1
|
Seufferlein T, Mayerle J, Boeck S, Brunner T, Ettrich TJ, Grenacher L, Gress TM, Hackert T, Heinemann V, Kestler A, Sinn M, Tannapfel A, Wedding U, Uhl W. S3-Leitlinie Exokrines Pankreaskarzinom – Version 3.1. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:e874-e995. [PMID: 39389103 DOI: 10.1055/a-2338-3533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Affiliation(s)
| | | | | | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz, Austria
| | | | | | - Thomas Mathias Gress
- Gastroenterologie und Endokrinologie Universitätsklinikum Gießen und Marburg, Germany
| | - Thilo Hackert
- Klinik und Poliklinik für Allgemein-, Viszeral- und Thoraxchirurgie, Universitätsklinikum Hamburg-Eppendorf, Germany
| | - Volker Heinemann
- Medizinische Klinik und Poliklinik III, Klinikum der Universität München-Campus Grosshadern, München, Germany
| | | | - Marianne Sinn
- Medizinische Klinik und Poliklinik II Onkologie und Hämatologie, Universitätsklinikum Hamburg-Eppendorf, Germany
| | | | | | - Waldemar Uhl
- Allgemein- und Viszeralchirurgie, St Josef-Hospital, Bochum, Germany
| |
Collapse
|
2
|
Golivi Y, Kumari S, Farran B, Alam A, Peela S, Nagaraju GP. Small molecular inhibitors: Therapeutic strategies for pancreatic cancer. Drug Discov Today 2024; 29:104053. [PMID: 38849028 DOI: 10.1016/j.drudis.2024.104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Pancreatic cancer (PC), a disease with high heterogeneity and a dense stromal microenvironment, presents significant challenges and a bleak prognosis. Recent breakthroughs have illuminated the crucial interplay among RAS, epidermal growth factor receptor (EGFR), and hedgehog pathways in PC progression. Small molecular inhibitors have emerged as a potential solution with their advantages of oral administration and the ability to target intracellular and extracellular sites effectively. However, despite the US FDA approving over 100 small-molecule targeted antitumor drugs, challenges such as low response rates and drug resistance persist. This review delves into the possibility of using small molecules to treat persistent or spreading PC, highlighting the challenges and the urgent need for a diverse selection of inhibitors to develop more effective treatment strategies.
Collapse
Affiliation(s)
- Yuvasri Golivi
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali, RJ 304 022, India
| | - Seema Kumari
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GIS, GITAM, Visakhapatnam, Andhra Pradesh 530045, India
| | - Batoul Farran
- Department of Hematology and Oncology, Henry Ford Health, Detroit, MI 48202, USA
| | - Afroz Alam
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali, RJ 304 022, India
| | - Sujatha Peela
- Department of Biotechnology, Dr. B. R. Ambedkar University, Srikakulam, Andhra Pradesh, 532001, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
3
|
Del Chiaro M, Sugawara T, Karam SD, Messersmith WA. Advances in the management of pancreatic cancer. BMJ 2023; 383:e073995. [PMID: 38164628 DOI: 10.1136/bmj-2022-073995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Pancreatic cancer remains among the malignancies with the worst outcomes. Survival has been improving, but at a slower rate than other cancers. Multimodal treatment, including chemotherapy, surgical resection, and radiotherapy, has been under investigation for many years. Because of the anatomical characteristics of the pancreas, more emphasis on treatment selection has been placed on local extension into major vessels. Recently, the development of more effective treatment regimens has opened up new treatment strategies, but urgent research questions have also become apparent. This review outlines the current management of pancreatic cancer, and the recent advances in its treatment. The review discusses future treatment pathways aimed at integrating novel findings of translational and clinical research.
Collapse
Affiliation(s)
- Marco Del Chiaro
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Toshitaka Sugawara
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sana D Karam
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Wells A Messersmith
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
4
|
Hau RK, Wright SH, Cherrington NJ. Addressing the Clinical Importance of Equilibrative Nucleoside Transporters in Drug Discovery and Development. Clin Pharmacol Ther 2023; 114:780-794. [PMID: 37404197 PMCID: PMC11347013 DOI: 10.1002/cpt.2984] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023]
Abstract
The US Food and Drug Administration (FDA), European Medicines Agency (EMA), and Pharmaceuticals and Medical Devices Agency (PMDA) guidances on small-molecule drug-drug interactions (DDIs), with input from the International Transporter Consortium (ITC), recommend the evaluation of nine drug transporters. Although other clinically relevant drug uptake and efflux transporters have been discussed in ITC white papers, they have been excluded from further recommendation by the ITC and are not included in current regulatory guidances. These include the ubiquitously expressed equilibrative nucleoside transporters (ENT) 1 and ENT2, which have been recognized by the ITC for their potential role in clinically relevant nucleoside analog drug interactions for patients with cancer. Although there is comparatively limited clinical evidence supporting their role in DDI risk or other adverse drug reactions (ADRs) compared with the nine highlighted transporters, several in vitro and in vivo studies have identified ENT interactions with non-nucleoside/non-nucleotide drugs, in addition to nucleoside/nucleotide analogs. Some noteworthy examples of compounds that interact with ENTs include cannabidiol and selected protein kinase inhibitors, as well as the nucleoside analogs remdesivir, EIDD-1931, gemcitabine, and fialuridine. Consequently, DDIs involving the ENTs may be responsible for therapeutic inefficacy or off-target toxicity. Evidence suggests that ENT1 and ENT2 should be considered as transporters potentially involved in clinically relevant DDIs and ADRs, thereby warranting further investigation and regulatory consideration.
Collapse
Affiliation(s)
- Raymond K Hau
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA
| | - Stephen H Wright
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Nathan J Cherrington
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
5
|
An YF, Pu N, Jia JB, Wang WQ, Liu L. Therapeutic advances targeting tumor angiogenesis in pancreatic cancer: Current dilemmas and future directions. Biochim Biophys Acta Rev Cancer 2023; 1878:188958. [PMID: 37495194 DOI: 10.1016/j.bbcan.2023.188958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Pancreatic cancer (PC) is one of the most lethal malignancies, which is generally resistant to various treatments. Tumor angiogenesis is deemed to be a pivotal rate-determining step for tumor growth and metastasis. Therefore, anti-angiogenetic therapy is a rational strategy to treat various cancers. However, numerous clinical trials on anti-angiogenetic therapies for PC are overwhelmingly disappointing. The unique characteristics of tumor blood vessels in PC, which are desperately lacking and highly compressed by the dense desmoplastic stroma, are reconsidered to explore some optimized strategies. In this review, we mainly focus on its specific characteristics of tumor blood vessels, discuss the current dilemmas of anti-angiogenic therapy in PC and their underlying mechanisms. Furthermore, we point out the future directions, including remodeling the abnormal vasculature or even reshaping the whole tumor microenvironment in which they are embedded to improve tumor microcirculation, and then create therapeutic vulnerabilities to the current available therapeutic strategies.
Collapse
Affiliation(s)
- Yan-Fei An
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Basic Medicine, Chang Zhi Medical College, Changzhi 046000,China; Department of Basic Medicine and Institute of Liver Diseases, Shan Xi Medical University, Taiyuan 030000, China
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jin-Bin Jia
- Department of Basic Medicine and Institute of Liver Diseases, Shan Xi Medical University, Taiyuan 030000, China.
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Cassese G, Han HS, Yoon YS, Lee JS, Lee B, Cubisino A, Panaro F, Troisi RI. Role of neoadjuvant therapy for nonmetastatic pancreatic cancer: Current evidence and future perspectives. World J Gastrointest Oncol 2023; 15:911-924. [PMID: 37389109 PMCID: PMC10302990 DOI: 10.4251/wjgo.v15.i6.911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/17/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is one of the most common and lethal human cancers worldwide. Surgery followed by adjuvant chemotherapy offers the best chance of a long-term survival for patients with PDAC, although only approximately 20% of the patients have resectable tumors when diagnosed. Neoadjuvant chemotherapy (NACT) is recommended for borderline resectable pancreatic cancer. Several studies have investigated the role of NACT in treating resectable tumors based on the recent advances in PDAC biology, as NACT provides the potential benefit of selecting patients with favorable tumor biology and controls potential micro-metastases in high-risk patients with resectable PDAC. In such challenging cases, new potential tools, such as ct-DNA and molecular targeted therapy, are emerging as novel therapeutic options that may improve old paradigms. This review aims to summarize the current evidence regarding the role of NACT in treating non-metastatic pancreatic cancer while focusing on future perspectives in light of recent evidence.
Collapse
Affiliation(s)
- Gianluca Cassese
- Department of Clinical Medicine and Surgery, Division of Minimally Invasive HPB Surgery and Transplantation Service, Federico II University Hospital, Naples 80131, Italy
| | - Ho-Seong Han
- Department of Surgery, Seoul National University College of Medicine, Seongnam 13620, Gyeonggi-do, South Korea
| | - Yoo-Seok Yoon
- Department of Surgery, Seoul National University College of Medicine, Seongnam 13620, Gyeonggi-do, South Korea
| | - Jun Suh Lee
- Department of Surgery, Seoul National University College of Medicine, Seongnam 13620, Gyeonggi-do, South Korea
| | - Boram Lee
- Department of Surgery, Seoul National University College of Medicine, Seongnam 13620, Gyeonggi-do, South Korea
| | - Antonio Cubisino
- Department of HPB Surgery and Transplantation, Beaujon Hospital, Clichy 92110, France
| | - Fabrizio Panaro
- Department of Digestive Surgery and Liver Transplantation, CHU Montpellier, Montpellier 34100, France
| | - Roberto Ivan Troisi
- Department of Clinical Medicine and Surgery, Division of Minimally Invasive HPB Surgery and Transplantation Service, Federico II University Hospital, Naples 80131, Italy
| |
Collapse
|
7
|
Acitelli E, Maiorca C, Grani G, Maranghi M. Metabolic adverse events of multitarget kinase inhibitors: a systematic review. Endocrine 2023:10.1007/s12020-023-03362-2. [PMID: 37067769 PMCID: PMC10239378 DOI: 10.1007/s12020-023-03362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/31/2023] [Indexed: 04/18/2023]
Abstract
PURPOSE Multitargeted kinase inhibitors (MKIs) are used for the treatment of several cancers. By targeting multiple signaling pathways, MKIs have become cornerstones of the oncologic treatment. Although their use leads to important results in terms of survival, treatment with MKIs can determine important side effects the clinician must be aware of. Among those, arterial hypertension, mucositis and skin lesions are universally reported, while data about metabolic alterations are scarce. In our review, we focused on glucose and lipid alterations in MKI-treated patients. METHODS We searched for articles, published between January 2012 and December 2022, evaluating the effects on lipid and glucose metabolism of four MKIs (Cabozantinib, Lenvatinib, Sorafenib, and Vandetanib) in adult patients with cancer. We focused on drugs approved for thyroid malignancies, since a worse metabolic control may potentially impact life expectancy, due to their better overall survival rate. RESULTS As for glucose metabolism, the majority of the studies reported elevation of glucose levels (prevalence: 1-17%) with different grades of severity, including death. As for cholesterol, 12 studies reported worsening or new-onset hypercholesterolemia (prevalence: 4-40%). Finally, 19 studies reported different grades of hypertriglyceridemia (prevalence: 1-86%), sometimes leading to life-threatening events. CONCLUSIONS Despite some inherent limitations, our analysis may cast light upon some of the MKIs metabolic disorders that can impact on patients' health, especially when long-term survival is expected. Future clinical trials should consider routine assessment of glucose and lipid levels, because underdetection and underreporting of alterations can lead to the overlooking of important adverse events.
Collapse
Affiliation(s)
- Elisa Acitelli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Carlo Maiorca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giorgio Grani
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy.
| | - Marianna Maranghi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Fang YT, Yang WW, Niu YR, Sun YK. Recent advances in targeted therapy for pancreatic adenocarcinoma. World J Gastrointest Oncol 2023; 15:571-595. [PMID: 37123059 PMCID: PMC10134207 DOI: 10.4251/wjgo.v15.i4.571] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/11/2022] [Accepted: 03/16/2023] [Indexed: 04/12/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is a fatal disease with a 5-year survival rate of 8% and a median survival of 6 mo. In PDAC, several mutations in the genes are involved, with Kirsten rat sarcoma oncogene (90%), cyclin-dependent kinase inhibitor 2A (90%), and tumor suppressor 53 (75%–90%) being the most common. Mothers against decapentaplegic homolog 4 represents 50%. In addition, the self-preserving cancer stem cells, dense tumor microenvironment (fibrous accounting for 90% of the tumor volume), and suppressive and relatively depleted immune niche of PDAC are also constitutive and relevant elements of PDAC. Molecular targeted therapy is widely utilized and effective in several solid tumors. In PDAC, targeted therapy has been extensively evaluated; however, survival improvement of this aggressive disease using a targeted strategy has been minimal. There is currently only one United States Food and Drug Administration-approved targeted therapy for PDAC – erlotinib, but the absolute benefit of erlotinib in combination with gemcitabine is also minimal (2 wk). In this review, we summarize current targeted therapies and clinical trials targeting dysregulated signaling pathways and components of the PDAC oncogenic process, analyze possible reasons for the lack of positive results in clinical trials, and suggest ways to improve them. We also discuss emerging trends in targeted therapies for PDAC: combining targeted inhibitors of multiple pathways. The PubMed database and National Center for Biotechnology Information clinical trial website (www.clinicaltrials.gov) were queried to identify completed and published (PubMed) and ongoing (clinicaltrials.gov) clinical trials (from 2003-2022) using the keywords pancreatic cancer and targeted therapy. The PubMed database was also queried to search for information about the pathogenesis and molecular pathways of pancreatic cancer using the keywords pancreatic cancer and molecular pathways.
Collapse
Affiliation(s)
- Yu-Ting Fang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen-Wei Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ya-Ru Niu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yong-Kun Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang 065001, Hebei Province, China
| |
Collapse
|
9
|
Shetu SA, James N, Rivera G, Bandyopadhyay D. Molecular Research in Pancreatic Cancer: Small Molecule Inhibitors, Their Mechanistic Pathways and Beyond. Curr Issues Mol Biol 2023; 45:1914-1949. [PMID: 36975494 PMCID: PMC10047141 DOI: 10.3390/cimb45030124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Pancreatic enzymes assist metabolic digestion, and hormones like insulin and glucagon play a critical role in maintaining our blood sugar levels. A malignant pancreas is incapable of doing its regular functions, which results in a health catastrophe. To date, there is no effective biomarker to detect early-stage pancreatic cancer, which makes pancreatic cancer the cancer with the highest mortality rate of all cancer types. Primarily, mutations of the KRAS, CDKN2A, TP53, and SMAD4 genes are responsible for pancreatic cancer, of which mutations of the KRAS gene are present in more than 80% of pancreatic cancer cases. Accordingly, there is a desperate need to develop effective inhibitors of the proteins that are responsible for the proliferation, propagation, regulation, invasion, angiogenesis, and metastasis of pancreatic cancer. This article discusses the effectiveness and mode of action at the molecular level of a wide range of small molecule inhibitors that include pharmaceutically privileged molecules, compounds under clinical trials, and commercial drugs. Both natural and synthetic small molecule inhibitors have been counted. Anti-pancreatic cancer activity and related benefits of using single and combined therapy have been discussed separately. This article sheds light on the scenario, constraints, and future aspects of various small molecule inhibitors for treating pancreatic cancer-the most dreadful cancer so far.
Collapse
Affiliation(s)
- Shaila A. Shetu
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| | - Nneoma James
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Debasish Bandyopadhyay
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
- School of Earth Environment & Marine Sciences (SEEMS), The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| |
Collapse
|
10
|
Zhang C, Atri P, Nallasamy P, Parte S, Rauth S, Nimmakayala RK, Marimuthu S, Chirravuri-Venkata R, Bhatia R, Halder S, Shah A, Cox JL, Smith L, Kumar S, Foster JM, Kukreja RC, Seshacharyulu P, Ponnusamy MP, Batra SK. Small molecule inhibitor against onco-mucins disrupts Src/FosL1 axis to enhance gemcitabine efficacy in pancreatic ductal adenocarcinoma. Cancer Lett 2022; 551:215922. [PMID: 36285687 PMCID: PMC10124158 DOI: 10.1016/j.canlet.2022.215922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
Mucin MUC4 is an aberrantly expressed oncogene in pancreatic ductal adenocarcinoma (PDAC), yet no pharmacological inhibitors have been identified to target MUC4. Here, we adapted an in silico screening method using the Cancer Therapeutic Response Database (CTRD) to Identify Small Molecule Inhibitors against Mucins (SMIMs). We identified Bosutinib as a candidate drug to target oncogenic mucins among 126 FDA-approved drugs from CTRD screening. Functionally, Bosutinib treatment alone/and in combination with gemcitabine (Gem)/5' fluorouracil (5FU) reduced in vitro viability, migration, and colony formation in multiple PDAC cell lines as well as human PDAC organoid prolifertaion and growth and in vivo xenograft growth. Further, biochemical and molecular analyses showed that Bosutinib exhibited these functional effects by downregulating MUC4 mucin at both transcript and translation levels in a dose- and time-dependent manner. Mechanistically, global transcriptome analysis in PDAC cells upon treatment with Bosutinib revealed disruption of the Src-ERK/AKT-FosL1 pathway, leading to decreased expression of MUC4 and MUC5AC mucins. Taken together, Bosutinib is a promising, novel, and highly potent SMIMs to target MUC4/MUC5AC mucins. This mucin-targeting effect of Bosutinib can be exploited in the future with cytotoxic agents to treat mucinous tumors.
Collapse
Affiliation(s)
- Chunmeng Zhang
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Surgical Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saravanakumar Marimuthu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Rakesh Bhatia
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sushanta Halder
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lynette Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jason M Foster
- Department of Surgical Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rakesh C Kukreja
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, 23298-0204, USA
| | | | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
11
|
Seufferlein T, Mayerle J, Böck S, Brunner T, Ettrich TJ, Grenacher L, Gress TM, Hackert T, Heinemann V, Kestler A, Sinn M, Tannapfel A, Wedding U, Uhl W. S3-Leitlinie zum exokrinen Pankreaskarzinom – Langversion 2.0 – Dezember 2021 – AWMF-Registernummer: 032/010OL. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:e812-e909. [PMID: 36368658 DOI: 10.1055/a-1856-7346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | | | - Stefan Böck
- Medizinische Klinik und Poliklinik III, Universitätsklinikum München, Germany
| | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz, Austria
| | | | | | - Thomas Mathias Gress
- Klinik für Gastroenterologie und Endokrinologie, Universitätsklinikum Gießen und Marburg, Germany
| | - Thilo Hackert
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie Universitätsklinikum, Heidelberg, Germany
| | - Volker Heinemann
- Medizinische Klinik und Poliklinik III, Klinikum der Universität München-Campus Grosshadern, München, Germany
| | | | - Marianne Sinn
- Universitätsklinikum Hamburg-Eppendorf Medizinische Klinik und Poliklinik II Onkologie Hämatologie, Hamburg, Germany
| | | | | | - Waldemar Uhl
- Allgemein- und Viszeralchirurgie, St Josef-Hospital, Bochum, Germany
| |
Collapse
|
12
|
Razzano D, Bouza SJ, Hernandez PV, Wang M, Robert ME, Walther Z, Cai G. Comprehensive molecular profiling of pancreatic ductal adenocarcinoma in FNA, biopsy, and resection specimens. Cancer Cytopathol 2022; 130:726-734. [PMID: 35511415 DOI: 10.1002/cncy.22589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Molecular testing to identify molecular alterations in pancreatic ductal adenocarcinoma (PDAC) has been increasingly requested because of potential therapeutic implications. In this study, we compared the performance of PDAC fine-needle aspiration (FNA), fine-needle biopsy (FNB), and resection specimens for comprehensive molecular analysis. METHODS A next-generation sequencing-based Oncomine Comprehensive Assay (OCA) was used to analyze molecular alterations in FNA, FNB, or resection specimens. We examined adequacy and success rates for completion of molecular testing and catalogued molecular alterations in these specimen types. RESULTS The cohort included 23 FNA, 20 FNB, and 27 resection cases. Gene mutation or amplification analysis was successful in 18 (78%) FNA and 16 (80%) FNB specimens, whereas gene fusion assessment succeeded in 12 (52%) FNA and 12 (60%) FNB samples. All 27 (100%) resection specimens were adequate for complete OCA. There were significant differences in success rates for mutation and amplification analysis between resection and FNA or FNB specimens (P < .01) but not between FNA and FNB samples (P > .05). Manual microdissection was less likely to be performed for FNA specimens than FNB or resection specimens (P < .01). KRAS mutation was the most common mutation identified (90%), followed by mutations in TP53 (64%), CDKN2A (25%), and SMAD4 (15%) genes. CONCLUSIONS Our study demonstrated similar success rates for comprehensive molecular analysis using FNA and FNB specimens of PDAC, suggesting that FNA material could serve as an alternative source for comprehensive molecular testing. The molecular alterations identified in these specimens may have potential diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Dana Razzano
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Soumar J Bouza
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Patricia V Hernandez
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Minhua Wang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Marie E Robert
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Zenta Walther
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Guoping Cai
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
13
|
Rudloff U. Emerging kinase inhibitors for the treatment of pancreatic ductal adenocarcinoma. Expert Opin Emerg Drugs 2022; 27:345-368. [PMID: 36250721 PMCID: PMC9793333 DOI: 10.1080/14728214.2022.2134346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/22/2022] [Accepted: 10/06/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Pancreatic cancer is one of the deadliest solid organ cancers. In the absence of specific warning symptoms pancreatic cancer is diagnosed notoriously late. Current systemic chemotherapy regimens extend survival by a mere few months. With the advances in genetic, proteomic, and immunological profiling there is strong rationale to test kinase inhibitors to improve outcome. AREAS COVERED This review article provides a comprehensive summary of approved treatments and past, present, and future developments of kinase inhibitors in pancreatic cancer. Emerging roles of protein kinase inhibitors are discussed in the context of the unique stroma, the lack of high-prevalence therapeutic targets and rapid emergence of acquired resistance, novel immuno-oncology kinase targets, and recent medicinal chemistry advances. EXPERT OPINION Due to the to-date frequent failure of protein kinase inhibitors indiscriminately administered to unselected pancreatic cancer patients, there is a shift toward the development of these agents in molecularly defined subgroups which are more likely to respond. The development of accurate biomarkers to select patients who are the best candidates based on a detailed understanding of mechanism of action, pro-survival roles, and mediation of resistance of targeted kinases will be critical for the future development of protein kinase inhibitors in this disease.
Collapse
Affiliation(s)
- Udo Rudloff
- Rare Tumor Initiative, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
14
|
Papadakos SP, Dedes N, Pergaris A, Gazouli M, Theocharis S. Exosomes in the Treatment of Pancreatic Cancer: A Moonshot to PDAC Treatment? Int J Mol Sci 2022; 23:3620. [PMID: 35408980 PMCID: PMC8998433 DOI: 10.3390/ijms23073620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) constitutes a leading cause of cancer death globally. Its mortality remains unaltered despite the considerable scientific progress made in the fields of diagnostics and treatment. Exosomes comprise of small extracellular vesicles secreted by nearly all cells; their cargo contains a vast array of biomolecules, such as proteins and microRNAs. It is currently established that their role as messengers is central to a plethora of both physiologic and pathologic processes. Accumulating data have shed light on their contributions to carcinogenesis, metastasis, and immunological response. Meanwhile, the advancement of personalized targeted therapies into everyday clinical practice necessitates the development of cost-efficient treatment approaches. The role of exosomes is currently being extensively investigated towards this direction. This review aims to summarize the current pre-clinical and clinical evidence regarding the effects of exosomal applications in the timely diagnosis, prognosis, and therapeutic management of pancreatic cancer.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (N.D.); (A.P.)
| | - Nikolaos Dedes
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (N.D.); (A.P.)
| | - Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (N.D.); (A.P.)
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (N.D.); (A.P.)
| |
Collapse
|
15
|
Zhao X, Li Z, Gu Z. A new era: tumor microenvironment in chemoresistance of pancreatic cancer. JOURNAL OF CANCER SCIENCE AND CLINICAL THERAPEUTICS 2022; 6:61-86. [PMID: 35187493 DOI: 10.26502/jcsct.5079146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid malignant tumor with an extremely poor prognosis. Gemcitabine (GEM)-based chemotherapy remains one of the most important treatment choices for PDAC. However, either as monotherapy or as a part of the combination chemotherapy, GEM achieved only limited success in improving the survival of patients with advanced PDAC, primarily due to GEM resistance. PDAC is characterized by an extensive desmoplasia in the tumor microenvironment (TME). Increasing evidence indicates that this fibrotic TME not only actively participates in the tumor growth and spread of PDAC but also contributes to the induction of GEM resistance. Here we review the current advances of how TME components are involved in the induction of GEM resistance.
Collapse
Affiliation(s)
- Xueping Zhao
- School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang, China
| | - Zongze Li
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongting Gu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Tang H, Xue Y, Li B, Xu X, Zhang F, Guo J, Li Q, Yuan T, Chen Y, Pan Y, Ping Y, Li D. Membrane-camouflaged supramolecular nanoparticles for co-delivery of chemotherapeutic and molecular-targeted drugs with siRNA against patient-derived pancreatic carcinoma. Acta Pharm Sin B 2022; 12:3410-3426. [PMID: 35967289 PMCID: PMC9366227 DOI: 10.1016/j.apsb.2022.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer remains one of the most lethal malignancies worldwide. The combination of the first-line standard agent gemcitabine (GEM) with the molecular-targeted drug erlotinib (Er) has emerged as a promising strategy for pancreatic cancer treatment. However, the clinical benefit from this combination is still far from satisfactory due to the unfavorable drug antagonism and the fibrotic tumor microenvironment. Herein, we propose a membrane-camouflaged dual stimuli-responsive delivery system for the co-delivery of GEM and Er into pancreatic cancer cells and tissues to block the antagonism, as well as reshapes profibrotic tumor microenvironment via simultaneous delivery of small interference RNA (siRNA) for synergistic pancreatic cancer treatment. This “all-in-one” delivery system exhibits sensitive GSH and pH-dependent drug release profiles and enhances the inhibitory effects on the proliferation and migration of tumor cells in vitro. Excitingly, the systemic injection of such a biomimetic drug co-delivery system not only resulted in superior inhibitory effects against orthotopic pancreatic tumor and patient-derived tumor (PDX), but also greatly extended the survival rate of tumor-bearing mice. Our findings provide a promising therapeutic strategy against pancreatic cancer through the enhanced synergistic effect of target therapy, chemotherapy and anti-fibrotic therapy, which represents an appealing way for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Honglin Tang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanan Xue
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bowen Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Corresponding authors.
| | - Xiaojie Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fu Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Jiajing Guo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qijun Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Tingting Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yubin Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Corresponding authors.
| | - Da Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Corresponding authors.
| |
Collapse
|
17
|
Yuan P, Tang C, Chen B, Lei P, Song J, Xin G, Wang Z, Hui Y, Yao W, Wang G, Zhao G. miR‑32‑5p suppresses the proliferation and migration of pancreatic adenocarcinoma cells by targeting TLDC1. Mol Med Rep 2021; 24:752. [PMID: 34468015 PMCID: PMC8430301 DOI: 10.3892/mmr.2021.12392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is one of the most fatal types of cancer in humans. However, the molecular mechanisms underlying the migration and invasion abilities of PAAD cells remain unclear. The aim of the present study was to explore the regulatory roles of microRNA (miR)‑32‑5p in PAAD cells. miR‑32‑5p mimic and inhibitor were used to transfect the human PAAD AsPC‑1 cell line to determine the role of miR‑32‑5p in cell proliferation and metastasis. The starBase database predicted the binding of miR‑32‑5p to the target gene TBC/LysM‑associated domain containing 1 (TLDC1). Further analyses were performed to assess miR‑32‑5p and TLDC1 expression levels in healthy and PAAD tissues, as well as the association between miR‑32‑5p or TLDC1 expression and the prognosis of patients with PAAD. The interaction between miR‑32‑5p and TLDC1 was verified using the dual‑luciferase reporter assay. miR‑32‑5p and TLDC1 expression levels were detected by reverse transcription‑quantitative PCR and western blotting, respectively. The Cell Counting Kit‑8 assay was utilised to assess cell proliferation, whereas the wound‑healing and Transwell assays were conducted to assess cell migration and invasion, respectively. miR‑32‑5p expression levels were markedly lower in PAAD tissue compared with those in healthy tissue, and were significantly lower in PAAD cell lines compared with those in the human pancreatic duct cell line HPDE6, which corresponded with poor prognosis. miR‑32‑5p significantly inhibited the proliferation of PAAD cells and markedly reduced migration and invasion compared with the negative controls. miR‑32‑5p was shown to target TLDC1, with miR‑32‑5p expression in PAAD being negatively correlated with TLDC1 expression. High TLDC1 expression levels were associated with a poorer prognosis compared with low TLDC1 expression levels. Co‑transfection of miR‑32‑5p mimic and pcDNA/TLDC1 demonstrated that TLDC1 significantly reversed miR‑32‑5p‑mediated inhibition of the proliferation, migration and invasion of PAAD cells. Overall, the present study demonstrated that miR‑32‑5p may serve as a tumor‑suppressor gene by inhibiting the proliferation and migration and invasion of PAAD cells via the downregulation of TLDC1. Therefore, miR‑32‑5p may serve as a potential diagnostic or prognostic marker for PAAD.
Collapse
Affiliation(s)
- Peng Yuan
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Chaofeng Tang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Bendong Chen
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Peng Lei
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jianjun Song
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Guojun Xin
- Department of Hepatobiliary Surgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Zuozheng Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yongfeng Hui
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Weijie Yao
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Genwang Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Guozhong Zhao
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
18
|
Zhang C, Ou S, Zhou Y, Liu P, Zhang P, Li Z, Xu R, Li Y. m 6A Methyltransferase METTL14-Mediated Upregulation of Cytidine Deaminase Promoting Gemcitabine Resistance in Pancreatic Cancer. Front Oncol 2021; 11:696371. [PMID: 34458141 PMCID: PMC8385558 DOI: 10.3389/fonc.2021.696371] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023] Open
Abstract
Objective Pancreatic cancer is one of the most lethal human malignancies. Gemcitabine is widely used to treat pancreatic cancer, and the resistance to chemotherapy is the major difficulty in treating the disease. N6-methyladenosine (m6A) modification, which regulates RNA splicing, stability, translocation, and translation, plays critical roles in cancer physiological and pathological processes. METTL14, an m6A Lmethyltransferase, was found deregulated in multiple cancer types. However, its role in gemcitabine resistance in pancreatic cancer remains elusive. Methods The mRNA and protein level of m6A modification associated genes were assessed by QRT-PCR and western blotting. Then, gemcitabine‐resistant pancreatic cancer cells were established. The growth of pancreatic cancer cells were analyzed using CCK8 assay and colony formation assay. METTL14 was depleted by using shRNA. The binding of p65 on METTL14 promoter was assessed by chromatin immunoprecipitation (ChIP) assay. Protein level of deoxycytidine kinase (DCK) and cytidine deaminase (CDA) was evaluated by western blotting. In vivo experiments were conducted to further confirm the critical role of METTL14 in gemcitabine resistance. Results We found that gemcitabine treatment significantly increased the expression of m6A methyltransferase METTL14, and METTL14 was up-regulated in gemcitabine-resistance human pancreatic cancer cells. Suppression of METTL14 obviously increased the sensitivity of gemcitabine in resistant cells. Moreover, we identified that transcriptional factor p65 targeted the promoter region of METTL14 and up-regulated its expression, which then increased the expression of cytidine deaminase (CDA), an enzyme inactivates gemcitabine. Furthermore, in vivo experiment showed that depletion of METTL14 rescue the response of resistance cell to gemcitabine in a xenograft model. Conclusion Our study suggested that METTL14 is a potential target for chemotherapy resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Congjun Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuangyan Ou
- Department of Digestion and Urology, Hunan Tumor Hospital, Changsha, China
| | - Yuan Zhou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Pei Liu
- Tumor Center, Hunan Chest Hospital, Changsha, China
| | | | - Ziqian Li
- Tumor Center, Hunan Chest Hospital, Changsha, China
| | - Ruocai Xu
- Tumor Center, Hunan Chest Hospital, Changsha, China
| | - Yuqiang Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Gu Z, Du Y, Zhao X, Wang C. Tumor microenvironment and metabolic remodeling in gemcitabine-based chemoresistance of pancreatic cancer. Cancer Lett 2021; 521:98-108. [PMID: 34461181 DOI: 10.1016/j.canlet.2021.08.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid malignant tumor with a very low operative rate and a poor patient prognosis. Therefore, gemcitabine (GEM)-based chemotherapy remains one of the most important treatment choices for PDAC. However, the efficacy of GEM monotherapy or GEM combination chemotherapy in improving the survival of patients with advanced PDAC is very limited, primarily due to GEM resistance. The mechanism of GEM resistance is complex and unclear. An extensive and dense fibrous matrix in the tumor microenvironment (TME) is an important feature of PDAC. Increasing evidence indicates that this fibrotic TME not only actively participates in the growth and spread of PDAC but also contributes to the induction of GEM resistance. Metabolic remodeling reduces GEM transport and synthesis in PDAC. This review focuses on the main cellular and molecular mechanisms underlying the involvement of the extracellular matrix (ECM), immune cells, and metabolic remodeling in the induction of GEM resistance; highlights the prospect of targeting the TME as an essential strategy to overcome GEM resistance; and provides new precise interventions for chemotherapy sensitization and improving the overall prognosis of patients with PDAC.
Collapse
Affiliation(s)
- Zongting Gu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yongxing Du
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xueping Zhao
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Chengfeng Wang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
20
|
Lim SH, Yun J, Lee MY, Kim HJ, Kim KH, Kim SH, Lee SC, Bae SB, Kim CK, Lee N, Lee KT, Park SK, Lee YN, Moon JH. Gemcitabine and Erlotinib with or without Oxaliplatin in Previously Untreated Advanced Pancreatic Cancer: A Randomized Phase II Trial. Yonsei Med J 2021; 62:671-678. [PMID: 34296544 PMCID: PMC8298866 DOI: 10.3349/ymj.2021.62.8.671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/21/2021] [Accepted: 05/13/2021] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Erlotinib has been the only targeted agent to show significantly improved outcomes in pancreatic adenocarcinoma when combined with gemcitabine. We aimed to evaluate whether the addition of oxaliplatin to a combination gemcitabine/erlotinib treatment conferred a clinical benefit in patients with locally advanced unresectable or metastatic pancreatic cancer. MATERIALS AND METHODS Chemotherapy-naïve patients with locally advanced or metastatic pancreatic cancer were randomly assigned to receive GEMOX-T [gemcitabine 1000 mg/m² and oxaliplatin 50 mg/m² on day 1 (D1) and D8 plus erlotinib 100 mg daily for 3 weeks] or GT (gemcitabine 1000 mg/m² on D1 and D8 plus erlotinib 100 mg daily for 3 weeks). The primary endpoint was the overall response rate (ORR). RESULTS Between 2013 and 2016, 65 patients were assigned to a treatment group (33 in the GEMOX-T arm, 32 in the GT arm). The ORR was 18.2% [95% confidence interval (CI), 8.82-27.58] in the GEMOX-T arm and 6.2% (95% CI, 0.34-12.06) in the GT arm (p=0.051). The disease control rate was significantly superior in the GEMOX-T arm compared to the GT arm (72.7% vs. 43.8%, p=0.019). After a median follow-up of 19.7 months, the median progression-free survival (PFS) was 3.9 months for the GEMOX-T arm and 1.4 months for the GT arm (p=0.033). However, this did not translate to an improvement in overall survival. The most common grade 3 or higher hematologic adverse events were neutropenia (16.9%) and anemia (13.8%). CONCLUSION The addition of oxaliplatin to a first-line gemcitabine/erlotinib regimen demonstrated higher response rates and significantly improved PFS in patients with locally advanced or metastatic pancreatic cancer.
Collapse
Affiliation(s)
- Sung Hee Lim
- Division of Hematology-Oncology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Jina Yun
- Division of Hematology-Oncology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Min Young Lee
- Division of Hematology-Oncology, Department of Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Han Jo Kim
- Division of Hematology-Oncology, Department of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Kyoung Ha Kim
- Division of Hematology-Oncology, Department of Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Se Hyung Kim
- Division of Hematology-Oncology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Sang Chul Lee
- Division of Hematology-Oncology, Department of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Sang Byung Bae
- Division of Hematology-Oncology, Department of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Chan Kyu Kim
- Division of Hematology-Oncology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Namsu Lee
- Division of Hematology-Oncology, Department of Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Kyu Taek Lee
- Division of Hematology-Oncology, Department of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Seong Kyu Park
- Division of Hematology-Oncology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Yun Nah Lee
- Division of Gastro-Enterology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Jong Ho Moon
- Division of Gastro-Enterology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
21
|
Cherri S, Noventa S, Zaniboni A. Pancreatic adenocarcinoma: Beyond first line, where are we? World J Gastroenterol 2021; 27:1847-1863. [PMID: 34007126 PMCID: PMC8108033 DOI: 10.3748/wjg.v27.i17.1847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/09/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is considered one of the most aggressive cancers, with an increasing incidence in recent years. To date, chemotherapy is still the standard of care for advanced metastatic disease, unfortunately providing only a slight advantage in terms of survival. The molecular and cellular characteristics of pancreatic cancer cells, as well as the cells that characterize the pancreatic tumour microenvironment, are the basis of the mechanisms of resistance to treatment. After progression during first-line treatment, few patients are eligible for second-line treatment due to the loss of performance status. To date, a clear survival advantage has not yet been demonstrated for second-line chemotherapy. Precision medicine could be the key to increasing responses to cancer treatment and finally impacting survival in this difficult-to-treat disease. In this review, we analyze current recommendations in the second-line setting and potential future prospects.
Collapse
Affiliation(s)
- Sara Cherri
- Department of Oncology, Fondazione Poliambulanza, Brescia 25124, Italy
| | - Silvia Noventa
- Department of Oncology, Fondazione Poliambulanza, Brescia 25124, Italy
| | - Alberto Zaniboni
- Department of Oncology, Fondazione Poliambulanza, Brescia 25124, Italy
| |
Collapse
|
22
|
Gu ZT, Li ZZ, Wang CF. Advances in research of extracellular mechanisms underlying gemcitabine resistance in pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2021; 29:421-434. [DOI: 10.11569/wcjd.v29.i8.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a solid malignant tumor with the worst prognosis worldwide, and about 90% of cases are pancreatic ductal adenocarcinoma (PDAC). Although surgical resection is the only potential way to cure PDAC, the overall survival rate after surgery is still not optimistic. Consequently, gemcitabine (GEM)-based chemotherapy is still one of the most important treatment options for PDAC. However, the survival improvement by GEM monotherapy for advanced PDAC is very limited, and GEM resistance is the key reason. The mechanism underlying gemcitabine resistance is complex and still unclear in PDAC. The extensive and dense fibrous mesenchyme in the tumor microenvironment (TME) is an important feature of PDAC. More and more evidence has shown that TME is not only an active participant in tumor growth and spread, but also a contributor to the induction of GEM resistance. This article will review the recent advances in the understanding of the cellular and molecular mechanisms underlying GEM resistance in PDAC, and discuss potential GEM chemosensitization strategies, in order to improve the effective rate of chemotherapy and the outcome.
Collapse
Affiliation(s)
- Zong-Ting Gu
- Cheng-Feng Wang, State Key Laboratory of Molecular Oncology & Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zong-Ze Li
- Cheng-Feng Wang, State Key Laboratory of Molecular Oncology & Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | |
Collapse
|
23
|
Role of targeted immunotherapy for pancreatic ductal adenocarcinoma (PDAC) treatment: An overview. Int Immunopharmacol 2021; 95:107508. [PMID: 33725635 DOI: 10.1016/j.intimp.2021.107508] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid tumors with a high mortality rate and poor survival rate. Depending on the tumor stage, PDAC is either treated by resection surgery, chemotherapies, or radiotherapies. Various chemotherapeutic agents have been used to treat PDAC, alone or in combination. Despite the combinations, chemotherapy exhibits many side-effects leading to an increase in the toxicity profile amongst the PDAC patients. Additionally, these standard chemotherapeutic agents have only a modest impact on patient survival due to their limited efficacy. PDAC was previously considered as an immunologically silent malignancy, but recent findings have demonstrated that effective immune-mediated tumor cell death can be used for its treatment. PDAC is characterized by an immunosuppressive tumor microenvironment accompanied by the major expression of myeloid-derived suppressor cells (MDSC) and M2 tumor-associated macrophages. In contrast, the expression of CD8+ T cells is significantly low. Additionally, infiltration of mast cells in PDAC correlates with the poor prognosis. Immunotherapeutic agents target the immunity mediators and empower them to suppress the tumor and effectively treat PDAC. Different targets are studied and exploited to induce an antitumor immune response in PDAC patients. In recent times, site-specific delivery of immunotherapeutics also gained attention among researchers to effectively treat PDAC. In the present review, existing immunotherapies for PDAC treatment along with their limitations are addressed in detail. The review also includes the pathophysiology, traditional strategies and significance of targeted immunotherapies to combat PDAC effectively. Separately, the identification of ideal targets for the targeted therapy of PDAC is also reviewed exhaustively. Additionally, the review also addresses the applications of targeted immunotherapeutics like checkpoint inhibitors, adoptive T-cell therapy etc.
Collapse
|
24
|
The Case for GNMT as a Biomarker and a Therapeutic Target in Pancreatic Cancer. Pharmaceuticals (Basel) 2021; 14:ph14030209. [PMID: 33802396 PMCID: PMC7998508 DOI: 10.3390/ph14030209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/03/2022] Open
Abstract
The high mortality rate for pancreatic cancer (PC) is due to the lack of specific symptoms at early tumor stages and a high biological aggressiveness. Reliable biomarkers and new therapeutic targets would help to improve outlook in PC. In this study, we analyzed the expression of GNMT in a panel of pancreatic cancer cell lines and in early-stage paired patient tissue samples (normal and diseased) by quantitative reverse transcription-PCR (qRT-PCR). We also investigated the effect of 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranoside (PGG) as a therapeutic agent for PC. We find that GNMT is markedly downregulated (p < 0.05), in a majority of PC cell lines. Similar results are observed in early-stage patient tissue samples, where GNMT expression can be reduced by a 100-fold or more. We also show that PGG is a strong inhibitor of PC cell proliferation, with an IC50 value of 12 ng/mL, and PGG upregulates GNMT expression in a dose-dependent manner. In conclusion, our data show that GNMT has promise as a biomarker and as a therapeutic target for PC.
Collapse
|
25
|
CASK regulates Notch pathway and functions as a tumor promoter in pancreatic cancer. Arch Biochem Biophys 2021; 701:108789. [PMID: 33548214 DOI: 10.1016/j.abb.2021.108789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/24/2022]
Abstract
Calcium/calmodulin-dependent serine protein kinase (CASK), a member of membrane-associated guanylate kinase (MAGUK) super-family, is implicated in regulating cell proliferation, cytoskeletal remodeling, and cell metastasis. Our study aimed to investigate the effect of CASK on the malignant behaviors of pancreatic cancer cells and to determine the signaling pathway involved. CASK expression in pancreatic cancer tissues based on the TCGA database was analyzed using GEPIA online tool. The overall survival (OS) and disease-free survival (DFS) in patients with pancreatic cancer based on CASK expression was also analyzed using GEPIA. KEGG pathway enrichment analysis was used to show the association of 1522 CASK-related genes and signaling pathways. The expression of CASK, Notch1 and Hey1 was detected by Western blot. Cell proliferation, colony number, invasion, and apoptosis were detected by CCK-8, colony formation assay, Transwell invasion assay, and flow cytometry analysis, respectively. Results showed that CASK was upregulated in pancreatic cancer tissues and cells. Pancreatic cancer patients with high CASK expression showed shorter OS and DFS than patients with low CASK expression. KEGG pathway enrichment analysis proved that CASK and 1522 CASK-associated genes were primarily associated with the Notch pathway. CASK silencing inhibited cell proliferation, colony formation ability, and invasion and elicited apoptosis in pancreatic cancer cells. Additionally, we confirmed that CASK silencing inhibited the Notch pathway in pancreatic cancer cells. Overexpression of Notch1 resisted the anti-tumor functions of CASK knockdown in pancreatic cancer cells. In conclusion, CASK knockdown suppressed the malignant behaviors of pancreatic cancer cells by inactivating the Notch pathway.
Collapse
|
26
|
Yeh C, Bates SE. Two decades of research toward the treatment of locally advanced and metastatic pancreatic cancer: Remarkable effort and limited gain. Semin Oncol 2021; 48:34-46. [PMID: 33712267 DOI: 10.1053/j.seminoncol.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/20/2021] [Indexed: 01/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy that is diagnosed at the locally advanced or metastatic stage in approximately 80% of cases. Relative to other tumor types, progress in the treatment of this disease has been painfully slow. While agents targeting DNA repair have proven successful in a subset of patients, the majority of PDACs do not exhibit validated molecular targets. Hence, conventional chemotherapy remains at the forefront of therapy for this disease. In this review, we study two decades of efforts to improve upon the gemcitabine backbone - 67 phase II and III trials enrolling 16,446 patients - that culminated in the approvals of gemcitabine/nab-paclitaxel (Gem/NabP) and FOLFIRINOX. Today, these remain gold standards for the first-line treatment of locally advanced unresectable and metastatic PDAC, while ongoing efforts focus on improving upon the Gem/NabP backbone. Because real world data often do not reflect the data of randomized controlled trials (RCTs), we also summarize the retrospective evidence comparing the efficacy of Gem/NabP and FOLFIRINOX in the first-line setting - 29 studies reporting a median overall survival of 10.7 and 9.1 months for FOLFIRINOX and Gem/NabP, respectively. These values are surprisingly comparable to those reported by the pivotal RCTs at 11.1 and 8.5 months. Finally, there is a paucity of RCT data regarding the efficacy of second-line therapy. Hence, we conclude this review by summarizing the data that ultimately demonstrate a small but significant survival benefit of second-line therapy with Gem/NabP or FOLFIRINOX. Collectively, these studies describe the long journey, the steady effort, and the myriad lessons to be learned from 20 years of PDAC trials to inform strategies for success in clinical trials moving forward.
Collapse
Affiliation(s)
- Celine Yeh
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Susan E Bates
- James J. Peters VA Medical Center, Bronx, NY; Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY.
| |
Collapse
|
27
|
Al-Share B, Hammad N, Diab M. Pancreatic adenocarcinoma: molecular drivers and the role of targeted therapy. Cancer Metastasis Rev 2021; 40:355-371. [PMID: 33398620 DOI: 10.1007/s10555-020-09948-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023]
Abstract
Prognosis from pancreatic ductal adenocarcinoma (PDAC) continues to be poor despite the many efforts channeled to improve its management. Although the mainstay treatment is still traditional chemotherapy, recent advances highlighted a promising potential for targeted therapy in the management of this disease. Those advances emphasize the significance of timely genomic profiling of tumor tissue as well as germline testing of patients to identify potential markers of targeted therapy. While targeted therapy is reserved for a relatively small subset of patients with PDAC, ongoing research is uncovering additional markers, and targeted agents, that will hopefully translate to better outcomes for patients.
Collapse
Affiliation(s)
- Bayan Al-Share
- Department of Oncology, Wayne State University, Karmanos Cancer Institute, Detroit, MI, USA
| | - Nour Hammad
- Department of Oncology, Ascension Providence Hospital and Medical Center/Michigan State University/Collage of Human Medicine, Southfield, MI, USA
| | - Maria Diab
- Department of Oncology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
28
|
Cardiotoxicity Associated with Gemcitabine: Literature Review and a Pharmacovigilance Study. Pharmaceuticals (Basel) 2020; 13:ph13100325. [PMID: 33096756 PMCID: PMC7594046 DOI: 10.3390/ph13100325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gemcitabine is a nucleoside analog, widely used either alone or in combination, for the treatment of multiple cancers. However, gemcitabine may also be associated with cardiovascular adverse-drug-reactions (CV-ADR). METHODS First, we searched for all cases of cardiotoxicity associated with gemcitabine, published in MEDLINE on 30 May 2019. Then, we used VigiBase, the World Health Organization's global database of individual case safety reports, to compare CV-ADR reporting associated with gemcitabine against the full database between inception and 1 April 2019. We used the information component (IC), an indicator value for disproportionate Bayesian reporting. A positive lower end of the 95% credibility interval for the IC (IC025) ≥ 0, is deemed significant. RESULTS In VigiBase, 46,898 reports were associated with gemcitabine on a total of 18,908,940 in the full database. Gemcitabine was associated with higher reporting for myocardial ischemia (MI, n: 119), pericardial diseases (n: 164), supraventricular arrhythmias (SVA, n: 308) and heart failure (HF, n: 484) versus full database with IC025 ranging between 0.40 and 2.81. CV-ADR were associated with cardiovascular death in up to 17% of cases. CONCLUSION Treatment with gemcitabine is associated with potentially lethal CV-ADRs, including MI, pericardial diseases, SVA and HF. These events should be considered in patient care and clinical trial design.
Collapse
|
29
|
Mu Y, Wang D, Bie L, Luo S, Mu X, Zhao Y. Glypican-1-targeted and gemcitabine-loaded liposomes enhance tumor-suppressing effect on pancreatic cancer. Aging (Albany NY) 2020; 12:19585-19596. [PMID: 33035197 PMCID: PMC7732280 DOI: 10.18632/aging.103918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/25/2020] [Indexed: 01/24/2023]
Abstract
Liposomes (LPs) as promising drug delivery systems are widely applied in cancer therapy. This study aimed to investigate the effect of glypican-1 (GPC1)-targeted and gemcitabine (GEM)-loaded LP [GPC1-LP (GEM)] on cell proliferation and apoptosis in PANC-1s, as well as on orthotopic pancreatic cancer (PDAC) mice. The GPC1-LP (GEM) and LP (GEM) was prepared, and then the size distribution of GPC1-LP (GEM) was analyzed by dynamic light scattering (DLS). In vitro drug release assay of GPC1-LP (GEM) and LP (GEM) was performed, and the expression of GPC1 in PANC1 cells was detected as well. Next, the effects of free GEM, LP (GEM) and GPC1-LP (GEM) on cell viability, clone number, and apoptosis, as well as the expression of proteins associated with apoptosis were measured in 239T and PANC-1 cells. Furthermore, the body weight and tumor size of orthotopic PDAC mice were evaluated following the treatment of free GEM, LP (GEM) or GPC1-LP (GEM). LP (GEM) and GPC1-LP (GEM) were successfully prepared with a successful GEM release within 24 h. In addition, GPC1 was positively expressed in PANC-1 cells but not 293T cells. These findings provided more insights into the anti-tumor potential for the biomedical application of GPC1-LP (GEM) in PDAC.
Collapse
Affiliation(s)
- Yu Mu
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, China
| | - Dezhi Wang
- East China Normal University, Shanghai, China
| | - Liangyu Bie
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, China
| | - Suxia Luo
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, China
| | - Xiaoqian Mu
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, China
| | - Yanqiu Zhao
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
30
|
Qian Y, Gong Y, Fan Z, Luo G, Huang Q, Deng S, Cheng H, Jin K, Ni Q, Yu X, Liu C. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma. J Hematol Oncol 2020; 13:130. [PMID: 33008426 PMCID: PMC7532113 DOI: 10.1186/s13045-020-00958-3] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignancy characterized by a poor prognosis and high mortality rate. Genetic mutations and altered molecular pathways serve as targets in precise therapy. Using next-generation sequencing (NGS), these aberrant alterations can be identified and used to develop strategies that will selectively kill cancerous cells in patients with PDAC. The realization of targeted therapies in patients with PDAC may be summarized by three approaches. First, because oncogenes play a pivotal role in tumorigenesis, inhibition of dysregulated oncogenes is a promising method (Table 3). Numerous researchers are developing strategies to target oncogenes, such as KRAS, NRG1, and NTRK and related molecules, although most of the results are unsatisfactory. Accordingly, emerging strategies are being developed to target these oncogenes, including simultaneously inhibiting multiple molecules or pathways, modification of mutant residues by small molecules, and RNA interference. Second, researchers have attempted to reactivate inactivated tumour suppressors or modulate related molecules. TP53, CDKN2A and SMAD4 are three major tumour suppressors involved in PDAC. Advances have been achieved in clinical and preclinical trials of therapies targeting these three genes, and further investigations are warranted. The TGF-β-SMAD4 signalling pathway plays a dual role in PDAC tumorigenesis and participates in mediating tumour-stroma crosstalk and modulating the tumour microenvironment (TME); thus, molecular subtyping of pancreatic cancer according to the SMAD4 mutation status may be a promising precision oncology technique. Finally, genes such as KDM6A and BRCA have vital roles in maintaining the structural stability and physiological functions of normal chromosomes and are deficient in some patients with PDAC, thus serving as potential targets for correcting these deficiencies and precisely killing these aberrant tumour cells. Recent clinical trials, such as the POLO (Pancreas Cancer Olaparib Ongoing) trial, have reported encouraging outcomes. In addition to genetic event-guided treatment, immunotherapies such as chimeric antigen receptor T cells (CAR-T), antibody-drug conjugates, and immune checkpoint inhibitors also exhibit the potential to target tumours precisely, although the clinical value of immunotherapies as treatments for PDAC is still limited. In this review, we focus on recent preclinical and clinical advances in therapies targeting aberrant genes and pathways and predict the future trend of precision oncology for PDAC.
Collapse
Affiliation(s)
- Yunzhen Qian
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, NO.270 DongAn Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yitao Gong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, NO.270 DongAn Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Zhiyao Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, NO.270 DongAn Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, NO.270 DongAn Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qiuyi Huang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, NO.270 DongAn Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shengming Deng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, NO.270 DongAn Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, NO.270 DongAn Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, NO.270 DongAn Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, NO.270 DongAn Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, NO.270 DongAn Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, NO.270 DongAn Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
31
|
Wang M, Liu J, Zhao Y, He R, Xu X, Guo X, Li X, Xu S, Miao J, Guo J, Zhang H, Gong J, Zhu F, Tian R, Shi C, Peng F, Feng Y, Yu S, Xie Y, Jiang J, Li M, Wei W, He C, Qin R. Upregulation of METTL14 mediates the elevation of PERP mRNA N 6 adenosine methylation promoting the growth and metastasis of pancreatic cancer. Mol Cancer 2020; 19:130. [PMID: 32843065 PMCID: PMC7446161 DOI: 10.1186/s12943-020-01249-8] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Background Pancreatic cancer is one of the most lethal human cancers. N6-methyladenosine (m6A), a common eukaryotic mRNA modification, plays critical roles in both physiological and pathological processes. However, its role in pancreatic cancer remains elusive. Methods LC/MS was used to profile m6A levels in pancreatic cancer and normal tissues. Bioinformatics analysis, real-time PCR, immunohistochemistry, and western blotting were used to identify the role of m6A regulators in pancreatic cancer. The biological effects of methyltransferase-like 14 (METTL14), an mRNA methylase, were investigated using in vitro and in vivo models. MeRIP-Seq and RNA-Seq were used to assess the downstream targets of METTL14. Results We found that the m6A levels were elevated in approximately 70% of the pancreatic cancer samples. Furthermore, we demonstrated that METTL14 is the major enzyme that modulates m6A methylation (frequency and site of methylation). METTL14 overexpression markedly promoted pancreatic cancer cell proliferation and migration both in vitro and in vivo, via direct targeting of the downstream PERP mRNA (p53 effector related to PMP-22) in an m6A-dependent manner. Methylation of the target adenosine lead to increased PERP mRNA turnover, thus decreasing PERP (mRNA and protein) levels in pancreatic cancer cells. Conclusions Our data suggest that the upregulation of METTL14 leads to the decrease of PERP levels via m6A modification, promoting the growth and metastasis of pancreatic cancer; therefore METTL14 is a potential therapeutic target for its treatment.
Collapse
Affiliation(s)
- Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Jun Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Yan Zhao
- Department of Trauma Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Xiaodong Xu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Simiao Xu
- Department of Endocrinology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jianpin Guo
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Hang Zhang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Feng Zhu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Rui Tian
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Chengjian Shi
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Feng Peng
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Yechen Feng
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Shuo Yu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Yu Xie
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Jianxin Jiang
- Department of Hepatic-Biliary-Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Min Li
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA.
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China.
| |
Collapse
|
32
|
Kandimalla R, Tomihara H, Banwait JK, Yamamura K, Singh G, Baba H, Goel A. A 15-Gene Immune, Stromal, and Proliferation Gene Signature that Significantly Associates with Poor Survival in Patients with Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2020; 26:3641-3648. [PMID: 32234757 PMCID: PMC7367725 DOI: 10.1158/1078-0432.ccr-19-4044] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/03/2020] [Accepted: 03/26/2020] [Indexed: 01/05/2023]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with dismal survival rates. Tumor microenvironment (TME), comprising of immune cells and cancer-associated fibroblasts, plays a key role in driving poor prognosis and resistance to chemotherapy. Herein, we aimed to identify a TME-associated, risk-stratification gene biomarker signature in PDAC. EXPERIMENTAL DESIGN The initial biomarker discovery was performed in The Cancer Genome Atlas (TCGA, n = 163) transcriptomic data. This was followed by independent validation of the gene signature in the International Cancer Genome Consortium (ICGC, n = 95), E-MTAB-6134 (n = 288), and GSE71729 (n = 123) datasets for predicting overall survival (OS), and for its ability to detect poor molecular subtypes. Clinical validation and nomogram establishment was undertaken by performing multivariate Cox regression analysis. RESULTS Our biomarker discovery effort identified a 15-gene immune, stromal, and proliferation (ISP) gene signature that significantly associated with poor OS [HR, 3.90; 95% confidence interval (CI), 2.36-6.41; P < 0.0001]. This signature also robustly predicted survival in three independent validation cohorts ICGC [HR, 2.63 (1.56-4.41); P < 0.0001], E-MTAB-6134 [HR, 1.53 (1.14-2.04); P = 0.004], and GSE71729 [HR, 2.33 (1.49-3.63); P < 0.0001]. Interestingly, the ISP signature also permitted identification of poor molecular PDAC subtypes with excellent accuracy in all four cohorts; TCGA (AUC = 0.94), ICGC (AUC = 0.91), E-MTAB-6134 (AUC = 0.80), and GSE71729 (AUC = 0.83). The ISP-derived high-risk patients exhibited significantly poor OS in a clinical validation cohort [n = 119; HR, 2.62 (1.50-4.56); P = 0.0004]. A nomogram was established which included the ISP, CA19-9, and T- and N-stage for eventual clinical translation. CONCLUSIONS We report a novel gene signature for risk-stratification and robust identification of patients with PDAC with poor molecular subtypes.
Collapse
Affiliation(s)
- Raju Kandimalla
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - Hideo Tomihara
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jasjit K Banwait
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - Kensuke Yamamura
- Department of Gastroenterological Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Gagandeep Singh
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Hideo Baba
- Department of Gastroenterological Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas.
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, California
| |
Collapse
|
33
|
Sun J, Russell CC, Scarlett CJ, McCluskey A. Small molecule inhibitors in pancreatic cancer. RSC Med Chem 2020; 11:164-183. [PMID: 33479626 PMCID: PMC7433757 DOI: 10.1039/c9md00447e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer (PC), with a 5 year survival of <7%, is one of the most fatal of all human cancers. The highly aggressive and metastatic character of this disease poses a challenge that current therapies are failing, despite significant efforts, to meet. This review examines the current status of the 35 small molecule inhibitors targeting pancreatic cancer in clinical trials and the >50 currently under investigation. These compounds inhibit biological targets spanning protein kinases, STAT3, BET, HDACs and Bcl-2 family proteins. Unsurprisingly, protein kinase inhibitors are overrepresented. Some trials show promise; a phase I combination trial of vorinostat 11 and capecitabine 17 gave a median overall survival (MoS) of 13 months and a phase II study of pazopanib 15 showed a MoS of 25 months. The current standard of care for metastatic pancreatic ductal adenocarcinoma, fluorouracil/folic acid (5-FU, Adrucil®), and gemcitabine (GEMZAR®) afforded a MoS of 23 and 23.6 months (EPAC-3 study), respectively. In patients who can tolerate the FOLFIRINOX regime, this is becoming the standard of treatment with a MoS of 11.1 months. Clinical study progress has been slow with limited improvement in patient survival relative to gemcitabine 1 monotherapy. A major cause of low PC survival is the late stage of diagnosis, occurring in patients who consider typical early stage warning signs of aches and pains normal. The selection of patients with specific disease phenotypes, the use of improved efficient drug combinations, the identification of biomarkers to specific cancer subtypes and more effective designs of investigation have improved outcomes. To move beyond the current dire condition and paucity of PC treatment options, determination of the best regimes and new treatment options is a challenge that must be met. The reasons for poor PC prognosis have remained largely unchanged for 20 years. This is arguably a consequence of significant changes in the drug discovery landscape, and the increasing pressure on academia to deliver short term 'media' friendly short-term news 'bites'. PC research sits at a pivotal point. Perhaps the greatest challenge is enacting a culture change that recognises that major breakthroughs are a result of blue sky, truly innovative and curiosity driven research.
Collapse
Affiliation(s)
- Jufeng Sun
- Chemistry , School of Environmental & Life Sciences , The University of Newcastle , Newcastle , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 249216486
- Medicinal Chemistry , School of Pharmacy , Binzhou Medical University , Yantai , 264003 , China
| | - Cecilia C Russell
- Chemistry , School of Environmental & Life Sciences , The University of Newcastle , Newcastle , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 249216486
| | - Christopher J Scarlett
- Applied Sciences , School of Environmental & Life Sciences , The University of Newcastle , Ourimbah NSW 2258 , Australia
| | - Adam McCluskey
- Chemistry , School of Environmental & Life Sciences , The University of Newcastle , Newcastle , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 249216486
| |
Collapse
|
34
|
Li YJ, Wu JY, Wang JM, Hu XB, Cai JX, Xiang DX. Gemcitabine loaded autologous exosomes for effective and safe chemotherapy of pancreatic cancer. Acta Biomater 2020; 101:519-530. [PMID: 31629893 DOI: 10.1016/j.actbio.2019.10.022] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/19/2019] [Accepted: 10/15/2019] [Indexed: 01/05/2023]
Abstract
Pancreatic cancer remains one of the most highly lethal diseases with very poor prognosis. Gemcitabine (GEM) is the first-line chemotherapeutic drug for pancreatic cancer treatment but is associated with significant side effects when administered systemically. Exosomes have emerged as attractive candidates for drug delivery for their high delivery efficiency and biocompatibility. Here, GEM was loaded into autologous exosomes to formulate ExoGEM for targeted chemotherapy of pancreatic cancer. Autologous exosomes facilitate cellular uptake of GEM and contributed to significantly increased cytotoxic effect of GEM, while heterologous cellular uptake showed less efficiency. Autologous exosomes showed targeting ability to pancreatic cancer in biodistribution study, and GEM concentration in tumor site was increased via ExoGEM delivery. ExoGEM treatment, in tumor-bearing mice, significantly suppressed tumor growth, with prolonged survival in a dose-response manner, but caused minimal damage to normal tissues. More importantly, tumors in several mice treated with ExoGEM were disappeared without recurrence. Autologous exosomes are safe and effective vehicles for targeted delivery of GEM against pancreatic cancer. This delivery strategy may have implications for personalized chemotherapy of pancreatic cancer. STATEMENT OF SIGNIFICANCE: Exosomes are efficient delivery vehicles in intracellular communication. Moreover, potential tropism of autologous exosomes to the tumor microenvironment make them competitive delivery vehicles. The use of cancer-derived exosomes for drug delivery and superior targeting efficacy and enhanced anticancer efficacy of therapeutics have been evidenced. Gemcitabine is a mainstay for pancreatic treatment. However, poor cellular uptake and low targeting effects of gemcitabine often lead to severe systemic toxicity. Therefore, to overcome this limitation, we herein loaded gemcitabine into autologous pancreatic cancer-derived exosomes for the targeted chemotherapy of pancreatic cancer.
Collapse
|
35
|
Morimoto M, Horikoshi Y, Nakaso K, Kurashiki T, Kitagawa Y, Hanaki T, Sakamoto T, Honjo S, Umekita Y, Fujiwara Y, Matsura T. Oncogenic role of TYRO3 receptor tyrosine kinase in the progression of pancreatic cancer. Cancer Lett 2019; 470:149-160. [PMID: 31765735 DOI: 10.1016/j.canlet.2019.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023]
Abstract
The expression and functions of TYRO3, a member of the TAM receptor tyrosine kinase family, in pancreatic cancer (PC) have not been specifically elucidated. In this study, we confirmed TYRO3 expression in five human PC cell lines (PANC-1, MIA PaCa-2, BxPC-3, AsPC-1, and PK-9) using Western blotting. TYRO3 silencing and overexpression studies have revealed that TYRO3 promotes cell proliferation and invasion in PC via phosphorylation of protein kinase B (Akt) and extracellular signal-regulated kinase (ERK). Using a mouse xenograft model, we showed that tumor growth was significantly suppressed in mice subcutaneously inoculated with TYRO3-knockdown PC cells compared with mice inoculated with control PC cells. Furthermore, TYRO3 expression was examined in PC tissues obtained from 106 patients who underwent pancreatic resection for invasive ductal carcinoma through immunohistochemical staining. TYRO3-positive patients had poor prognoses for overall survival and disease-specific survival compared with TYRO3-negative patients. Multivariate analysis revealed that TYRO3 expression is an independent prognostic factor for overall survival. Our study demonstrates the critical role of TYRO3 in PC progression through Akt and ERK activation and suggests TYRO3 as a novel promising target for therapeutic strategies against PC.
Collapse
Affiliation(s)
- Masaki Morimoto
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan; Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Yosuke Horikoshi
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan
| | - Kazuhiro Nakaso
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan
| | - Tatsuyuki Kurashiki
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan; Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Yoshinori Kitagawa
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan; Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Takehiko Hanaki
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Teruhisa Sakamoto
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Soichiro Honjo
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Yoshihisa Umekita
- Division of Organ Pathology, Department of Pathology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan
| | - Yoshiyuki Fujiwara
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Tatsuya Matsura
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan.
| |
Collapse
|
36
|
Network Meta-Analysis of Efficacy and Safety of Chemotherapy and Target Therapy in the First-Line Setting of Advanced Pancreatic Cancer. Cancers (Basel) 2019; 11:cancers11111746. [PMID: 31703359 PMCID: PMC6895788 DOI: 10.3390/cancers11111746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 12/13/2022] Open
Abstract
Both gemcitabine and fluoropyrimidine are recommended backbones in the first-line treatment of pancreatic ductal adenocarcinoma (PDAC). To compare the efficacy and safety of these two therapeutic backbones, and to investigate the optimal therapies, we conducted a network meta-analysis. By retrospective analysis of randomized controlled trials (RCT), the most preferred therapeutic regimen may be predicted. The eligible RCTs of the gemcitabine-based therapies and fluoropyrimidine-based therapies were searched up to 31 August 2019. In a frequentist network meta-analysis, treatments were compared and ranked according to overall survival (OS) and progression-free survival (PFS). Thirty-two trials with 10,729 patients were included. The network meta-analyses results for overall survival and progression-free survival showed that fluoropyrimidine-based therapy seems to be the most effective treatment choice. Compared to gemcitabine combined with taxanes or immunotherapy, fluoropyrimidine-based therapy had comparable treatment effects (PFS: 0.67, p-Value = 0.11; 0.76, p-Value = 0.32; OS: 0.80, p-Value = 0.16; 0.77, p-Value = 0.21). Moreover, the combination of immunotherapy and gemcitabine had tolerable toxicities. Based on current evidence, fluoropyrimidine-based therapies and the combination of gemcitabine and taxanes were the most effective therapies in the advanced pancreatic cancer, and the combination of immunotherapy and gemcitabine can be developed into a new form of therapy.
Collapse
|
37
|
Bowers JS, Bailey SR, Rubinstein MP, Paulos CM, Camp ER. Genomics meets immunity in pancreatic cancer: Current research and future directions for pancreatic adenocarcinoma immunotherapy. Oncol Rev 2019; 13:430. [PMID: 31456872 PMCID: PMC6686121 DOI: 10.4081/oncol.2019.430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) remains a formidable disease that needs improved therapeutic strategies. Even though immunotherapy has revolutionized treatment for various solid tumor types, it remains largely ineffective in treating individuals with PDAC. This review describes how the application of genome-wide analysis is revitalizing the field of PDAC immunotherapy. Major themes include new insights into the body’s immune response to the cancer, and key immunosuppressive elements that blunt that antitumor immunity. In particular, new evidence indicates that T cell-based antitumor immunity against PDAC is more common, and more easily generated, than previously thought. However, equally common are an array of cellular and molecular defenses employed by the tumor against those T cells. These discoveries have changed how current immunotherapies are deployed and have directed development of novel strategies to better treat this disease. Thus, the impact of genomic analysis has been two-fold: both in demonstrating the heterogeneity of immune targets and defenses in this disease, as well as providing a powerful tool for designing and identifying personalized therapies that exploit each tumor’s unique phenotype. Such personalized treatment combinations may be the key to developing successful immunotherapies for pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Jacob S Bowers
- Department of Surgery, Medical University of South Carolina.,Hollings Cancer Center, Medical University of South Carolina.,Department of Microbiology and Immunology, Medical University of South Carolina
| | - Stefanie R Bailey
- Cellular Immunotherapy Program, Massachusetts General Hospital.,Harvard Medical School
| | - Mark P Rubinstein
- Department of Surgery, Medical University of South Carolina.,Hollings Cancer Center, Medical University of South Carolina.,Department of Microbiology and Immunology, Medical University of South Carolina
| | - Chrystal M Paulos
- Hollings Cancer Center, Medical University of South Carolina.,Department of Microbiology and Immunology, Medical University of South Carolina.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina
| | - E Ramsay Camp
- Department of Surgery, Medical University of South Carolina.,Hollings Cancer Center, Medical University of South Carolina.,Ralph H. Johnson VA Medical Center, South Carolina, USA
| |
Collapse
|
38
|
Hess LM, Brnabic A, Mason O, Lee P, Barker S. Relationship between Progression-free Survival and Overall Survival in Randomized Clinical Trials of Targeted and Biologic Agents in Oncology. J Cancer 2019; 10:3717-3727. [PMID: 31333789 PMCID: PMC6636299 DOI: 10.7150/jca.32205] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/15/2019] [Indexed: 12/20/2022] Open
Abstract
Introduction: With a gap in a full understanding of the mechanisms by which survival is extended for patients with cancer who are treated with novel biologic and targeted agents, there is the risk that discordant progression-free and overall survival outcomes are observed due to poor clinical trial design or biases in the interpretation of data. This study was designed to examine the role of study quality and design on the outcomes observed with biologic and targeted agents. Methods: A review of studies in clinicaltrials.gov supplemented with a literature review in OVID Medline was conducted to identify all randomized trials of a biologic/targeted agent versus a non-biologic/targeted comparator in oncology that report both median overall and progression-free survival outcomes. Details of the study, design, population, drugs, and outcomes were extracted. Study quality was evaluated using the PEDro scale. Data were summarized using SPSS 22.0.0.0. Results: A total of 192 unique studies of 206 pairwise comparisons between a biologic/targeted and comparator were identified. The average absolute magnitude of post-progression survival (difference between OS and PFS) was 9.7 months for biologic/targeted therapy and 9.8 for the comparator. A total of 64 comparisons (31.1%) showed an increase in OS and decrease in PFS, or vice versa, and 25 (12.1%) showed a magnitude of more than 4 months difference between the delta of OS and delta of PFS between the biologic/targeted and comparator arms. Average study quality was high overall (7.7/10), and was comparable for studies with directional differences (7.2/10) as well as for those with the greatest magnitude in post-progression survival (7.4/10). Conclusion: This review and analysis specifically examined small PFS benefit with large OS benefit as well as small OS benefit with large PFS benefit, including differences in direction of PFS and OS outcomes. No evidence was identified that these are the result of poor study design, but may rather be due to the mechanism of action, specific disease, and population under study. Further work is needed to understand the mechanism of action of novel biologic/targeted agents to better understand their interaction with the tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | - Pablo Lee
- Eli Lilly and Company, Indianapolis USA
| | | |
Collapse
|
39
|
van Mackelenbergh MG, Stroes CI, Spijker R, van Eijck CHJ, Wilmink JW, Bijlsma MF, van Laarhoven HWM. Clinical Trials Targeting the Stroma in Pancreatic Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2019; 11:E588. [PMID: 31035512 PMCID: PMC6562438 DOI: 10.3390/cancers11050588] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment plays an important role in the initiation and progression of pancreatic adenocarcinoma (PDAC). In this systematic review, we provide an overview of clinical trials with stroma-targeting agents. We systematically searched MEDLINE/PubMed and the EMBASE database, using the PRISMA guidelines, for eligible clinical trials. In total, 2330 records were screened, from which we have included 106 articles. A meta-analysis could be performed on 51 articles which describe the targeting of the vascular endothelial growth factor (VEGF) pathway, and three articles which describe the targeting of hyaluronic acid. Anti-VEGF therapies did not show an increase in median overall survival (OS) with combined hazard ratios (HRs) of 1.01 (95% confidence interval (CI) 0.90-1.13). Treatment with hyaluronidase PEGPH20 showed promising results, but, thus far, only in combination with gemcitabine and nab-paclitaxel in selected patients with hyaluronic acid (HA)high tumors: An increase in median progression free survival (PFS) of 2.9 months, as well as a HR of 0.51 (95% CI 0.26-1.00). In conclusion, we found that anti-angiogenic therapies did not show an increased benefit in median OS or PFS in contrast to promising results with anti-hyaluronic acid treatment in combination with gemcitabine and nab-paclitaxel. The PEGPH20 clinical trials used patient selection to determine eligibility based on tumor biology, which underlines the importance to personalize treatment for pancreatic cancer patients.
Collapse
Affiliation(s)
- Madelaine G van Mackelenbergh
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Charlotte I Stroes
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - René Spijker
- Medical Library, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
- Cochrane Netherlands, Julius Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | - Casper H J van Eijck
- Department of Surgery, Erasmus MC, Dr. Molewaterplein 40, 3015GD Rotterdam, The Netherlands.
| | - Johanna W Wilmink
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Maarten F Bijlsma
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Ghaneh P, Kleeff J, Halloran CM, Raraty M, Jackson R, Melling J, Jones O, Palmer DH, Cox TF, Smith CJ, O'Reilly DA, Izbicki JR, Scarfe AG, Valle JW, McDonald AC, Carter R, Tebbutt NC, Goldstein D, Padbury R, Shannon J, Dervenis C, Glimelius B, Deakin M, Anthoney A, Lerch MM, Mayerle J, Oláh A, Rawcliffe CL, Campbell F, Strobel O, Büchler MW, Neoptolemos JP. The Impact of Positive Resection Margins on Survival and Recurrence Following Resection and Adjuvant Chemotherapy for Pancreatic Ductal Adenocarcinoma. Ann Surg 2019; 269:520-529. [PMID: 29068800 DOI: 10.1097/sla.0000000000002557] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE AND BACKGROUND Local and distant disease recurrence are frequently observed following pancreatic cancer resection, but an improved understanding of resection margin assessment is required to aid tailored therapies. METHODS Analyses were carried out to assess the association between clinical characteristics and margin involvement as well as the effects of individual margin involvement on site of recurrence and overall and recurrence-free survival using individual patient data from the European Study Group for Pancreatic Cancer (ESPAC)-3 randomized controlled trial. RESULTS There were 1151 patients, of whom 505 (43.9%) had an R1 resection. The median and 95% confidence interval (CI) overall survival was 24.9 (22.9-27.2) months for 646 (56.1%) patients with resection margin negative (R0 >1 mm) tumors, 25.4 (21.6-30.4) months for 146 (12.7%) patients with R1<1 mm positive resection margins, and 18.7 (17.2-21.1) months for 359 (31.2%) patients with R1-direct positive margins (P < 0.001). In multivariable analysis, overall R1-direct tumor margins, poor tumor differentiation, positive lymph node status, WHO performance status ≥1, maximum tumor size, and R1-direct posterior resection margin were all independently significantly associated with reduced overall and recurrence-free survival. Competing risks analysis showed that overall R1-direct positive resection margin status, positive lymph node status, WHO performance status 1, and R1-direct positive superior mesenteric/medial margin resection status were all significantly associated with local recurrence. CONCLUSIONS R1-direct resections were associated with significantly reduced overall and recurrence-free survival following pancreatic cancer resection. Resection margin involvement was also associated with an increased risk for local recurrence.
Collapse
Affiliation(s)
- Paula Ghaneh
- Liverpool Cancer Research U.K. Cancer Trials Unit, University of Liverpool, Liverpool, United Kingdom University of Liverpool, Liverpool, UK
- The Department of Surgery, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - Jorg Kleeff
- The Department of Surgery, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - Christopher M Halloran
- The Department of Surgery, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - Michael Raraty
- The Department of Surgery, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - Richard Jackson
- Liverpool Cancer Research U.K. Cancer Trials Unit, University of Liverpool, Liverpool, United Kingdom University of Liverpool, Liverpool, UK
| | - James Melling
- The Department of Surgery, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - Owain Jones
- The Department of Surgery, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - Daniel H Palmer
- Liverpool Cancer Research U.K. Cancer Trials Unit, University of Liverpool, Liverpool, United Kingdom University of Liverpool, Liverpool, UK
| | - Trevor F Cox
- Liverpool Cancer Research U.K. Cancer Trials Unit, University of Liverpool, Liverpool, United Kingdom University of Liverpool, Liverpool, UK
| | - Chloe J Smith
- Liverpool Cancer Research U.K. Cancer Trials Unit, University of Liverpool, Liverpool, United Kingdom University of Liverpool, Liverpool, UK
| | - Derek A O'Reilly
- Department of Surgery, Manchester Royal Infirmary, Manchester, UK
| | - Jakob R Izbicki
- Department of Surgery, University of Hamburg Medical institutions UKE, Hamburg, Germany
| | - Andrew G Scarfe
- Department of Oncology Division of Medical Oncology 2228 Cross Cancer Institute and University of Alberta, Canada
| | - Juan W Valle
- Department of Medical Oncology , The Christie, Manchester, UK
| | - Alexander C McDonald
- Department of Medical Oncology, The Beatson West of Scotland Cancer Centre, Glasgow, Scotland, UK
| | - Ross Carter
- Department of Surgery, Glasgow Royal Infirmary, Glasgow, Scotland, UK
| | - Niall C Tebbutt
- Department of Medical Oncology, Austin Health, Melbourne, Australia
| | - David Goldstein
- Department of Medical Oncology, Prince of Wales hospital and Clinical School University of New South Wales, Australia
| | - Robert Padbury
- Department of Surgery, Flinders Medical Centre, Adelaide, South Australia
| | - Jennifer Shannon
- Department of Medical Oncology, Nepean Cancer Centre and University of Sydney, Australia
| | | | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Uppsala Clinical Research Center, Uppsala, Sweden
| | - Mark Deakin
- Department of Surgery, University Hospital, North Staffordshire, UK
| | - Alan Anthoney
- Division of Oncology at the University of Leeds, St James's University Hospital, Leeds, UK
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Attila Oláh
- Department of Surgery, The Petz Aladar Hospital, Gyor, Hungary
| | - Charlotte L Rawcliffe
- Liverpool Cancer Research U.K. Cancer Trials Unit, University of Liverpool, Liverpool, United Kingdom University of Liverpool, Liverpool, UK
| | - Fiona Campbell
- Department of Pathology, The Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - Oliver Strobel
- The Department of Surgery, University of Heidelberg, Heidelberg, Germany
| | - Markus W Büchler
- The Department of Surgery, University of Heidelberg, Heidelberg, Germany
| | - John P Neoptolemos
- Liverpool Cancer Research U.K. Cancer Trials Unit, University of Liverpool, Liverpool, United Kingdom University of Liverpool, Liverpool, UK
- The Department of Surgery, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| |
Collapse
|
41
|
Tong M, Wang J, Zhang H, Xing H, Wang Y, Fang Y, Pan H, Li D. Efficacy and safety of gemcitabine plus anti-angiogenesis therapy for advanced pancreatic cancer: a systematic review and meta-analysis of clinical randomized phase III trials. J Cancer 2019; 10:968-978. [PMID: 30854103 PMCID: PMC6400798 DOI: 10.7150/jca.26672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 10/28/2018] [Indexed: 01/12/2023] Open
Abstract
Purpose: Pancreatic cancer is a common digestive neoplasm with a high fatality rate. We performed this systematic review and meta-analysis of clinical randomized phase III trials to explore the efficacy and safety of gemcitabine plus anti-angiogenesis therapy versus gemcitabine monotherapy for locally advanced or metastatic pancreatic cancer. Methods: We searched PubMed, Embase and the Cochrane Library to identify eligible studies. Data were collected for the period from January 1, 2000 to August 20, 2018. Hazard ratios (HRs) and odds ratios (ORs) were used as main evaluation parameters. Results: A total of eight eligible studies with 3,586 individuals were included in the present meta-analysis. The results showed that the combination of gemcitabine plus anti-angiogenesis therapy had a significant effect on progression-free survival (HR = 0.92, 95% CI: 0.86 - 1.00, P = 0.04), but led to no significant difference in the overall survival (HR = 0.96, 95% CI: 0.88 - 1.05, P = 0.38). In terms of safety, gemcitabine plus anti-angiogenesis therapy did not increase the rate of grade 3-4 common adverse effects except for hypertension. Conclusions: Although gemcitabine plus anti-angiogenesis therapy might prolong the progression-free survival in locally advanced or metastatic pancreatic cancer, these successful results did not translate into a significant improvement in the overall survival or change in the clinical guidelines.
Collapse
Affiliation(s)
- Mengting Tong
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3#, Eastern Qingchun Road, Jianggan District, Hangzhou, Zhejiang, China, 310016.,Second Department of Medical Oncology, The Fourth Affiliated Hospital of Xinjiang Medical University, 116#, Huang He Road, Saybagh District, Urumqi, Xinjiang, China, 830000
| | - Jing Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3#, Eastern Qingchun Road, Jianggan District, Hangzhou, Zhejiang, China, 310016
| | - Hongliang Zhang
- Second Department of Medical Oncology, The Fourth Affiliated Hospital of Xinjiang Medical University, 116#, Huang He Road, Saybagh District, Urumqi, Xinjiang, China, 830000
| | - Haibo Xing
- Intensive Care Department, Xiasha Campus, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, 368#, Xiasha Road, Jianggan District, Hangzhou, Zhejiang, China, 310000
| | - Yanling Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3#, Eastern Qingchun Road, Jianggan District, Hangzhou, Zhejiang, China, 310016
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3#, Eastern Qingchun Road, Jianggan District, Hangzhou, Zhejiang, China, 310016
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3#, Eastern Qingchun Road, Jianggan District, Hangzhou, Zhejiang, China, 310016
| | - Da Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3#, Eastern Qingchun Road, Jianggan District, Hangzhou, Zhejiang, China, 310016
| |
Collapse
|
42
|
Amaral NS, Resende V, Dos Santos JS, Lima LF, Moraes DC, Friedman E, DE Marco L, Bastos-Rodrigues L. Impact of Ethnicity on Somatic Mutation Rates of Pancreatic Adenocarcinoma. In Vivo 2019; 32:1527-1531. [PMID: 30348712 DOI: 10.21873/invivo.11410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIM Ethnicity has an effect on survival in patients with pancreatic adenocarcinoma (PDAC), which may be reflected in the rate of somatic driver mutations. The Brazilian population represents au extensive interethnic admixture and little is known about the spectrum and rates of somatic driver mutations in Brazilian PDAC cases. MATERIALS AND METHODS Direct sequencing of six genes in 23 PDAC cases was performed and the ancestry of patients was determined using a validated panel of ancestry-informative insertion/deletion DNA polymorphisms. RESULTS KRAS proto-oncogene (KRAS) was the most commonly mutated gene (60%). A novel putatively pathogenic mutation in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) (c.2948T>A; p.M983K) was identified. Mutations in epidermal growth factor receptor (EGFR) (4%), PIK3CA (4%), cyclin-dependent kinase inhibitor 2A (CDKN2A) (4%) and TP53 (8%) were noted, in rates that are less frequent than those reported for other populations. Mutations of B-Raf proto-oncogene, serine/threonine kinase (BRAF) were not present. All individuals with high African ancestral component (allelic frequency, >0.45) exhibited KRAS mutations. CONCLUSION Our results highlight the importance of the effect of ethnicity on somatic mutations in Brazilian patients with PDAC.
Collapse
Affiliation(s)
- Nayra S Amaral
- Department of Surgery, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vivian Resende
- Department of Surgery, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Luiz Felipe Lima
- Department of Surgery, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Debora C Moraes
- Department of Surgery, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Eitan Friedman
- The Susanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Luiz DE Marco
- Department of Surgery, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
43
|
Zheng H, Yang L, Kang Y, Chen M, Lin S, Xiang Y, Li C, Dai X, Huang X, Liang G, Zhao C. Alantolactone sensitizes human pancreatic cancer cells to EGFR inhibitors through the inhibition of STAT3 signaling. Mol Carcinog 2019; 58:565-576. [PMID: 30520143 DOI: 10.1002/mc.22951] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/16/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Hailun Zheng
- Chemical Biology Research Center; School of Pharmaceutical Sciences, Wenzhou Medical University; Wenzhou Zhejiang China
| | - Lehe Yang
- Chemical Biology Research Center; School of Pharmaceutical Sciences, Wenzhou Medical University; Wenzhou Zhejiang China
- Division of Pulmonary Medicine; The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung; Wenzhou Zhejiang China
- Department of Respiratory Medicine; Affiliated Yueqing Hospital, Wenzhou Medical University; Wenzhou Zhejiang China
| | - Yanting Kang
- Chemical Biology Research Center; School of Pharmaceutical Sciences, Wenzhou Medical University; Wenzhou Zhejiang China
- Department of Ultrasonography; Yichun People's Hospital; Yichun Jiangxi China
| | - Min Chen
- Chemical Biology Research Center; School of Pharmaceutical Sciences, Wenzhou Medical University; Wenzhou Zhejiang China
| | - Shichong Lin
- Division of Pulmonary Medicine; The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung; Wenzhou Zhejiang China
| | - Youqun Xiang
- Division of Pulmonary Medicine; The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung; Wenzhou Zhejiang China
| | - Caleb Li
- Coffman High School; Dublin Ohio USA
| | - Xuanxuan Dai
- Division of Pulmonary Medicine; The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung; Wenzhou Zhejiang China
| | - Xiaoying Huang
- Division of Pulmonary Medicine; The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung; Wenzhou Zhejiang China
| | - Guang Liang
- Chemical Biology Research Center; School of Pharmaceutical Sciences, Wenzhou Medical University; Wenzhou Zhejiang China
| | - Chengguang Zhao
- Chemical Biology Research Center; School of Pharmaceutical Sciences, Wenzhou Medical University; Wenzhou Zhejiang China
- Department of Respiratory Medicine; Affiliated Yueqing Hospital, Wenzhou Medical University; Wenzhou Zhejiang China
| |
Collapse
|
44
|
Grinshpun A, Zarbiv Y, Roszik J, Subbiah V, Hubert A. Beyond KRAS: Practical Molecular Targets in Pancreatic Adenocarcinoma. Case Rep Oncol 2019; 12:7-13. [PMID: 30792639 PMCID: PMC6381925 DOI: 10.1159/000496018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 01/10/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) has a grim prognosis. Molecular and genomic analyses revealed that the striking majority of these tumors are driven by KRAS mutation, currently not amenable to targeted therapy. However, other driver mutations were found in a small fraction of patients. Herein we report of 3 cases of patients with metastatic PDAC and wildtype KRAS, found to harbor BRAF or RET pathogenic alterations. The patients were treated with targeted therapies with variable success. In our opinion, those proof-of-concept cases argue in favor of additional research and clinical trials' effort in this small but significant PDAC population with uncommon driver mutations.
Collapse
Affiliation(s)
- Albert Grinshpun
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yonaton Zarbiv
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Jason Roszik
- Melanoma Medical Oncology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ayala Hubert
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
45
|
Ducreux M, Seufferlein T, Van Laethem JL, Laurent-Puig P, Smolenschi C, Malka D, Boige V, Hollebecque A, Conroy T. Systemic treatment of pancreatic cancer revisited. Semin Oncol 2018; 46:28-38. [PMID: 30638624 DOI: 10.1053/j.seminoncol.2018.12.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/25/2022]
Abstract
Pancreatic cancer is considered to be one of the most aggressive cancers. For unknown reasons, the incidence of pancreatic cancer is slowly rising and so too are mortality rates. Over 75% of patients are diagnosed with locally advanced disease or with metastases; and more than 95% of patients have metastases at diagnosis or will develop metastases during their follow-up. Despite recent improvements in the therapy of pancreatic cancer, initially with demonstration of the activity of the FOLFIRINOX regimen and subsequently the approval of nab-paclitaxel in combination with gemcitabine, prognosis remains poor and the 5-year survival rate is less than 5%. To date, neither personalized medicine nor immunotherapy, the 2 recent revolutions of cancer treatment, have delivered major positive results in the treatment of pancreatic cancer; and it is especially clear that immune checkpoint inhibitors will not become a major tool in the treatment of pancreatic cancer. There are many ongoing studies, including those exploring combinations of chemotherapy with immunotherapy. Vaccines or T cells modified with a chimeric antigen receptor (CAR-T cells) could also play a role in the treatment of cancer in the future. The aim of this review is to discuss recent improvements in standard of care, major obstacles to overcome, recent results of new treatment combinations, and the most interesting innovative approaches.
Collapse
Affiliation(s)
- Michel Ducreux
- Département de Médecine Oncologique, Gustave Roussy Cancer Center Grand Paris, Université Paris Saclay, France.
| | | | - Jean-Luc Van Laethem
- Department of Gastroenterology and Digestive oncology, Erasme University Hospital, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Pierre Laurent-Puig
- Assistance Publique-Hôpitaux de Paris, Department of Biology, European Georges Pompidou Hospital, Paris, France
| | - Cristina Smolenschi
- Département de Médecine Oncologique, Gustave Roussy Cancer Center Grand Paris, France
| | - David Malka
- Département de Médecine Oncologique, Gustave Roussy Cancer Center Grand Paris, France
| | - Valérie Boige
- Département de Médecine Oncologique, Gustave Roussy Cancer Center Grand Paris, France
| | - Antoine Hollebecque
- Département de Médecine Oncologique, Gustave Roussy Cancer Center Grand Paris, France; Département d'Innovation Thérapeutique, Gustave Roussy Cancer Center Grand Paris, France
| | - Thierry Conroy
- Département d'oncologie médicale, Institut de Cancérologie de Lorraine, Université de Lorraine, Nancy, France
| |
Collapse
|
46
|
Chandana S, Babiker HM, Mahadevan D. Therapeutic trends in pancreatic ductal adenocarcinoma (PDAC). Expert Opin Investig Drugs 2018; 28:161-177. [DOI: 10.1080/13543784.2019.1557145] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sreenivasa Chandana
- Phase I program, START Midwest, Grand Rapids, MI, USA
- Department of Gastrointestinal Medical Oncology, Cancer and Hematology Centers of Western Michigan, Grand Rapids, MI, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Hani M. Babiker
- Early Phase Therapeutics Program, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Daruka Mahadevan
- Early Phase Therapeutics Program, University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
47
|
Zhang S, Xie W, Zou Y, Xie S, Zhang J, Yuan W, Ma J, Zhao J, Zheng C, Chen Y, Wang C. First-line chemotherapy regimens for locally advanced and metastatic pancreatic adenocarcinoma: a Bayesian analysis. Cancer Manag Res 2018; 10:5965-5978. [PMID: 30538546 PMCID: PMC6254987 DOI: 10.2147/cmar.s162980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background Systemic chemotherapy is the standard treatment for locally advanced and metastatic pancreatic cancer, but there is no consensus on the optimum regimen. We aimed to compare and rank the locally advanced and metastatic pancreatic adenocarcinoma chemotherapy regimens evaluated in randomized controlled trials (RCTs) in the past 15 years. Materials and methods PubMed, Embase, Cochrane Collaboration database, and ClinicalTrials.gov were searched for RCTs comparing chemotherapy regimens as first-line treatment for locally advanced and metastatic pancreatic adenocarcinomas. By using Bayesian network meta-analysis, we compared and ranked all included chemotherapy regimens in terms of overall survival, progression-free survival, response rate, and hematological toxicity. Results The analysis included 68 RCTs, with 14,908 patients and 63 treatment strategies. For overall survival, NSC-631570 (hazard ratio [HR] vs gemcitabine monotherapy 0.44, 95% credible interval: 0.24–0.76) and gemcitabine+NSC-631570 (HR 0.45, 0.24–0.86) were the two top-ranked chemotherapy regimens. For progression-free survival, PEFG (cisplatin + epirubicin + fluorouracil + gemcitabine) ranked first (HR 0.51, 0.34–0.77). PG (gemcitabine + pemetrexed) (odds ratio [OR] 4.68, 2.24–9.64) and FLEC (fluorouracil + leucovorin + epirubicin + carboplatin) (OR 4.52, 1.14–24.00) were ranked the most hematologically toxic, with gastrazole having the least toxicity (OR 0.03, 0.00–0.46). Conclusion The chemotherapy regimens NSC-631570 and gemcitabine+NSC-631570 were ranked the most efficacious for locally advanced and metastatic pancreatic adenocarcinomas in terms of overall survival, which warrants further confirmation in large-scale RCTs.
Collapse
Affiliation(s)
- Shuisheng Zhang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, ; .,Department of General Surgery, Peking University Third Hospital
| | - Weimin Xie
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital
| | - Yinghua Zou
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital
| | - Shuanghua Xie
- Department of Cancer Epidemiology and Health Statistics
| | - Jianwei Zhang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, ;
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College.,Clinical Immunology Center, Chinese Academy of Medical Science
| | - Jie Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College.,Clinical Immunology Center, Chinese Academy of Medical Science.,Department of Biotherapy, Beijing Hospital, National Center of Gerontology, Beijing
| | - Jiuda Zhao
- Department of Medical Oncology, Affiliated Hospital of Qinghai University, Xining
| | - Cuiling Zheng
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingtai Chen
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, ;
| | - Chengfeng Wang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, ;
| |
Collapse
|
48
|
Türeci Ӧ, Mitnacht-Kraus R, Wöll S, Yamada T, Sahin U. Characterization of zolbetuximab in pancreatic cancer models. Oncoimmunology 2018; 8:e1523096. [PMID: 30546962 PMCID: PMC6287799 DOI: 10.1080/2162402x.2018.1523096] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/23/2018] [Accepted: 09/10/2018] [Indexed: 02/08/2023] Open
Abstract
In healthy tissue, the tight junction protein Claudin 18.2 (CLDN18.2) is present only in the gastric mucosa. Upon malignant transformation of gastric epithelial tissue, perturbations in cell polarity lead to cell surface exposure of CLDN18.2 epitopes. Moreover, CLDN18.2 is aberrantly expressed in malignancies of several other organs, such as pancreatic cancer (PC). A monoclonal antibody, zolbetuximab (formerly known as IMAB362), has been generated against CLDN18.2. In a phase 2 clinical trial (FAST: NCT01630083), zolbetuximab in conjunction with chemotherapy prolonged overall and progression-free survival over chemotherapy alone and improved quality of life. In this study, the mechanism of action and antitumor activity of zolbetuximab were investigated using nonclinical PC models. Zolbetuximab bound specifically and with strong affinity to human PC cells that expressed CLDN18.2 on the cell surface. In ex vivo systems using immune effector cells and serum from healthy donors, zolbetuximab induced antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), resulting in the lysis of cultured human PC cells. The amplitude of ADCC and CDC directly correlated with cell surface CLDN18.2 levels. The chemotherapeutic agent gemcitabine upregulated CLDN18.2 expression in cultured human PC cells and enhanced zolbetuximab-induced ADCC. In mouse xenograft tumors derived from human PC cell lines, including gemcitabine-refractory ones, zolbetuximab slowed tumor growth, benefited survival, and attenuated metastases development. The results presented here validate CLDN18.2 as a targetable biomarker in PC and support extension of the clinical development of zolbetuximab to patients with CLDN18.2-expressing PC.
Collapse
Affiliation(s)
- Ӧzlem Türeci
- Formerly of Ganymed Pharmaceuticals AG, Mainz, Germany
| | | | - Stefan Wöll
- Formerly of Ganymed Pharmaceuticals AG, Mainz, Germany
| | | | - Ugur Sahin
- TRON - Translational Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
49
|
Li J, Gu J. Cardiovascular Toxicities with Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitors in Cancer Patients: A Meta-Analysis of 77 Randomized Controlled Trials. Clin Drug Investig 2018; 38:1109-1123. [DOI: 10.1007/s40261-018-0709-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
50
|
He R, Shi X, Zhou M, Zhao Y, Pan S, Zhao C, Guo X, Wang M, Li X, Qin R. Alantolactone induces apoptosis and improves chemosensitivity of pancreatic cancer cells by impairment of autophagy-lysosome pathway via targeting TFEB. Toxicol Appl Pharmacol 2018; 356:159-171. [PMID: 30086361 DOI: 10.1016/j.taap.2018.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 01/07/2023]
Abstract
The lysosome is emerging as a central regulator of the autophagic process, which plays a critical role in tumor growth and chemoresistance. Alantolactone, which is a natural compound produced by Inula helenium, has been shown to induce apoptosis in numerous cancer types. However, the mechanism by which alantolactone regulates apoptosis is still poorly understood. In this work, we observed that alantolactone caused the accumulation of autophagosomes due to impaired autophagic degradation and substantially inhibited the activity and expression of CTSB/CTSD proteins that when depleted caused lysosomal dysfunction. Furthermore, we found that alantolactone inhibited the proliferation of pancreatic cancer cells in vitro and in vivo and enhanced the chemosensitivity of pancreatic cancer cells to oxaliplatin. In addition, a reduction in TFEB levels was a critical event in the apoptosis and cell death caused by alantolactone. Our data demonstrated that alantolactone, which impaired autophagic degradation, was a pharmacological inhibitor of autophagy in pancreatic cancer cells and markedly enhanced the chemosensitivity of pancreatic cancer cells to oxaliplatin.
Collapse
Affiliation(s)
- Ruizhi He
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiuhui Shi
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Min Zhou
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yan Zhao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Shutao Pan
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Chunle Zhao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|