PMCID: PMC6675703 DOI: 10.1002/cam4.2207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/31/2019] [Accepted: 04/12/2019] [Indexed: 12/18/2022] Open
Abstract
Malignant cancer cells engage in a dynamic reciprocity with the tumor microenvironment (TME) that promotes tumor growth, development, and resistance to therapy. Early embryonic blastocyst microenvironments can reverse the tumorigenic phenotype of malignant cancer cells via ameliorating of TME. It is potential to apply embryonic stem cell (ESC) microenvironment to suppress the malignant behaviors of cancer cells. This study aimed to investigate a better method and the mechanism of ESC microenvironment supplied by ESCs on suppressing the malignancy of cutaneous melanoma cells. Cutaneous melanoma cell line A2058 were cultured and divided into four groups: (a) A2058-only (Control); (b) A2058 and ESCs continuously co-cultured (Group One); (c) A2058 co-cultured with daily refreshed ESCs (Group two); (d) Group one with VO-Ohpic, inhibitor of PTEN (VO-Ohpic Group). The results showed that, compared to control group, A2058 cells in group one exhibited decreased cellular proliferation, migration, invasiveness and vasculogenic mimicry concomitant with an increase in cell apoptosis, accompanied by down-regulation of PI3K/AKT pathway. Besides, the above mentioned anti-tumor effects on A2058 cells were significantly enhanced in group two but statistically weakened after administration of VO-Ohpic compared to group one. We demonstrate that ESC microenvironment reduces the malignancy of A2058 by down-regulating PI3K/AKT pathway. Notably, such anti-tumor effects can be enhanced by appropriately increasing the quality and quantity of ESCs in co-culture system. Our results suggest that ESC microenvironment could be an effective and safe approach to treating cancer.
Collapse
Affiliation(s)
- Chenjie Wang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐sen UniversityGuangzhou 510060China
| | - Xiaoran Wang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐sen UniversityGuangzhou 510060China
| | - Jiahui Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐sen UniversityGuangzhou 510060China
| | - Zheqian Huang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐sen UniversityGuangzhou 510060China
| | - Chaoyang Li
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐sen UniversityGuangzhou 510060China
| | - Ying Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐sen UniversityGuangzhou 510060China
| | - Xuan Sang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐sen UniversityGuangzhou 510060China
| | - Liu Yang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐sen UniversityGuangzhou 510060China
| | - Shoubi Wang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐sen UniversityGuangzhou 510060China
| | - Yaru Su
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐sen UniversityGuangzhou 510060China
| | - Chengxiu Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐sen UniversityGuangzhou 510060China
| | - Yizhi Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐sen UniversityGuangzhou 510060China
| | - Zhichong Wang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐sen UniversityGuangzhou 510060China
| |
Collapse
|
31
|
Rochefort P, Roussel J, de la Fouchardière A, Sarabi M, Desseigne F, Guibert P, Cattey-Javouhey A, Mastier C, Neidhardt-Berard EM, de la Fouchardière C. Primary malignant melanoma of the esophagus, treated with immunotherapy: a case report. Immunotherapy 2019; 10:831-835. [PMID: 30073896 DOI: 10.2217/imt-2018-0011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Primary malignant melanoma of the esophagus is rare, accounting for less than 0.1-0.2% of all esophageal malignancies. It is associated with a poor outcome due to late detection and high metastatic potential. Here, we report a case of esophageal cancer, which was initially diagnosed as an adenocarcinoma and finally was confirmed as a primary malignant melanoma. This 75-year-old Caucasian male had a history of dysphagia and recent lingering abdominal pain. First biopsy showed a poorly-differentiated adenocarcinoma. He was then treated with neoadjuvant radiochemotherapy. Biopsies were repeated because of an incomplete tumor response, evaluated by endoscopic and imaging studies. The final diagnosis was a malignant melanoma. The patient has been treated with immune-checkpoint inhibitor, nivolumab, an anti-PD1 antibody.
Collapse
Affiliation(s)
- Pauline Rochefort
- Department of Medical Oncology, Centre Leon Berard, Claude Bernard University, Lyon, France
| | - Juliette Roussel
- Department of Biopathology, Centre Leon Berard, Claude Bernard University, Lyon, France
| | | | - Matthieu Sarabi
- Department of Medical Oncology, Centre Leon Berard, Claude Bernard University, Lyon, France
| | - Françoise Desseigne
- Department of Medical Oncology, Centre Leon Berard, Claude Bernard University, Lyon, France
| | - Pierre Guibert
- Department of Medical Oncology, Centre Leon Berard, Claude Bernard University, Lyon, France
| | - Anne Cattey-Javouhey
- Department of Medical Oncology, Centre Leon Berard, Claude Bernard University, Lyon, France
| | - Charles Mastier
- Departement of Radiology, Centre Leon Berard, Claude Bernard University, Lyon, France
| | | | | |
Collapse
|
32
|
Wu M, Le W, Mei T, Wang Y, Chen B, Liu Z, Xue C. Cell membrane camouflaged nanoparticles: a new biomimetic platform for cancer photothermal therapy. Int J Nanomedicine 2019; 14:4431-4448. [PMID: 31354269 PMCID: PMC6588714 DOI: 10.2147/ijn.s200284] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022] Open
Abstract
Targeted drug delivery by nanoparticles (NPs) is an essential technique to achieve the ideal therapeutic effect for cancer. However, it requires large amounts of work to imitate the biomarkers on the surface of the cell membrane and cannot fully retain the bio-function and interactions among cells. Cell membranes have been studied to form biomimetic NPs to achieve functions like immune escape, targeted drug delivery, and immune modulation, which inherit the ability to interact with the in vivo environments. Currently, erythrocyte, leukocyte, mesenchymal stem cell, cancer cell and platelet have been applied in coating photothermal agents and anti-cancer drugs to achieve increased photothermal conversion efficiency and decreased side effects in cancer ablation. In this review, we discuss the recent development of cell membrane-coated NPs in the application of photothermal therapy and cancer targeting. The underlying biomarkers of cell membrane-coated nanoparticles (CMNPs) are discussed, and future research directions are suggested.
Collapse
Affiliation(s)
- Minliang Wu
- Department of Plastic Surgery,Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
| | - Wenjun Le
- Institute for Regenerative Medicine and Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai200092, People’s Republic of China
| | - Tianxiao Mei
- Institute for Regenerative Medicine and Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai200092, People’s Republic of China
| | - Yuchong Wang
- Department of Plastic Surgery,Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
| | - Bingdi Chen
- Institute for Regenerative Medicine and Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai200092, People’s Republic of China
| | - Zhongmin Liu
- Institute for Regenerative Medicine and Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai200092, People’s Republic of China
| | - Chunyu Xue
- Department of Plastic Surgery,Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
| |
Collapse
|
33
|
Banerjee I, De M, Dey G, Bharti R, Chattopadhyay S, Ali N, Chakrabarti P, Reis RL, Kundu SC, Mandal M. A peptide-modified solid lipid nanoparticle formulation of paclitaxel modulates immunity and outperforms dacarbazine in a murine melanoma model. Biomater Sci 2019; 7:1161-1178. [PMID: 30652182 DOI: 10.1039/c8bm01403e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Melanoma is a highly aggressive skin cancer. A paclitaxel formulation of solid lipid nanoparticles modified with Tyr-3-octreotide (PSM) is employed to treat melanoma that highly expresses somatostatin receptors (SSTRs). PSM exerts more apoptotic and anti-invasive effects in B16F10 mice melanoma cells as compared to dacarbazine (DTIC), an approved chemotherapeutic drug for treating aggressive melanoma. Besides, PSM induces one of the biomarkers of immunogenic cell death in vitro and in vivo as confirmed by calreticulin exposure on the B16F10 cell surface. We observed a significant number of CD8 positive T cells in the tumor bed of the PSM treated group. As a result, PSM effectively reduces tumor volume in vivo as compared to DTIC. PSM also induces a favorable systemic immune response as determined in the spleen and sera of the treated animals. Importantly, PSM can reduce the number of nodule formations in the experimental lung metastasis model. Our experimentations indicate that the metronomic PSM exhibits remarkable anti-melanoma activities without any observable toxicity. This immune modulation behavior of PSM can be exploited for the therapy of melanoma and probably for other malignancies.
Collapse
Affiliation(s)
- Indranil Banerjee
- Division of Infectious Diseases and Immunology, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S C Mullick Road, Kolkata - 700032, West Bengal, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Steffens Reinhardt L, Chee BS, Cao Z, Jaqueline Moura D, Nugent M. Freeze-thaw electrospun PVA-dacarbazine nanoparticles: preparation, characterization and anticancer evaluation. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1605606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Luiza Steffens Reinhardt
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre – UFCSPA, Porto Alegre City, Brazil
| | - Bor Shin Chee
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Zhi Cao
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Dinara Jaqueline Moura
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre – UFCSPA, Porto Alegre City, Brazil
| | - Michael Nugent
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| |
Collapse
|
35
|
Radiotherapy for Melanoma: More than DNA Damage. Dermatol Res Pract 2019; 2019:9435389. [PMID: 31073304 PMCID: PMC6470446 DOI: 10.1155/2019/9435389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/26/2018] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
Despite its reputation as a radioresistant tumour, there is evidence to support a role for radiotherapy in patients with melanoma and we summarise current clinical practice. Melanoma is a highly immunogenic tumour and in this era of immunotherapy, there is renewed interest in the potential of irradiation, not only as an adjuvant and palliative treatment, but also as an immune stimulant. It has long been known that radiation causes not only DNA strand breaks, apoptosis, and necrosis, but also immunogenic modulation and cell death through the induction of dendritic cells, cell adhesion molecules, death receptors, and tumour-associated antigens, effectively transforming the tumour into an individualised vaccine. This immune response can be enhanced by the application of clinical hyperthermia as evidenced by randomised trial data in patients with melanoma. The large fraction sizes used in cranial radiosurgery and stereotactic body radiotherapy are more immunogenic than conventional fractionation, which provides additional radiobiological justification for these techniques in this disease entity. Given the immune priming effect of radiotherapy, there is a strong but complex biological rationale and an increasing body of evidence for synergy in combination with immune checkpoint inhibitors, which are now first-line therapy in patients with recurrent or metastatic melanoma. There is great potential to increase local control and abscopal effects by combining radiotherapy with both immunotherapy and hyperthermia, and a combination of all three modalities is suggested as the next important trial in this refractory disease.
Collapse
|
36
|
Li K, Xiao G, Richardson JJ, Tardy BL, Ejima H, Huang W, Guo J, Liao X, Shi B. Targeted Therapy against Metastatic Melanoma Based on Self-Assembled Metal-Phenolic Nanocomplexes Comprised of Green Tea Catechin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801688. [PMID: 30886799 PMCID: PMC6402403 DOI: 10.1002/advs.201801688] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/09/2018] [Indexed: 02/05/2023]
Abstract
The targeted therapy of metastatic melanoma is an important yet challenging goal that has received only limited attention to date. Herein, green tea polyphenols, (-)-epigallocatechin-3-gallate (EGCG), and lanthanide metal ions (Sm3+) are used as building blocks to engineer self-assembled SmIII-EGCG nanocomplexes with synergistically enhanced tumor inhibitory properties. These nanocomplexes have negligible systemic toxic effects on healthy cells but cause a significant reduction in the viability of melanoma cells by efficiently regulating their metabolic pathways. Moreover, the wound-induced migration of melanoma cells can be efficiently inhibited by SmIII-EGCG, which is a key criterion for metastatic melanoma therapy. In a mouse melanoma tumor model, SmIII-EGCG is directly compared with a clinical anticancer drug, 5-fluorouracil and shows remarkable tumor inhibition. Moreover, the targeted therapy of SmIII-EGCG is shown to prevent metastatic lung melanoma from spreading to main organs with no adverse side effects on the body weight or organs. These in vivo results demonstrate significant advantages of SmIII-EGCG over its clinical counterpart. The results suggest that these green tea-based, self-assembled nanocomplexes possess all of the key traits of a clinically promising candidate to address the challenges associated with the treatment of advanced stage metastatic melanoma.
Collapse
Affiliation(s)
- Ke Li
- Department of Biomass Chemistry and EngineeringSichuan UniversityChengdu610065China
- Laboratory of EthnopharmacologyRegenerative Medicine Research CenterWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Gao Xiao
- Wyss Institute for Biologically Inspired EngineeringJohn A. Paulson School of Engineering and Applied SciencesHarvard UniversityBostonMA02115USA
- Department of Environmental Science and EngineeringCollege of Environment and ResourcesFuzhou UniversityFuzhou350108China
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology and Department of Chemical and Biomolecular EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Blaise L. Tardy
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP. O. Box 1630000076Finland
| | - Hirotaka Ejima
- Department of Materials EngineeringThe University of Tokyo7‐3‐1 HongoBunkyo‐kuTokyo113‐8656Japan
| | - Wen Huang
- Laboratory of EthnopharmacologyRegenerative Medicine Research CenterWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Junling Guo
- Department of Biomass Chemistry and EngineeringSichuan UniversityChengdu610065China
- Wyss Institute for Biologically Inspired EngineeringJohn A. Paulson School of Engineering and Applied SciencesHarvard UniversityBostonMA02115USA
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan UniversityChengduSichuan610065China
| | - Xuepin Liao
- Department of Biomass Chemistry and EngineeringSichuan UniversityChengdu610065China
| | - Bi Shi
- Department of Biomass Chemistry and EngineeringSichuan UniversityChengdu610065China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan UniversityChengduSichuan610065China
| |
Collapse
|
37
|
Tang R, Jia Y, Zheng W, Feng Q, Zheng W, Jiang X. Nanocatalyst Complex Can Dephosphorylate Key Proteins in MAPK Pathway for Cancer Therapy. Adv Healthc Mater 2018; 7:e1800533. [PMID: 30019396 DOI: 10.1002/adhm.201800533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/18/2018] [Indexed: 01/05/2023]
Abstract
Controlling phosphorylation processes of proteins is a facile way for manipulating cell fates. Herein, a synergistic therapeutic strategy utilizing a near-infrared (NIR)-responsive nanocatalyst (NC) complex is presented, which is comprised of photoactive NC and protein phosphatase 2A (PP2A), to synergistically inhibit hyperphosphorylation of mitogen-activated protein kinase (MAPK) pathway for cancer therapy, as an example of many biological processes this approach can apply to. NIR-triggered release of PP2A specially dephosphorylates and inactivates mitogen-activated protein kinase kinase (MAP2K, also known as MEK) and extracellular regulated protein kinases (ERK) in the MAPK pathway, meanwhile, the NIR-triggered activation of NC decreases the level of intracellular adenosine triphosphate to attenuate protein phosphorylation of MEK and ERK. The synergistic therapeutics effectively suppress melanoma progression by inhibiting hyperphosphorylation of the MAPK pathway. In addition, the nanocatalyst complex reduces the risk of drug-resistance through inhibiting a rebound of RAS-GTP. The NIR-responsive nanocatalyst complex paves a novel way for cancer therapeutics.
Collapse
Affiliation(s)
- Rongbing Tang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; No. 11 Zhongguancun Beiyitiao Beijing 100190 P. R. China
- Academy for Advanced Interdisciplinary Studies; Peking University; Beijing 100871 China
- The University of Chinese Academy of Sciences; 19 A Yuquan Road Shijingshan District Beijing 100049 P. R. China
| | - Yuexiao Jia
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; No. 11 Zhongguancun Beiyitiao Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences; 19 A Yuquan Road Shijingshan District Beijing 100049 P. R. China
| | - Wenshu Zheng
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; No. 11 Zhongguancun Beiyitiao Beijing 100190 P. R. China
- Academy for Advanced Interdisciplinary Studies; Peking University; Beijing 100871 China
- The University of Chinese Academy of Sciences; 19 A Yuquan Road Shijingshan District Beijing 100049 P. R. China
| | - Qiang Feng
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; No. 11 Zhongguancun Beiyitiao Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences; 19 A Yuquan Road Shijingshan District Beijing 100049 P. R. China
| | - Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; No. 11 Zhongguancun Beiyitiao Beijing 100190 P. R. China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; No. 11 Zhongguancun Beiyitiao Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences; 19 A Yuquan Road Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
38
|
Abstract
Melanoma represents the most aggressive and the deadliest form of skin cancer. Current therapeutic approaches include surgical resection, chemotherapy, photodynamic therapy, immunotherapy, biochemotherapy, and targeted therapy. The therapeutic strategy can include single agents or combined therapies, depending on the patient’s health, stage, and location of the tumor. The efficiency of these treatments can be decreased due to the development of diverse resistance mechanisms. New therapeutic targets have emerged from studies of the genetic profile of melanocytes and from the identification of molecular factors involved in the pathogenesis of the malignant transformation. In this review, we aim to survey therapies approved and under evaluation for melanoma treatment and relevant research on the molecular mechanisms underlying melanomagenesis.
Collapse
Affiliation(s)
- Beatriz Domingues
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - José Manuel Lopes
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Pathology, Hospital S João, Porto, Portugal.,Department of Pathology, Medical Faculty, University of Porto, Porto, Portugal
| | - Paula Soares
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Pathology, Medical Faculty, University of Porto, Porto, Portugal
| | - Helena Pópulo
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
39
|
Spirou SV, Basini M, Lascialfari A, Sangregorio C, Innocenti C. Magnetic Hyperthermia and Radiation Therapy: Radiobiological Principles and Current Practice †. NANOMATERIALS 2018; 8:nano8060401. [PMID: 29865277 PMCID: PMC6027353 DOI: 10.3390/nano8060401] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
Abstract
Hyperthermia, though by itself generally non-curative for cancer, can significantly increase the efficacy of radiation therapy, as demonstrated by in vitro, in vivo, and clinical results. Its limited use in the clinic is mainly due to various practical implementation difficulties, the most important being how to adequately heat the tumor, especially deep-seated ones. In this work, we first review the effects of hyperthermia on tissue, the limitations of radiation therapy and the radiobiological rationale for combining the two treatment modalities. Subsequently, we review the theory and evidence for magnetic hyperthermia that is based on magnetic nanoparticles, its advantages compared with other methods of hyperthermia, and how it can be used to overcome the problems associated with traditional techniques of hyperthermia.
Collapse
Affiliation(s)
- Spiridon V Spirou
- Department of Radiology, Sismanoglio General Hospital of Attica, Sismanogliou 1, Marousi 15126, Greece.
| | - Martina Basini
- Università degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy.
| | - Alessandro Lascialfari
- Università degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy.
| | - Claudio Sangregorio
- ICCOM-CNR via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
- INSTM and Dept. Of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| | - Claudia Innocenti
- ICCOM-CNR via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
- INSTM and Dept. Of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
40
|
Redox/enzyme sensitive chondroitin sulfate-based self-assembled nanoparticles loading docetaxel for the inhibition of metastasis and growth of melanoma. Carbohydr Polym 2018; 184:82-93. [DOI: 10.1016/j.carbpol.2017.12.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 12/04/2017] [Accepted: 12/16/2017] [Indexed: 11/20/2022]
|
41
|
Naidoo C, Kruger CA, Abrahamse H. Photodynamic Therapy for Metastatic Melanoma Treatment: A Review. Technol Cancer Res Treat 2018; 17:1533033818791795. [PMID: 30099929 PMCID: PMC6090489 DOI: 10.1177/1533033818791795] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 06/04/2018] [Accepted: 07/03/2018] [Indexed: 01/21/2023] Open
Abstract
This review article is based on specifically targeted nanoparticles that have been used in the treatment of melanoma. According to the Skin Cancer Foundation, within 2017 an estimated 9730 people will die due to invasive melanoma. Conventional treatments for nonmalignant melanoma include surgery, chemotherapy, and radiation. For the treatment of metastatic melanoma, 3 therapeutic agents have been approved by the Food and Drug Administration: dacarbazine, recombinant interferon α-2b, and high-dose interleukin 2. Photodynamic therapy is an alternative therapy that activates a photosensitizer at a specific wavelength forming reactive oxygen species which in turn induces cell death; it is noninvasive with far less side effects when compared to conventional treatments. Nanoparticles are generally conjugated to photosynthetic drugs, since they are biocompatible, stabile, and durable, as well as have a high loading capacity, which improve either passive or active photosensitizer drug delivery to targeted cells. Therefore, various photosynthetic drugs and nanoparticle drug delivery systems specifically targeted for melanoma were analyzed in this review article in relation to either their passive or their active cellular uptake mechanisms in order to deduce the efficacy of photodynamic therapy treatment for metastatic melanoma which currently remains ongoing. The overall findings from this review concluded that no current photodynamic therapy studies have been performed in relation to active nanoparticle platform photosensitizer drug carrier systems for the treatment of metastatic melanoma, and so this type of research requires further investigation into developing a more efficient active nano-photosensitizer carrier smart drug that can be conjugated to specific cell surface receptors and combinative monoclonal antibodies so that a further enhanced and more efficient form of targeted photodynamic therapy for the treatment of metastatic melanoma can be established.
Collapse
Affiliation(s)
- Channay Naidoo
- Laser Research Centre, Faculty of Health Sciences, University of
Johannesburg, Johannesburg, South Africa
| | - Cherie Ann Kruger
- Laser Research Centre, Faculty of Health Sciences, University of
Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of
Johannesburg, Johannesburg, South Africa
| |
Collapse
|
42
|
Functionalized diterpene parvifloron D-loaded hybrid nanoparticles for targeted delivery in melanoma therapy. Ther Deliv 2017; 7:521-44. [PMID: 27444493 DOI: 10.4155/tde-2016-0027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM Parvifloron D is a natural diterpene with a broad and not selective cytotoxicity toward human tumor cells. In order to develop a targeted antimelanoma drug delivery platform for Parvifloron D, hybrid nanoparticles were prepared with biopolymers and functionalized with α-melanocyte stimulating hormone. Results/methodology: Nanoparticles were produced according to a solvent displacement method and the physicochemical properties were assessed. It was shown that Parvifloron D is cytotoxic and can induce, both as free and as encapsulated drug, cell death in melanoma cells (human A375 and mouse B16V5). Parvifloron D-loaded nanoparticles showed a high encapsulation efficiency (87%) and a sustained release profile. In vitro experiments showed the nanoparticles' uptake and cell internalization. CONCLUSION Hybrid nanoparticles appear to be a promising platform for long-term drug release, presenting the desired structure and a robust performance for targeted anticancer therapy.
Collapse
|
43
|
Yu M, Amengual J, Menon A, Kamaly N, Zhou F, Xu X, Saw PE, Lee SJ, Si K, Ortega CA, Choi WI, Lee IH, Bdour Y, Shi J, Mahmoudi M, Jon S, Fisher EA, Farokhzad OC. Targeted Nanotherapeutics Encapsulating Liver X Receptor Agonist GW3965 Enhance Antiatherogenic Effects without Adverse Effects on Hepatic Lipid Metabolism in Ldlr -/- Mice. Adv Healthc Mater 2017; 6:10.1002/adhm.201700313. [PMID: 28730752 PMCID: PMC5656530 DOI: 10.1002/adhm.201700313] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/27/2017] [Indexed: 11/11/2022]
Abstract
The pharmacological manipulation of liver X receptors (LXRs) has been an attractive therapeutic strategy for atherosclerosis treatment as they control reverse cholesterol transport and inflammatory response. This study presents the development and efficacy of nanoparticles (NPs) incorporating the synthetic LXR agonist GW3965 (GW) in targeting atherosclerotic lesions. Collagen IV (Col IV) targeting ligands are employed to functionalize the NPs to improve targeting to the atherosclerotic plaque, and formulation parameters such as the length of the polyethylene glycol (PEG) coating molecules are systematically optimized. In vitro studies indicate that the GW-encapsulated NPs upregulate the LXR target genes and downregulate proinflammatory mediator in macrophages. The Col IV-targeted NPs encapsulating GW (Col IV-GW-NPs) successfully reaches atherosclerotic lesions when administered for 5 weeks to mice with preexisting lesions, substantially reducing macrophage content (≈30%) compared to the PBS group, which is with greater efficacy versus nontargeting NPs encapsulating GW (GW-NPs) (≈18%). In addition, mice administered the Col IV-GW-NPs do not demonstrate increased hepatic lipid biosynthesis or hyperlipidemia during the treatment period, unlike mice injected with the free GW. These findings suggest a new form of LXR-based therapeutics capable of enhanced delivery of the LXR agonist to atherosclerotic lesions without altering hepatic lipid metabolism.
Collapse
Affiliation(s)
- Mikyung Yu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jaume Amengual
- Division of Cardiology, Department of Medicine, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Arjun Menon
- Division of Cardiology, Department of Medicine, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Nazila Kamaly
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Micro and Nanotechnology, Technical University of Denmark, DTU Nanotech, 2800 Kgs. Lyngby, Denmark
| | - Felix Zhou
- Division of Cardiology, Department of Medicine, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Xiaoding Xu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Phei Er Saw
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Seung-Joo Lee
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA
| | - Kevin Si
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Carleena Angelica Ortega
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Won Il Choi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-guCheongju, Chungbuk, 28160, Republic of Korea
| | - In-Hyun Lee
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yazan Bdour
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Morteza Mahmoudi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sangyong Jon
- KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- College of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
44
|
Al-Yousuf K, Webster CA, Wheeler GN, Bombelli FB, Sherwood V. Combining Cytotoxicity Assessment and Xenopus laevis Phenotypic Abnormality Assay as a Predictor of Nanomaterial Safety. ACTA ACUST UNITED AC 2017; 73:20.13.1-20.13.33. [PMID: 28777439 DOI: 10.1002/cptx.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The African clawed frog, Xenopus laevis, has been used as an efficient pre-clinical screening tool to predict drug safety during the early stages of the drug discovery process. X. laevis is a relatively inexpensive model that can be used in whole organism high-throughput assays whilst maintaining a high degree of homology to the higher vertebrate models often used in scientific research. Despite an ever-increasing volume of biomedical nanoparticles (NPs) in development, their unique physico-chemical properties challenge the use of standard toxicology assays. Here, we present a protocol that directly compares the sensitivity of X. laevis development as a tool to assess potential NP toxicity by observation of embryo phenotypic abnormalities/lethality after NP exposure, to in vitro cytotoxicity obtained using mammalian cell lines. In combination with conventional cytotoxicity assays, the X. laevis phenotypic assay provides accurate data to efficiently assess the safety of novel biomedical NPs. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Karamallah Al-Yousuf
- Skin Tumour Laboratory, Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Carl A Webster
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | | | - Victoria Sherwood
- Skin Tumour Laboratory, Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
45
|
Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett 2017; 190:64-83. [PMID: 28760499 DOI: 10.1016/j.imlet.2017.07.015] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/04/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
Abstract
Surgery, chemotherapy, radiotherapy, and hormone therapy are the main common anti-tumor therapeutic approaches. However, the non-specific targeting of cancer cells has made these approaches non-effective in the significant number of patients. Non-specific targeting of malignant cells also makes indispensable the application of the higher doses of drugs to reach the tumor region. Therefore, there are two main barriers in the way to reach the tumor area with maximum efficacy. The first, inhibition of drug delivery to healthy non-cancer cells and the second, the direct conduction of drugs into tumor site. Nanoparticles (NPs) are the new identified tools by which we can deliver drugs into tumor cells with minimum drug leakage into normal cells. Conjugation of NPs with ligands of cancer specific tumor biomarkers is a potent therapeutic approach to treat cancer diseases with the high efficacy. It has been shown that conjugation of nanocarriers with molecules such as antibodies and their variable fragments, peptides, nucleic aptamers, vitamins, and carbohydrates can lead to effective targeted drug delivery to cancer cells and thereby cancer attenuation. In this review, we will discuss on the efficacy of the different targeting approaches used for targeted drug delivery to malignant cells by NPs.
Collapse
|
46
|
Preparation and characterization of metformin surface modified cellulose nanofiber gel and evaluation of its anti-metastatic potentials. Carbohydr Polym 2017; 165:322-333. [DOI: 10.1016/j.carbpol.2017.02.067] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/19/2017] [Accepted: 02/16/2017] [Indexed: 11/17/2022]
|
47
|
Guo P, Yang J, Bielenberg DR, Dillon D, Zurakowski D, Moses MA, Auguste DT. A quantitative method for screening and identifying molecular targets for nanomedicine. J Control Release 2017; 263:57-67. [PMID: 28341549 DOI: 10.1016/j.jconrel.2017.03.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/10/2017] [Accepted: 03/17/2017] [Indexed: 12/11/2022]
Abstract
Identifying a molecular target is essential for tumor-targeted nanomedicine. Current cancer nanomedicines commonly suffer from poor tumor specificity, "off-target" toxicity, and limited clinical efficacy. Here, we report a method to screen and identify new molecular targets for tumor-targeted nanomedicine based on a quantitative analysis. In our proof-of-principle study, we used comparative flow cytometric screening to identify ICAM-1 as a potential target for metastatic melanoma (MM). We further evaluated ICAM-1 as a MM targeting moiety by characterizing its (1) tumor specificity, (2) expression level, (3) cellular internalization, (4) therapeutic function, and (5) potential clinical impact. Quantitation of ICAM-1 protein expression on cells and validation by immunohistochemistry on human tissue specimens justified the synthesis of antibody-functionalized drug delivery vehicles, which were benchmarked against appropriate controls. We engineered ICAM-1 antibody conjugated, doxorubicin encapsulating immunoliposomes (ICAM-Dox-LPs) to selectively recognize and deliver doxorubicin to MM cells and simultaneously neutralize ICAM-1 signaling via an antibody blockade, demonstrating significant and simultaneous inhibitory effects on MM cell proliferation and migration. This paper describes a novel, quantitative metric system that identifies and evaluates new cancer targets for tumor-targeting nanomedicine.
Collapse
Affiliation(s)
- Peng Guo
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, United States; Vascular Biology Program, Boston Children's Hospital, 1 Blackfan Circle, Boston, MA 02115, United States; Department of Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Jiang Yang
- Vascular Biology Program, Boston Children's Hospital, 1 Blackfan Circle, Boston, MA 02115, United States; Department of Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, 1 Blackfan Circle, Boston, MA 02115, United States; Department of Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Deborah Dillon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, United States
| | - David Zurakowski
- Department of Anesthesia, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital, 1 Blackfan Circle, Boston, MA 02115, United States; Department of Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Debra T Auguste
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, United States.
| |
Collapse
|
48
|
Deng C, Zhang Q, Fu Y, Sun X, Gong T, Zhang Z. Coadministration of Oligomeric Hyaluronic Acid-Modified Liposomes with Tumor-Penetrating Peptide-iRGD Enhances the Antitumor Efficacy of Doxorubicin against Melanoma. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1280-1292. [PMID: 28009503 DOI: 10.1021/acsami.6b13738] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A safe and efficient tumor-targeting strategy based on oligomeric hyaluronic acid (HA) modification and coadministration of tumor-penetrating peptide-iRGD was successfully developed. In this study, common liposomes (cLip) were modified by oligomeric HA to obtain HA-Lip. After injection into rats, HA-Lip showed good stealth in the bloodstream and lower liver distribution compared with cLip. Moreover, our HA-Lip could be internalized into B16F10 cells (CD44-overexpressing tumor cells) through HA-CD44 interaction. After systemic administration to B16F10 melanoma-bearing mice, HA-Lip showed an increased distribution in tumor due to the prolonged blood circulation time and the enhanced penetration and retention effect. When coadministered with iRGD, the tumor penetration of HA-Lip was significantly enhanced, which could promote HA-Lip internalization by tumors cells located in deep tumor regions through receptor-mediated endocytosis. Furthermore, doxorubicin (DOX)-loaded HA-Lip coadministering with iRGD showed much better antitumor effect compared to DOX-loaded cLip and DOX-loaded cLip in combination with iRGD. In systemic toxicity test, DOX-loaded HA-Lip could significantly decrease the cardiotoxicity and myelosuppression of DOX. Taken together, our results demonstrated that coadministration of oligomeric HA-modified liposomes with iRGD could be a promising treatment strategy for targeted therapy of melanoma.
Collapse
Affiliation(s)
- Caifeng Deng
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Quan Zhang
- School of Pharmacy, Chengdu Medical College , Chengdu 610083, China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| |
Collapse
|
49
|
Monge-Fuentes V, Muehlmann LA, Longo JPF, Silva JR, Fascineli ML, de Souza P, Faria F, Degterev IA, Rodriguez A, Carneiro FP, Lucci CM, Escobar P, Amorim RFB, Azevedo RB. Photodynamic therapy mediated by acai oil (Euterpe oleracea Martius) in nanoemulsion: A potential treatment for melanoma. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 166:301-310. [PMID: 28024281 DOI: 10.1016/j.jphotobiol.2016.12.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/27/2016] [Accepted: 12/05/2016] [Indexed: 11/16/2022]
Abstract
Melanoma is the most aggressive and lethal form of skin cancer, responsible for >80% of deaths. Standard treatments for late-stage melanoma usually present poor results, leading to life-threatening side effects and low overall survival. Thus, it is necessary to rethink treatment strategies and design new tools for the treatment of this disease. On that ground, we hereby report the use of acai oil in nanoemulsion (NanoA) as a novel photosensitizer for photodynamic therapy (PDT) used to treat melanoma in in vitro and in vivo experimental models. NIH/3T3 normal cells and B16F10 melanoma cell lines were treated with PDT and presented 85% cell death for melanoma cells, while maintaining high viability in normal cells. Flow cytometry indicated that cell death occurred by late apoptosis/necrosis. Tumor bearing C57BL/6 mice treated five times with PDT using acai oil in nanoemulsion showed tumor volume reduction of 82% in comparison to control/tumor group. Necrotic tissue per tumor area reached its highest value in PDT-treated mice, supporting PDT efficacy. Overall, acai oil in nanoemulsion was an effective photosensitizer, representing a promising source of new photosensitizing molecules for PDT treatment of melanoma, a tumor with an inherent tendency to be refractory for this type of therapy.
Collapse
Affiliation(s)
- Victoria Monge-Fuentes
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brazil
| | - Luis Alexandre Muehlmann
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brazil
| | - João Paulo Figueiró Longo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brazil
| | - Jaqueline Rodrigues Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brazil
| | - Maria Luiza Fascineli
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brazil
| | - Paulo de Souza
- Laboratory of Applied Physics, Institute of Physics, University of Brasília, Brazil
| | - Fernando Faria
- Center for Biological Sciences and Nature, Federal University of Acre, Rio Branco, Brazil
| | | | - Anselmo Rodriguez
- Center for Biological Sciences and Nature, Federal University of Acre, Rio Branco, Brazil
| | | | - Carolina Madeira Lucci
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brazil
| | - Patricia Escobar
- Research Center for Tropical Diseases, Department of Science, Medical School, Industrial University of Santander, Colombia
| | | | - Ricardo Bentes Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brazil.
| |
Collapse
|
50
|
Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich’s “magic (nano)bullet” for cancer theranostics? Cancer Treat Rev 2016; 50:217-227. [DOI: 10.1016/j.ctrv.2016.09.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 01/11/2023]
|