1
|
Santos-López J, de la Paz K, Fernández FJ, Vega MC. Structural biology of complement receptors. Front Immunol 2023; 14:1239146. [PMID: 37753090 PMCID: PMC10518620 DOI: 10.3389/fimmu.2023.1239146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
The complement system plays crucial roles in a wide breadth of immune and inflammatory processes and is frequently cited as an etiological or aggravating factor in many human diseases, from asthma to cancer. Complement receptors encompass at least eight proteins from four structural classes, orchestrating complement-mediated humoral and cellular effector responses and coordinating the complex cross-talk between innate and adaptive immunity. The progressive increase in understanding of the structural features of the main complement factors, activated proteolytic fragments, and their assemblies have spurred a renewed interest in deciphering their receptor complexes. In this review, we describe what is currently known about the structural biology of the complement receptors and their complexes with natural agonists and pharmacological antagonists. We highlight the fundamental concepts and the gray areas where issues and problems have been identified, including current research gaps. We seek to offer guidance into the structural biology of the complement system as structural information underlies fundamental and therapeutic research endeavors. Finally, we also indicate what we believe are potential developments in the field.
Collapse
Affiliation(s)
- Jorge Santos-López
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Karla de la Paz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Research & Development, Abvance Biotech SL, Madrid, Spain
| | | | - M. Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
2
|
Misra A, Chakrabarti SS, Gambhir IS. New genetic players in late-onset Alzheimer's disease: Findings of genome-wide association studies. Indian J Med Res 2019; 148:135-144. [PMID: 30381536 PMCID: PMC6206761 DOI: 10.4103/ijmr.ijmr_473_17] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Late-onset Alzheimer's disease (LOAD) or sporadic AD is the most common form of AD. The precise pathogenetic changes that trigger the development of AD remain largely unknown. Large-scale genome-wide association studies (GWASs) have identified single-nucleotide polymorphisms in multiple genes which are associated with AD; most notably, these are ABCA7, bridging integrator 1(B1N1), triggering receptor expressed on myeloid cells 2 (TREM2), CD33, clusterin (CLU), complement receptor 1 (CRI), ephrin type-A receptor 1 (EPHA1), membrane-spanning 4-domains, subfamily A (MS4A) and phosphatidylinositol binding clathrin assembly protein (PICALM) genes. The proteins coded by the candidate genes participate in a variety of cellular processes such as oxidative balance, protein metabolism, cholesterol metabolism and synaptic function. This review summarizes the major gene loci affecting LOAD identified by large GWASs. Tentative mechanisms have also been elaborated in various studies by which the proteins coded by these genes may exert a role in AD pathogenesis have also been elaborated. The review suggests that these may together affect LOAD pathogenesis in a complementary fashion.
Collapse
Affiliation(s)
- Anamika Misra
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Indrajeet Singh Gambhir
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Opi DH, Swann O, Macharia A, Uyoga S, Band G, Ndila CM, Harrison EM, Thera MA, Kone AK, Diallo DA, Doumbo OK, Lyke KE, Plowe CV, Moulds JM, Shebbe M, Mturi N, Peshu N, Maitland K, Raza A, Kwiatkowski DP, Rockett KA, Williams TN, Rowe JA. Two complement receptor one alleles have opposing associations with cerebral malaria and interact with α +thalassaemia. eLife 2018; 7:e31579. [PMID: 29690995 PMCID: PMC5953541 DOI: 10.7554/elife.31579] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 04/01/2018] [Indexed: 12/13/2022] Open
Abstract
Malaria has been a major driving force in the evolution of the human genome. In sub-Saharan African populations, two neighbouring polymorphisms in the Complement Receptor One (CR1) gene, named Sl2 and McCb, occur at high frequencies, consistent with selection by malaria. Previous studies have been inconclusive. Using a large case-control study of severe malaria in Kenyan children and statistical models adjusted for confounders, we estimate the relationship between Sl2 and McCb and malaria phenotypes, and find they have opposing associations. The Sl2 polymorphism is associated with markedly reduced odds of cerebral malaria and death, while the McCb polymorphism is associated with increased odds of cerebral malaria. We also identify an apparent interaction between Sl2 and α+thalassaemia, with the protective association of Sl2 greatest in children with normal α-globin. The complex relationship between these three mutations may explain previous conflicting findings, highlighting the importance of considering genetic interactions in disease-association studies.
Collapse
Affiliation(s)
- D Herbert Opi
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Olivia Swann
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Alexander Macharia
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Sophie Uyoga
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Gavin Band
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Carolyne M Ndila
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Ewen M Harrison
- Centre for Medical InfomaticsUsher Insitute of Population Health Sciences and Informatics, University of EdinburghEdinburghUnited Kingdom
| | - Mahamadou A Thera
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy, and DentistryUniversity of BamakoBamakoMali
| | - Abdoulaye K Kone
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy, and DentistryUniversity of BamakoBamakoMali
| | - Dapa A Diallo
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy, and DentistryUniversity of BamakoBamakoMali
| | - Ogobara K Doumbo
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy, and DentistryUniversity of BamakoBamakoMali
| | - Kirsten E Lyke
- Division of Malaria Research, Institute for Global HealthUniversity of Maryland School of MedicineBaltimoreUnited States
| | - Christopher V Plowe
- Division of Malaria Research, Institute for Global HealthUniversity of Maryland School of MedicineBaltimoreUnited States
| | | | - Mohammed Shebbe
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Neema Mturi
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Norbert Peshu
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Kathryn Maitland
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
- Department of MedicineImperial CollegeLondonUnited Kingdom
| | - Ahmed Raza
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Dominic P Kwiatkowski
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
- Wellcome Trust Sanger InstituteCambridgeUnited Kingdom
| | - Kirk A Rockett
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Thomas N Williams
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
- Department of MedicineImperial CollegeLondonUnited Kingdom
| | - J Alexandra Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
4
|
Swann OV, Harrison EM, Opi DH, Nyatichi E, Macharia A, Uyoga S, Williams TN, Rowe JA. No Evidence that Knops Blood Group Polymorphisms Affect Complement Receptor 1 Clustering on Erythrocytes. Sci Rep 2017; 7:17825. [PMID: 29259218 PMCID: PMC5736761 DOI: 10.1038/s41598-017-17664-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 11/29/2017] [Indexed: 01/17/2023] Open
Abstract
Clustering of Complement Receptor 1 (CR1) in the erythrocyte membrane is important for immune-complex transfer and clearance. CR1 contains the Knops blood group antigens, including the antithetical pairs Swain-Langley 1 and 2 (Sl1 and Sl2) and McCoy a and b (McCa and McCb), whose functional effects are unknown. We tested the hypothesis that the Sl and McC polymorphisms might influence CR1 clustering on erythrocyte membranes. Blood samples from 125 healthy Kenyan children were analysed by immunofluorescence and confocal microscopy to determine CR1 cluster number and volume. In agreement with previous reports, CR1 cluster number and volume were positively associated with CR1 copy number (mean number of CR1 molecules per erythrocyte). Individuals with the McCb/McCb genotype had more clusters per cell than McCa/McCa individuals. However, this association was lost when the strong effect of CR1 copy number was included in the model. No association was observed between Sl genotype, sickle cell genotype, α+thalassaemia genotype, gender or age and CR1 cluster number or volume. Therefore, after correction for CR1 copy number, the Sl and McCoy polymorphisms did not influence erythrocyte CR1 clustering, and the effects of the Knops polymorphisms on CR1 function remains unknown.
Collapse
Affiliation(s)
- O V Swann
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - E M Harrison
- Clinical Surgery, University of Edinburgh, Edinburgh, UK
| | - D H Opi
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Wellcome Trust Research Laboratories/Kenya Medical Research Institute, Centre for Geographic Medicine Research, Kilifi, Kenya.,Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
| | - E Nyatichi
- Wellcome Trust Research Laboratories/Kenya Medical Research Institute, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - A Macharia
- Wellcome Trust Research Laboratories/Kenya Medical Research Institute, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - S Uyoga
- Wellcome Trust Research Laboratories/Kenya Medical Research Institute, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - T N Williams
- Wellcome Trust Research Laboratories/Kenya Medical Research Institute, Centre for Geographic Medicine Research, Kilifi, Kenya.,Department of Medicine, Imperial College, London, UK
| | - J A Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
5
|
Alampalli SV, Grover M, Chandran S, Tatu U, Acharya P. Proteome and Structural Organization of the Knob Complex on the Surface of the Plasmodium
Infected Red Blood Cell. Proteomics Clin Appl 2017; 12:e1600177. [DOI: 10.1002/prca.201600177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/16/2017] [Indexed: 02/04/2023]
Affiliation(s)
| | - Manish Grover
- Department of Biochemistry; Indian Institute of Science; Bangalore India
| | - Syama Chandran
- Department of Biochemistry; Indian Institute of Science; Bangalore India
| | - Utpal Tatu
- Department of Biochemistry; Indian Institute of Science; Bangalore India
| | - Pragyan Acharya
- Department of Biochemistry; All India Institute of Medical Sciences; New Delhi India
| |
Collapse
|
6
|
Kisserli A, Tabary T, Cohen JHM, Duret V, Mahmoudi R. High-resolution Melting PCR for Complement Receptor 1 Length Polymorphism Genotyping: An Innovative Tool for Alzheimer's Disease Gene Susceptibility Assessment. J Vis Exp 2017. [PMID: 28745649 PMCID: PMC5612547 DOI: 10.3791/56012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Complement receptor 1 (CR1), a transmembrane glycoprotein that plays a key role in the innate immune system, is expressed on many cell types, but especially on red blood cells (RBCs). As a receptor for the complement components C3b and C4b, CR1 regulates the activation of the complement cascade and promotes the phagocytosis of immune complexes and cellular debris, as well as the amyloid-beta (Aβ) peptide in Alzheimer's disease (AD). Several studies have confirmed AD-associated single nucleotide polymorphisms (SNPs), as well as a copy-number variation (CNV) in the CR1 gene. Here, we describe an innovative method for determining the length polymorphism of the CR1 receptor. The receptor includes three domains, called long homologous repeats (LHR)-LHR-A, LHR-C, and LHR-D-and an n domain, LHR-B, where n is an integer between 0 and 3. Using a single pair of specific primers, the genetic material is used to amplify a first fragment of the LHR-B domain (the variant amplicon B) and a second fragment of the LHR-C domain (the invariant amplicon). The variant amplicon B and the invariant amplicon display differences at five nucleotides outside of the hybridization areas of said primers. The numbers of variant amplicons B and of invariant amplicons is deduced using a quantitative tool (high-resolution melting (HRM) curves), and the ratio of the variant amplicon B to the invariant amplicon differs according to the CR1 length polymorphism. This method provides several advantages over the canonical phenotype method, as it does not require fresh material and is cheaper, faster, and therefore applicable to larger populations. Thus, the use of this method should be helpful to better understand the role of CR1 isoforms in the pathogenesis of diseases such as AD.
Collapse
Affiliation(s)
- Aymric Kisserli
- Department of Immunology, Reims University Hospitals, Robert Debré Hospital; Faculty of Medicine, LRN EA 4682, University of Reims Champagne-Ardenne
| | - Thierry Tabary
- Department of Immunology, Reims University Hospitals, Robert Debré Hospital; Faculty of Medicine, LRN EA 4682, University of Reims Champagne-Ardenne
| | - Jacques Henri Max Cohen
- Department of Immunology, Reims University Hospitals, Robert Debré Hospital; Faculty of Medicine, LRN EA 4682, University of Reims Champagne-Ardenne;
| | - Valérie Duret
- Department of Immunology, Reims University Hospitals, Robert Debré Hospital; Faculty of Medicine, LRN EA 4682, University of Reims Champagne-Ardenne
| | - Rachid Mahmoudi
- Department of Internal Medicine and Geriatrics, Reims University Hospitals, Maison Blanche Hospital; Faculty of Medicine, EA 3797, University of Reims Champagne-Ardenne
| |
Collapse
|
7
|
Karaca I, Wagner H, Ramirez A. Suche nach Risikogenen bei der Alzheimer-Erkrankung. DER NERVENARZT 2017; 88:744-750. [DOI: 10.1007/s00115-017-0354-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Geographical distribution of complement receptor type 1 variants and their associated disease risk. PLoS One 2017; 12:e0175973. [PMID: 28520715 PMCID: PMC5435133 DOI: 10.1371/journal.pone.0175973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/03/2017] [Indexed: 11/19/2022] Open
Abstract
Background Pathogens exert selective pressure which may lead to substantial changes in host immune responses. The human complement receptor type 1 (CR1) is an innate immune recognition glycoprotein that regulates the activation of the complement pathway and removes opsonized immune complexes. CR1 genetic variants in exon 29 have been associated with expression levels, C1q or C3b binding and increased susceptibility to several infectious diseases. Five distinct CR1 nucleotide substitutions determine the Knops blood group phenotypes, namely Kna/b, McCa/b, Sl1/Sl2, Sl4/Sl5 and KCAM+/-. Methods CR1 variants were genotyped by direct sequencing in a cohort of 441 healthy individuals from Brazil, Vietnam, India, Republic of Congo and Ghana. Results The distribution of the CR1 alleles, genotypes and haplotypes differed significantly among geographical settings (p≤0.001). CR1 variants rs17047660A/G (McCa/b) and rs17047661A/G (Sl1/Sl2) were exclusively observed to be polymorphic in African populations compared to the groups from Asia and South-America, strongly suggesting that these two SNPs may be subjected to selection. This is further substantiated by a high linkage disequilibrium between the two variants in the Congolese and Ghanaian populations. A total of nine CR1 haplotypes were observed. The CR1*AGAATA haplotype was found more frequently among the Brazilian and Vietnamese study groups; the CR1*AGAATG haplotype was frequent in the Indian and Vietnamese populations, while the CR1*AGAGTG haplotype was frequent among Congolese and Ghanaian individuals. Conclusion The African populations included in this study might have a selective advantage conferred to immune genes involved in pathogen recognition and signaling, possibly contributing to disease susceptibility or resistance.
Collapse
|
9
|
Lazaris A, Hwang KS, Goukasian N, Ramirez LM, Eastman J, Blanken AE, Teng E, Gylys K, Cole G, Saykin AJ, Shaw LM, Trojanowski JQ, Jagust WJ, Weiner MW, Apostolova LG. Alzheimer risk genes modulate the relationship between plasma apoE and cortical PiB binding. NEUROLOGY-GENETICS 2015; 1:e22. [PMID: 27066559 PMCID: PMC4809461 DOI: 10.1212/nxg.0000000000000022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/13/2015] [Indexed: 01/28/2023]
Abstract
Objective: We investigated the association between apoE protein plasma levels and brain amyloidosis and the effect of the top 10 Alzheimer disease (AD) risk genes on this association. Methods: Our dataset consisted of 18 AD, 52 mild cognitive impairment, and 3 cognitively normal Alzheimer's Disease Neuroimaging Initiative 1 (ADNI1) participants with available [11C]-Pittsburgh compound B (PiB) and peripheral blood protein data. We used cortical pattern matching to study associations between plasma apoE and cortical PiB binding and the effect of carrier status for the top 10 AD risk genes. Results: Low plasma apoE was significantly associated with high PiB SUVR, except in the sensorimotor and entorhinal cortex. For BIN1 rs744373, the association was observed only in minor allele carriers. For CD2AP rs9349407 and CR1 rs3818361, the association was preserved only in minor allele noncarriers. We did not find evidence for modulation by CLU, PICALM, ABCA7, BIN1, and MS4A6A. Conclusions: Our data show that BIN1 rs744373, CD2AP rs9349407, and CR1 rs3818361 genotypes modulate the association between apoE protein plasma levels and brain amyloidosis, implying a potential epigenetic/downstream interaction.
Collapse
Affiliation(s)
- Andreas Lazaris
- University of California Berkeley (A.L.), Berkeley; Oakland University William Beaumont School of Medicine (K.S.H.), Rochester, MI; Department of Neurology (K.S.H., N.G., A.E.B., E.T., G.C., L.G.A.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Drexel University College of Medicine (L.M.R.), Philadelphia, PA; Northwestern University Feinberg School of Medicine (J.E.), Chicago, IL; Veterans Affairs Greater Los Angeles Healthcare System (E.T., G.C.), Los Angeles, CA; School of Nursing (K.G.), UCLA, Los Angeles, CA; Department of Radiology and Imaging Sciences, Center for Neuroimaging (A.J.S., L.G.A.), Department of Neurology (L.G.A.), and Department of Medical and Molecular Genetics (L.G.A.), School of Medicine, Indiana University, Indianapolis; Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T.), University of Pennsylvania School of Medicine, Philadelphia; Department of Public Health and Neuroscience (W.J.J.), UC Berkeley, CA; and Department of Veterans' Affairs Medical Center (M.W.W.), San Francisco, CA
| | - Kristy S Hwang
- University of California Berkeley (A.L.), Berkeley; Oakland University William Beaumont School of Medicine (K.S.H.), Rochester, MI; Department of Neurology (K.S.H., N.G., A.E.B., E.T., G.C., L.G.A.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Drexel University College of Medicine (L.M.R.), Philadelphia, PA; Northwestern University Feinberg School of Medicine (J.E.), Chicago, IL; Veterans Affairs Greater Los Angeles Healthcare System (E.T., G.C.), Los Angeles, CA; School of Nursing (K.G.), UCLA, Los Angeles, CA; Department of Radiology and Imaging Sciences, Center for Neuroimaging (A.J.S., L.G.A.), Department of Neurology (L.G.A.), and Department of Medical and Molecular Genetics (L.G.A.), School of Medicine, Indiana University, Indianapolis; Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T.), University of Pennsylvania School of Medicine, Philadelphia; Department of Public Health and Neuroscience (W.J.J.), UC Berkeley, CA; and Department of Veterans' Affairs Medical Center (M.W.W.), San Francisco, CA
| | - Naira Goukasian
- University of California Berkeley (A.L.), Berkeley; Oakland University William Beaumont School of Medicine (K.S.H.), Rochester, MI; Department of Neurology (K.S.H., N.G., A.E.B., E.T., G.C., L.G.A.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Drexel University College of Medicine (L.M.R.), Philadelphia, PA; Northwestern University Feinberg School of Medicine (J.E.), Chicago, IL; Veterans Affairs Greater Los Angeles Healthcare System (E.T., G.C.), Los Angeles, CA; School of Nursing (K.G.), UCLA, Los Angeles, CA; Department of Radiology and Imaging Sciences, Center for Neuroimaging (A.J.S., L.G.A.), Department of Neurology (L.G.A.), and Department of Medical and Molecular Genetics (L.G.A.), School of Medicine, Indiana University, Indianapolis; Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T.), University of Pennsylvania School of Medicine, Philadelphia; Department of Public Health and Neuroscience (W.J.J.), UC Berkeley, CA; and Department of Veterans' Affairs Medical Center (M.W.W.), San Francisco, CA
| | - Leslie M Ramirez
- University of California Berkeley (A.L.), Berkeley; Oakland University William Beaumont School of Medicine (K.S.H.), Rochester, MI; Department of Neurology (K.S.H., N.G., A.E.B., E.T., G.C., L.G.A.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Drexel University College of Medicine (L.M.R.), Philadelphia, PA; Northwestern University Feinberg School of Medicine (J.E.), Chicago, IL; Veterans Affairs Greater Los Angeles Healthcare System (E.T., G.C.), Los Angeles, CA; School of Nursing (K.G.), UCLA, Los Angeles, CA; Department of Radiology and Imaging Sciences, Center for Neuroimaging (A.J.S., L.G.A.), Department of Neurology (L.G.A.), and Department of Medical and Molecular Genetics (L.G.A.), School of Medicine, Indiana University, Indianapolis; Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T.), University of Pennsylvania School of Medicine, Philadelphia; Department of Public Health and Neuroscience (W.J.J.), UC Berkeley, CA; and Department of Veterans' Affairs Medical Center (M.W.W.), San Francisco, CA
| | - Jennifer Eastman
- University of California Berkeley (A.L.), Berkeley; Oakland University William Beaumont School of Medicine (K.S.H.), Rochester, MI; Department of Neurology (K.S.H., N.G., A.E.B., E.T., G.C., L.G.A.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Drexel University College of Medicine (L.M.R.), Philadelphia, PA; Northwestern University Feinberg School of Medicine (J.E.), Chicago, IL; Veterans Affairs Greater Los Angeles Healthcare System (E.T., G.C.), Los Angeles, CA; School of Nursing (K.G.), UCLA, Los Angeles, CA; Department of Radiology and Imaging Sciences, Center for Neuroimaging (A.J.S., L.G.A.), Department of Neurology (L.G.A.), and Department of Medical and Molecular Genetics (L.G.A.), School of Medicine, Indiana University, Indianapolis; Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T.), University of Pennsylvania School of Medicine, Philadelphia; Department of Public Health and Neuroscience (W.J.J.), UC Berkeley, CA; and Department of Veterans' Affairs Medical Center (M.W.W.), San Francisco, CA
| | - Anna E Blanken
- University of California Berkeley (A.L.), Berkeley; Oakland University William Beaumont School of Medicine (K.S.H.), Rochester, MI; Department of Neurology (K.S.H., N.G., A.E.B., E.T., G.C., L.G.A.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Drexel University College of Medicine (L.M.R.), Philadelphia, PA; Northwestern University Feinberg School of Medicine (J.E.), Chicago, IL; Veterans Affairs Greater Los Angeles Healthcare System (E.T., G.C.), Los Angeles, CA; School of Nursing (K.G.), UCLA, Los Angeles, CA; Department of Radiology and Imaging Sciences, Center for Neuroimaging (A.J.S., L.G.A.), Department of Neurology (L.G.A.), and Department of Medical and Molecular Genetics (L.G.A.), School of Medicine, Indiana University, Indianapolis; Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T.), University of Pennsylvania School of Medicine, Philadelphia; Department of Public Health and Neuroscience (W.J.J.), UC Berkeley, CA; and Department of Veterans' Affairs Medical Center (M.W.W.), San Francisco, CA
| | - Edmond Teng
- University of California Berkeley (A.L.), Berkeley; Oakland University William Beaumont School of Medicine (K.S.H.), Rochester, MI; Department of Neurology (K.S.H., N.G., A.E.B., E.T., G.C., L.G.A.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Drexel University College of Medicine (L.M.R.), Philadelphia, PA; Northwestern University Feinberg School of Medicine (J.E.), Chicago, IL; Veterans Affairs Greater Los Angeles Healthcare System (E.T., G.C.), Los Angeles, CA; School of Nursing (K.G.), UCLA, Los Angeles, CA; Department of Radiology and Imaging Sciences, Center for Neuroimaging (A.J.S., L.G.A.), Department of Neurology (L.G.A.), and Department of Medical and Molecular Genetics (L.G.A.), School of Medicine, Indiana University, Indianapolis; Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T.), University of Pennsylvania School of Medicine, Philadelphia; Department of Public Health and Neuroscience (W.J.J.), UC Berkeley, CA; and Department of Veterans' Affairs Medical Center (M.W.W.), San Francisco, CA
| | - Karen Gylys
- University of California Berkeley (A.L.), Berkeley; Oakland University William Beaumont School of Medicine (K.S.H.), Rochester, MI; Department of Neurology (K.S.H., N.G., A.E.B., E.T., G.C., L.G.A.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Drexel University College of Medicine (L.M.R.), Philadelphia, PA; Northwestern University Feinberg School of Medicine (J.E.), Chicago, IL; Veterans Affairs Greater Los Angeles Healthcare System (E.T., G.C.), Los Angeles, CA; School of Nursing (K.G.), UCLA, Los Angeles, CA; Department of Radiology and Imaging Sciences, Center for Neuroimaging (A.J.S., L.G.A.), Department of Neurology (L.G.A.), and Department of Medical and Molecular Genetics (L.G.A.), School of Medicine, Indiana University, Indianapolis; Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T.), University of Pennsylvania School of Medicine, Philadelphia; Department of Public Health and Neuroscience (W.J.J.), UC Berkeley, CA; and Department of Veterans' Affairs Medical Center (M.W.W.), San Francisco, CA
| | - Greg Cole
- University of California Berkeley (A.L.), Berkeley; Oakland University William Beaumont School of Medicine (K.S.H.), Rochester, MI; Department of Neurology (K.S.H., N.G., A.E.B., E.T., G.C., L.G.A.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Drexel University College of Medicine (L.M.R.), Philadelphia, PA; Northwestern University Feinberg School of Medicine (J.E.), Chicago, IL; Veterans Affairs Greater Los Angeles Healthcare System (E.T., G.C.), Los Angeles, CA; School of Nursing (K.G.), UCLA, Los Angeles, CA; Department of Radiology and Imaging Sciences, Center for Neuroimaging (A.J.S., L.G.A.), Department of Neurology (L.G.A.), and Department of Medical and Molecular Genetics (L.G.A.), School of Medicine, Indiana University, Indianapolis; Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T.), University of Pennsylvania School of Medicine, Philadelphia; Department of Public Health and Neuroscience (W.J.J.), UC Berkeley, CA; and Department of Veterans' Affairs Medical Center (M.W.W.), San Francisco, CA
| | - Andrew J Saykin
- University of California Berkeley (A.L.), Berkeley; Oakland University William Beaumont School of Medicine (K.S.H.), Rochester, MI; Department of Neurology (K.S.H., N.G., A.E.B., E.T., G.C., L.G.A.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Drexel University College of Medicine (L.M.R.), Philadelphia, PA; Northwestern University Feinberg School of Medicine (J.E.), Chicago, IL; Veterans Affairs Greater Los Angeles Healthcare System (E.T., G.C.), Los Angeles, CA; School of Nursing (K.G.), UCLA, Los Angeles, CA; Department of Radiology and Imaging Sciences, Center for Neuroimaging (A.J.S., L.G.A.), Department of Neurology (L.G.A.), and Department of Medical and Molecular Genetics (L.G.A.), School of Medicine, Indiana University, Indianapolis; Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T.), University of Pennsylvania School of Medicine, Philadelphia; Department of Public Health and Neuroscience (W.J.J.), UC Berkeley, CA; and Department of Veterans' Affairs Medical Center (M.W.W.), San Francisco, CA
| | - Leslie M Shaw
- University of California Berkeley (A.L.), Berkeley; Oakland University William Beaumont School of Medicine (K.S.H.), Rochester, MI; Department of Neurology (K.S.H., N.G., A.E.B., E.T., G.C., L.G.A.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Drexel University College of Medicine (L.M.R.), Philadelphia, PA; Northwestern University Feinberg School of Medicine (J.E.), Chicago, IL; Veterans Affairs Greater Los Angeles Healthcare System (E.T., G.C.), Los Angeles, CA; School of Nursing (K.G.), UCLA, Los Angeles, CA; Department of Radiology and Imaging Sciences, Center for Neuroimaging (A.J.S., L.G.A.), Department of Neurology (L.G.A.), and Department of Medical and Molecular Genetics (L.G.A.), School of Medicine, Indiana University, Indianapolis; Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T.), University of Pennsylvania School of Medicine, Philadelphia; Department of Public Health and Neuroscience (W.J.J.), UC Berkeley, CA; and Department of Veterans' Affairs Medical Center (M.W.W.), San Francisco, CA
| | - John Q Trojanowski
- University of California Berkeley (A.L.), Berkeley; Oakland University William Beaumont School of Medicine (K.S.H.), Rochester, MI; Department of Neurology (K.S.H., N.G., A.E.B., E.T., G.C., L.G.A.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Drexel University College of Medicine (L.M.R.), Philadelphia, PA; Northwestern University Feinberg School of Medicine (J.E.), Chicago, IL; Veterans Affairs Greater Los Angeles Healthcare System (E.T., G.C.), Los Angeles, CA; School of Nursing (K.G.), UCLA, Los Angeles, CA; Department of Radiology and Imaging Sciences, Center for Neuroimaging (A.J.S., L.G.A.), Department of Neurology (L.G.A.), and Department of Medical and Molecular Genetics (L.G.A.), School of Medicine, Indiana University, Indianapolis; Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T.), University of Pennsylvania School of Medicine, Philadelphia; Department of Public Health and Neuroscience (W.J.J.), UC Berkeley, CA; and Department of Veterans' Affairs Medical Center (M.W.W.), San Francisco, CA
| | - William J Jagust
- University of California Berkeley (A.L.), Berkeley; Oakland University William Beaumont School of Medicine (K.S.H.), Rochester, MI; Department of Neurology (K.S.H., N.G., A.E.B., E.T., G.C., L.G.A.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Drexel University College of Medicine (L.M.R.), Philadelphia, PA; Northwestern University Feinberg School of Medicine (J.E.), Chicago, IL; Veterans Affairs Greater Los Angeles Healthcare System (E.T., G.C.), Los Angeles, CA; School of Nursing (K.G.), UCLA, Los Angeles, CA; Department of Radiology and Imaging Sciences, Center for Neuroimaging (A.J.S., L.G.A.), Department of Neurology (L.G.A.), and Department of Medical and Molecular Genetics (L.G.A.), School of Medicine, Indiana University, Indianapolis; Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T.), University of Pennsylvania School of Medicine, Philadelphia; Department of Public Health and Neuroscience (W.J.J.), UC Berkeley, CA; and Department of Veterans' Affairs Medical Center (M.W.W.), San Francisco, CA
| | - Michael W Weiner
- University of California Berkeley (A.L.), Berkeley; Oakland University William Beaumont School of Medicine (K.S.H.), Rochester, MI; Department of Neurology (K.S.H., N.G., A.E.B., E.T., G.C., L.G.A.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Drexel University College of Medicine (L.M.R.), Philadelphia, PA; Northwestern University Feinberg School of Medicine (J.E.), Chicago, IL; Veterans Affairs Greater Los Angeles Healthcare System (E.T., G.C.), Los Angeles, CA; School of Nursing (K.G.), UCLA, Los Angeles, CA; Department of Radiology and Imaging Sciences, Center for Neuroimaging (A.J.S., L.G.A.), Department of Neurology (L.G.A.), and Department of Medical and Molecular Genetics (L.G.A.), School of Medicine, Indiana University, Indianapolis; Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T.), University of Pennsylvania School of Medicine, Philadelphia; Department of Public Health and Neuroscience (W.J.J.), UC Berkeley, CA; and Department of Veterans' Affairs Medical Center (M.W.W.), San Francisco, CA
| | - Liana G Apostolova
- University of California Berkeley (A.L.), Berkeley; Oakland University William Beaumont School of Medicine (K.S.H.), Rochester, MI; Department of Neurology (K.S.H., N.G., A.E.B., E.T., G.C., L.G.A.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Drexel University College of Medicine (L.M.R.), Philadelphia, PA; Northwestern University Feinberg School of Medicine (J.E.), Chicago, IL; Veterans Affairs Greater Los Angeles Healthcare System (E.T., G.C.), Los Angeles, CA; School of Nursing (K.G.), UCLA, Los Angeles, CA; Department of Radiology and Imaging Sciences, Center for Neuroimaging (A.J.S., L.G.A.), Department of Neurology (L.G.A.), and Department of Medical and Molecular Genetics (L.G.A.), School of Medicine, Indiana University, Indianapolis; Department of Pathology and Laboratory Medicine (L.M.S., J.Q.T.), University of Pennsylvania School of Medicine, Philadelphia; Department of Public Health and Neuroscience (W.J.J.), UC Berkeley, CA; and Department of Veterans' Affairs Medical Center (M.W.W.), San Francisco, CA
| | | |
Collapse
|
10
|
Zhao L, Zhang Z, Lin J, Cao L, He B, Han S, Zhang X. Complement receptor 1 genetic variants contribute to the susceptibility to gastric cancer in chinese population. J Cancer 2015; 6:525-30. [PMID: 26000043 PMCID: PMC4439937 DOI: 10.7150/jca.10749] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/26/2014] [Indexed: 12/21/2022] Open
Abstract
As the receptor for C3b/C4b, type 1 complement receptor (CR1/CD35) plays an important role in the regulation of complement activity and is further involved in carcinogenesis. This study aimed to elucidate the association of CR1 genetic variants with the susceptibility to gastric cancer in Chinese population. Based on the NCBI database, totally 13 tag single nucleotide polymorphisms (SNPs) were selected by Haploview program and genotyped using iPlex Gold Genotyping Assay and Sequenom MassArray among 500 gastric cancer cases and 500 healthy controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by logistic regression to evaluate the association of each SNP with gastric cancer. Of all selected Tag SNPs , CR1 rs9429942 T > C was found to confer to the risk of developing gastric cancer. Compared with the carriers with rs9429942 TT genotype, those with CT genotype had 88% decreased risk of developing gastric cancer with OR (95%CI) of 0.12 (0.03-0.50). Generalized multifactor dimensionality reduction (GMDR) analysis revealed a significant three-way interaction among rs75422544 C > A, rs10494885 C > T and rs7525160 G > C in the development of gastric cancer with a maximum testing balance accuracy of 56.07% and a cross-validation consistency of 7/10 (P = 0.011). In conclusion, our findings demonstrated the genetic role of CR1 gene in the development of gastric cancer in Chinese population.
Collapse
Affiliation(s)
- Lina Zhao
- 1. Institute of Molecular Genetics, College of Life Sciences, Hebei United University, Tangshan, China
| | - Zhi Zhang
- 2. Affiliated Tangshan Gongren Hospital, Hebei United University, Tangshan, China
| | - Jia Lin
- 1. Institute of Molecular Genetics, College of Life Sciences, Hebei United University, Tangshan, China
| | - Lei Cao
- 1. Institute of Molecular Genetics, College of Life Sciences, Hebei United University, Tangshan, China
| | - Bing He
- 1. Institute of Molecular Genetics, College of Life Sciences, Hebei United University, Tangshan, China
| | - Sugui Han
- 3. Department of Clinical laboratory, Tangshan Renmin Hospital, Tangshan, China
| | - Xuemei Zhang
- 1. Institute of Molecular Genetics, College of Life Sciences, Hebei United University, Tangshan, China
| |
Collapse
|
11
|
Lan Y, Wei CD, Chen WC, Wang JL, Wang CF, Pan GG, Wei YS, Nong LG. Association of the single-nucleotide polymorphism and haplotype of the complement receptor 1 gene with malaria. Yonsei Med J 2015; 56:332-9. [PMID: 25683978 PMCID: PMC4329341 DOI: 10.3349/ymj.2015.56.2.332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Although the polymorphisms of erythrocyte complement receptor type 1 (CR1) in patients with malaria have been extensively studied, a question of whether the polymorphisms of CR1 are associated with severe malaria remains controversial. Furthermore, no study has examined the association of CR1 polymorphisms with malaria in Chinese population. Therefore, we investigated the relationship of CR1 gene polymorphism and malaria in Chinese population. MATERIALS AND METHODS We analyzed polymorphisms of CR1 gene rs2274567 G/A, rs4844600 G/A, and rs2296160 C/T in 509 patients with malaria and 503 controls, using the Taqman genotyping assay and PCR-direct sequencing. RESULTS There were no significant differences in the genotype, allele and haplotype frequencies of CR1 gene rs2274567 G/A, rs4844600 G/A, and rs2296160 C/T polymorphisms between patients with malaria and controls. Furthermore, there was no association of polymorphisms in the CR1 gene with the severity of malaria in Chinese population. CONCLUSION These findings suggest that CR1 gene rs2274567 G/A, rs4844600 G/A, and rs2296160 C/T polymorphisms may not be involved in susceptibility to malaria in Chinese population.
Collapse
Affiliation(s)
- Yan Lan
- Department of Dermatology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, P. R. China
| | - Chuan-Dong Wei
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, P. R. China
| | - Wen-Cheng Chen
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, P. R. China
| | - Jun-Li Wang
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, P. R. China
| | - Chun-Fang Wang
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, P. R. China
| | - Guo-Gang Pan
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, P. R. China
| | - Ye-Sheng Wei
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, P. R. China.
| | - Le-Gen Nong
- Institute of Medical Laboratory, Youjiang Medical University for Nationalities, Baise, Guangxi, P. R. China.
| |
Collapse
|
12
|
Mahmoudi R, Kisserli A, Novella JL, Donvito B, Dramé M, Réveil B, Duret V, Jolly D, Pham BN, Cohen JH. Alzheimer's disease is associated with low density of the long CR1 isoform. Neurobiol Aging 2015; 36:1766.e5-1766.e12. [PMID: 25666996 DOI: 10.1016/j.neurobiolaging.2015.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 10/31/2014] [Accepted: 01/05/2015] [Indexed: 01/21/2023]
Abstract
The long complement receptor type 1 (CR1) isoform, CR1*2 (S), has been identified as being associated with Alzheimer's disease (AD) risk. We aimed to analyze the phenotypic structural and expression aspects (length and density) of CR1 in erythrocytes of 135 Caucasian subjects (100 AD and 35 controls). CR1 length polymorphism was assessed at protein and gene levels using Western blot and high-resolution melting, respectively. CR1 sites on erythrocytes were enumerated by flow cytometry. CR1 gene analysis, spotting the rs6656401 and rs3818361 polymorphisms, was performed by pyrosequencing. The CR1 density was significantly lower in AD patients expressing the CR1*2 isoform compared with the controls (p = 0.001), demonstrating lower expression of CR1 in CR1*2 carriers. Our data suggested the existence of silent CR1 alleles. Finally, rs6656401 and rs3818361 were strongly associated with CR1 length polymorphism (p < 0.0001). These observations indicate that AD susceptibility is associated with the long CR1 isoform (CR1*2), albeit at a lower density, suggesting that AD results from insufficient clearance of plaque deposits rather than increased inflammation.
Collapse
Affiliation(s)
- Rachid Mahmoudi
- Champagne-Ardenne Resource and Research Memory Center (CMRR), Maison Blanche Hospital, Reims University Hospitals, Reims, France; Department of Internal Medicine and Geriatrics, Maison Blanche Hospital, Reims University Hospitals, Reims, France; Faculty of Medicine, University of Reims Champagne-Ardenne, EA 3797, Reims, France.
| | - Aymric Kisserli
- Department of Immunology, Robert Debré Hospital, Reims University Hospitals, Reims, France; Faculty of Medicine, University of Reims Champagne-Ardenne, LRN EA 4682, Reims, France
| | - Jean-Luc Novella
- Champagne-Ardenne Resource and Research Memory Center (CMRR), Maison Blanche Hospital, Reims University Hospitals, Reims, France; Department of Internal Medicine and Geriatrics, Maison Blanche Hospital, Reims University Hospitals, Reims, France; Faculty of Medicine, University of Reims Champagne-Ardenne, EA 3797, Reims, France
| | - Béatrice Donvito
- Department of Immunology, Robert Debré Hospital, Reims University Hospitals, Reims, France; Faculty of Medicine, University of Reims Champagne-Ardenne, LRN EA 4682, Reims, France
| | - Moustapha Dramé
- Faculty of Medicine, University of Reims Champagne-Ardenne, EA 3797, Reims, France; Department of Research and Innovation, Robert Debré Hospital, Reims University Hospitals, Reims, France
| | - Brigitte Réveil
- Department of Immunology, Robert Debré Hospital, Reims University Hospitals, Reims, France; Faculty of Medicine, University of Reims Champagne-Ardenne, LRN EA 4682, Reims, France
| | - Valérie Duret
- Department of Immunology, Robert Debré Hospital, Reims University Hospitals, Reims, France; Faculty of Medicine, University of Reims Champagne-Ardenne, LRN EA 4682, Reims, France
| | - Damien Jolly
- Faculty of Medicine, University of Reims Champagne-Ardenne, EA 3797, Reims, France; Department of Research and Innovation, Robert Debré Hospital, Reims University Hospitals, Reims, France
| | - Bach-Nga Pham
- Department of Immunology, Robert Debré Hospital, Reims University Hospitals, Reims, France; Faculty of Medicine, University of Reims Champagne-Ardenne, LRN EA 4682, Reims, France
| | - Jacques H Cohen
- Department of Immunology, Robert Debré Hospital, Reims University Hospitals, Reims, France; Faculty of Medicine, University of Reims Champagne-Ardenne, LRN EA 4682, Reims, France
| |
Collapse
|
13
|
Karch CM, Goate AM. Alzheimer's disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 2015; 77:43-51. [PMID: 24951455 PMCID: PMC4234692 DOI: 10.1016/j.biopsych.2014.05.006] [Citation(s) in RCA: 879] [Impact Index Per Article: 97.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 01/18/2023]
Abstract
We review the genetic risk factors for late-onset Alzheimer's disease (AD) and their role in AD pathogenesis. More recent advances in understanding of the human genome-technologic advances in methods to analyze millions of polymorphisms in thousands of subjects-have revealed new genes associated with AD risk, including ABCA7, BIN1, CASS4, CD33, CD2AP, CELF1, CLU, CR1, DSG2, EPHA1, FERMT2, HLA-DRB5-DBR1, INPP5D, MS4A, MEF2C, NME8, PICALM, PTK2B, SLC24H4-RIN3, SORL1, and ZCWPW1. Emerging technologies to analyze the entire genome in large data sets have also revealed coding variants that increase AD risk: PLD3 and TREM2. We review the relationship between these AD risk genes and the cellular and neuropathologic features of AD. Understanding the mechanisms underlying the association of these genes with risk for disease will provide the most meaningful targets for therapeutic development to date.
Collapse
Affiliation(s)
| | - Alison M. Goate
- Corresponding author Contact information: Department of Psychiatry, Washington University School of Medicine, 425 S. Euclid Ave, Campus Box 8134, St. Louis, MO 63110, phone: 314-362-8691, fax: 314-747-2983,
| |
Collapse
|
14
|
Park HJ, Guariento M, Maciejewski M, Hauhart R, Tham WH, Cowman AF, Schmidt CQ, Mertens HDT, Liszewski MK, Hourcade DE, Barlow PN, Atkinson JP. Using mutagenesis and structural biology to map the binding site for the Plasmodium falciparum merozoite protein PfRh4 on the human immune adherence receptor. J Biol Chem 2013; 289:450-63. [PMID: 24214979 DOI: 10.1074/jbc.m113.520346] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To survive and replicate within the human host, malaria parasites must invade erythrocytes. Invasion can be mediated by the P. falciparum reticulocyte-binding homologue protein 4 (PfRh4) on the merozoite surface interacting with complement receptor type 1 (CR1, CD35) on the erythrocyte membrane. The PfRh4 attachment site lies within the three N-terminal complement control protein modules (CCPs 1-3) of CR1, which intriguingly also accommodate binding and regulatory sites for the key complement activation-specific proteolytic products, C3b and C4b. One of these regulatory activities is decay-accelerating activity. Although PfRh4 does not impact C3b/C4b binding, it does inhibit this convertase disassociating capability. Here, we have employed ELISA, co-immunoprecipitation, and surface plasmon resonance to demonstrate that CCP 1 contains all the critical residues for PfRh4 interaction. We fine mapped by homologous substitution mutagenesis the PfRh4-binding site on CCP 1 and visualized it with a solution structure of CCPs 1-3 derived by NMR and small angle x-ray scattering. We cross-validated these results by creating an artificial PfRh4-binding site through substitution of putative PfRh4-interacting residues from CCP 1 into their homologous positions within CCP 8; strikingly, this engineered binding site had an ∼30-fold higher affinity for PfRh4 than the native one in CCP 1. These experiments define a candidate site on CR1 by which P. falciparum merozoites gain access to human erythrocytes in a non-sialic acid-dependent pathway of merozoite invasion.
Collapse
Affiliation(s)
- Hyon Ju Park
- From the Washington University School of Medicine, Division of Rheumatology, Department of Internal Medicine, St. Louis, Missouri 63110
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
The host genetic diversity in malaria infection. J Trop Med 2012; 2012:940616. [PMID: 23316245 PMCID: PMC3532872 DOI: 10.1155/2012/940616] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/06/2012] [Accepted: 11/19/2012] [Indexed: 02/06/2023] Open
Abstract
Populations exposed to Plasmodium infection develop genetic mechanisms of protection against severe disease. The clinical manifestation of malaria results primarily from the lysis of infected erythrocytes and subsequent immune and inflammatory responses. Herein, we review the genetic alterations associated with erythrocytes or mediators of the immune system, which might influence malaria outcome. Moreover, polymorphisms in genes related to molecules involved in mechanisms of cytoadherence and their influence on malaria pathology are also discussed. The results of some studies have suggested that the combinatorial effects of a set of genetic factors in the erythrocyte-immunology pathway might be relevant to host resistance or susceptibility against Plasmodium infection. However, these results must be interpreted with caution because of the differences observed in the functionality and frequency of polymorphisms within different populations. With the recent advances in molecular biology techniques, more robust studies with reliable data have been reported, and the results of these studies have identified individual genetic factors for consideration in preventing severe disease and the individual response to treatment.
Collapse
|
16
|
Complement receptor 1 variants confer protection from severe malaria in Odisha, India. PLoS One 2012; 7:e49420. [PMID: 23152904 PMCID: PMC3496672 DOI: 10.1371/journal.pone.0049420] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/07/2012] [Indexed: 11/22/2022] Open
Abstract
Background In Plasmodium falciparum infection, complement receptor-1 (CR1) on erythrocyte’s surface and ABO blood group play important roles in formation of rosettes which are presumed to be contributory in the pathogenesis of severe malaria. Although several studies have attempted to determine the association of CR1 polymorphisms with severe malaria, observations remain inconsistent. Therefore, a case control study and meta-analysis was performed to address this issue. Methods Common CR1 polymorphisms (intron 27 and exon 22) and blood group were typed in 353 cases of severe malaria (SM) [97 cerebral malaria (CM), 129 multi-organ dysfunction (MOD), 127 non-cerebral severe malaria (NCSM)], 141 un-complicated malaria and 100 healthy controls from an endemic region of Odisha, India. Relevant publications for meta-analysis were searched from the database. Results The homozygous polymorphisms of CR1 intron 27 and exon 22 (TT and GG) and alleles (T and G) that are associated with low expression of CR1 on red blood cells, conferred significant protection against CM, MOD and malaria deaths. Combined analysis showed significant association of blood group B/intron 27-AA/exon 22-AA with susceptibility to SM (CM and MOD). Meta-analysis revealed that the CR1 exon 22 low expression polymorphism is significantly associated with protection against severe malaria. Conclusions The results of the present study demonstrate that common CR1 variants significantly protect against severe malaria in an endemic area.
Collapse
|
17
|
Thomas BN, Diallo DA, Noumsi GT, Moulds JM. Circulating Immune Complex Levels are Associated with Disease Severity and Seasonality in Children with Malaria from Mali. Biomark Insights 2012; 7:81-6. [PMID: 22837639 PMCID: PMC3399413 DOI: 10.4137/bmi.s9624] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Complement receptor one (CR1) is essential for removing circulating immune complexes (CIC), with malaria infection contributing to the formation of large amounts of CIC. We investigated CIC levels in children with malaria, of varying severity and seasonality. Two hundred age and sex-matched severe and mild malaria cases were studied during and after active disease. Pediatric controls had increased CIC levels (mean = 32 μg mEq/mL) compared to adult controls (mean = 26.9 μg mEq/mL). The highest levels of CIC were reported in severe malaria (mean = 39 μg mEq/mL). Higher levels of CIC were recorded in younger children and those with low E-CR1 copy numbers. Our data suggest that low levels of E-CR1 copy numbers, found in children with severe malaria, may adversely affect the ability to remove IC. Furthermore, the high background for circulating immune complex imply that Malian children are under constant assault by other pathogens that evoke a strong immune response.
Collapse
Affiliation(s)
- Bolaji N Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester NY, USA
| | | | | | | |
Collapse
|
18
|
Gandhi M. Complement receptor 1 and the molecular pathogenesis of malaria. INDIAN JOURNAL OF HUMAN GENETICS 2011; 13:39-47. [PMID: 21957343 PMCID: PMC3168156 DOI: 10.4103/0971-6866.34704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Malaria is a pathogenic infection caused by protozoa of the genus plasmodium. It is mainly confined to sub-Saharan Africa, Asia and South America. This disease claims the life of over 1.5 to 2.7 million people per year. Owing to such a high incidence of malarial infections, there is an urgent need for the development of suitable vaccines. For the development of ideal vaccines, it is essential to understand the molecular mechanisms of malarial pathogenesis and the factors that lead to malaria infection. Genetic factors have been proposed to play an important role in malarial pathogenesis. Complement receptor 1 (CR1) is an important host red blood cell protein involved in interaction with malarial parasite. Various polymorphic forms of CR1 have been found to be involved in conferring protection or increasing susceptibility to malaria infections. Low-density allele (L) of CR1 gave contradictory results in different set of studies. In addition, Knops polymorphic forms Sl (a+) and McC (a) have been found to contribute more towards the occurrence of cerebral malaria in malaria endemic regions compared to individuals with Sl (a-) / McC (a/b) genotype. This article reviews the research currently going on in this area and throws light on as yet unresolved mysteries of the role of CR1 in malarial pathogenesis
Collapse
Affiliation(s)
- Monika Gandhi
- Guru Gobind Singh Indraprastha University, University School of Biotechnology, Kashmere Gate, Delhi - 110 006, India
| |
Collapse
|
19
|
Crehan H, Holton P, Wray S, Pocock J, Guerreiro R, Hardy J. Complement receptor 1 (CR1) and Alzheimer's disease. Immunobiology 2011; 217:244-50. [PMID: 21840620 DOI: 10.1016/j.imbio.2011.07.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/22/2011] [Accepted: 07/17/2011] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and it poses an ever-increasing burden to an aging population. Several loci responsible for the rare, autosomal dominant form of AD have been identified (APP, PS1 and PS2), and these have facilitated the development of the amyloid cascade hypothesis of AD aetiology. The late onset form of the disease (LOAD) is poorly defined genetically, and up until recently the only known risk factor was the ε4 allele of APOE. Recent genome-wide association studies (GWAS) have identified common genetic variants that increase risk of LOAD. Two of the genes highlighted in these studies, CLU and CR1, suggest a role for the complement system in the aetiology of AD. In this review we analyse the evidence for an involvement of complement in AD. In particular we focus on one gene, CR1, and its role in the complement cascade. CR1 is a receptor for the complement fragments C3b and C4b and is expressed on many different cell types, particularly in the circulatory system. We look at the evidence for genetic polymorphisms in the gene and the possible physiological effects of these well-documented changes. Finally, we discuss the possible impact of CR1 genetic polymorphisms in relation to the amyloid cascade hypothesis of AD and the way in which CR1 may lead to AD pathogenesis.
Collapse
Affiliation(s)
- Helen Crehan
- Reta Lila Weston Laboratories and Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
20
|
Kosoy R, Ransom M, Chen H, Marconi M, Macciardi F, Glorioso N, Gregersen PK, Cusi D, Seldin MF. Evidence for malaria selection of a CR1 haplotype in Sardinia. Genes Immun 2011; 12:582-8. [PMID: 21593778 DOI: 10.1038/gene.2011.33] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Complement receptor 1 (CR1) levels have been associated with malarial susceptibility and/or severity of the disease in different population groups, and CR1 is a receptor for Plasmodium falciparum. In this study, multiple CR1 single-nucleotide polymorphisms (SNPs) showed strong evidence of population differentiation between Sardinian and other European ethnic groups. Cross population algorithms comparing haplotype structure and differences in haplotype and allele frequency distribution provided additional support for natural selection of CR1 in Sardinia. The predominant Sardinian CR1 haplotype included SNPs that are associated with decreased CR1 levels in Europeans and other population groups. Previous studies have shown that the SNPs within the dominant Sardinian haplotype have a significantly higher frequency in a malaria endemic compared with non-endemic regions in India. Together with the historical evidence of the prevalence of malaria in Sardinia, these data support the role of malaria leading to positive selection of this CR1 haplotype in Sardinia.
Collapse
Affiliation(s)
- R Kosoy
- Department of Biochemistry and Molecular Medicine, Rowe Program in Human Genetics, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu D, Niu ZX. The structure, genetic polymorphisms, expression and biological functions of complement receptor type 1 (CR1/CD35). Immunopharmacol Immunotoxicol 2010; 31:524-35. [PMID: 19874218 DOI: 10.3109/08923970902845768] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The complement system is comprised of soluble and cell surface associated proteins that recognize exogenous, altered, or potentially harmful endogenous ligands. In recent years, the complement system--particularly component C3 and its receptors--have been demonstrated to be a key link between innate and adaptive immunity. Complement receptor type 1 (CR1), the receptor for C3b/C4b complement peptides, has emerged as a molecule of immense interest in gaining insight to the susceptibility, pathophysiology, diagnosis, prognosis and therapy of such diseases. In this review, we wish to briefly bring forth the structure, genetic polymorphisms, expression and biological functions of CR1.
Collapse
Affiliation(s)
- Dong Liu
- College of Animal Science & Veterinary Medicine, Shandong Agriculture University, Tai'an, People's Republic of China
| | | |
Collapse
|
22
|
Pham BN, Kisserli A, Donvito B, Duret V, Reveil B, Tabary T, Le Pennec PY, Peyrard T, Rouger P, Cohen JH. Analysis of complement receptor Type 1 expression on red blood cells in negative phenotypes of the Knops blood group system, according to CR1 gene allotype polymorphisms. Transfusion 2010; 50:1435-43. [DOI: 10.1111/j.1537-2995.2010.02599.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Sinha S, Jha GN, Anand P, Qidwai T, Pati SS, Mohanty S, Mishra SK, Tyagi PK, Sharma SK, Venkatesh V, Habib S. CR1 levels and gene polymorphisms exhibit differential association with falciparum malaria in regions of varying disease endemicity. Hum Immunol 2009; 70:244-50. [DOI: 10.1016/j.humimm.2009.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 01/13/2009] [Accepted: 02/04/2009] [Indexed: 02/07/2023]
|
24
|
Teeranaipong P, Ohashi J, Patarapotikul J, Kimura R, Nuchnoi P, Hananantachai H, Naka I, Putaporntip C, Jongwutiwes S, Tokunaga K. A functional single-nucleotide polymorphism in the CR1 promoter region contributes to protection against cerebral malaria. J Infect Dis 2009; 198:1880-91. [PMID: 18954261 DOI: 10.1086/593338] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Although the level of erythrocyte complement receptor type 1 (E-CR1) expression in patients with malaria has been extensively studied, whether the level of expression of E-CR1 is associated with severe malaria remains controversial. The present study examined a possible association of polymorphisms in the CR1 gene with the severity of malaria, and it evaluated the influence of the associated polymorphism on expression of E-CR1. METHODS Seventeen single-nucleotide polymorphisms in CR1 were genotyped in 477 Thai patients who had Plasmodium falciparum malaria (203 had mild malaria, 165 had noncerebral severe malaria, and 109 had cerebral malaria). The E-CR1 expression level was measured by flow cytometry in 24 healthy Thai subjects. RESULTS The T allele of the reference single-nucleotide polymorphism rs9429942 in the CR1 promoter region was strongly associated with protection against cerebral malaria (2.2% of patients with mild malaria vs. 7.8% of patients with cerebral malaria; P = .0009; Bonferroni-adjusted Pc = .0306. The E-CR1 expression level was significantly higher in individuals with the TT genotype of rs9429942 than in individuals with the TC genotype of rs9429942 (P = .0282). CONCLUSIONS We identified a CR1 promoter allele, associated with higher E-CR1 expression, that conferred protection against cerebral malaria. Previous studies have shown that the rate of clearance of immune complexes (ICs) from the circulation is related to the E-CR1 level. These results lead to the hypothesis that the clearance of ICs regulated by E-CR1 therefore plays a crucial role in the pathogenesis of cerebral malaria.
Collapse
Affiliation(s)
- Phairote Teeranaipong
- Department of Human Genetics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rosetting in Plasmodium falciparum: a cytoadherence phenotype with multiple actors. Transfus Clin Biol 2008; 15:62-71. [PMID: 18514562 DOI: 10.1016/j.tracli.2008.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 04/08/2008] [Indexed: 11/22/2022]
Abstract
The capacity of Plasmodium falciparum-infected red blood cells to bind uninfected red blood cells ("rosetting") has been associated with high parasite density in numerous geographic areas and with severe malaria in African children. We summarize here the associations that have emerged from field studies and describe the various experimental models of rosetting that have been developed. A variety of erythrocyte receptors, several serum factors and a number of rosette-mediating PfEMP1 adhesins have been identified. Several var genes code for rosette-forming PfEMP1 adhesins in each P. falciparum genome, so that each clonal line has the capacity to generate distinct types of rosettes. To clarify their respective role in malaria pathogenesis, each of the multiple ligand/receptor interactions should be further studied for fine specificity, binding affinity and the impact of the large population polymorphism of the parasite variant repertoires should be assessed. Interestingly, some major human erythrocyte surface polymorphisms have been identified as affecting rosette formation, consistent with a role for rosetting in life-threatening falciparum malaria.
Collapse
|
26
|
Abstract
The external membrane of the red cell contains numerous proteins that either cross the lipid bilayer one or more times or are anchored to it through a lipid tail. Many of these proteins express blood group activity. The functions of some of these proteins are known; in others their function can only be surmised from the protein structure or from limited experimental evidence. They are loosely divided into four categories based on their functions: membrane transporters; adhesion molecules and receptors; enzymes; and structural proteins that link the membrane with the membrane skeleton. Some of the proteins carry out more than one of these functions. Some proteins may complete their major functions during erythropoiesis or may only be important under adverse physiological conditions. Furthermore, some might be evolutionary relics and may no longer have significant functions. Polymorphisms or rare changes in red cell surface proteins are often responsible for blood groups. The biological significance of these polymorphisms or the selective pressures responsible for their stability within populations are mostly not known, although exploitation of the proteins by pathogenic micro-organisms has probably played a major role.
Collapse
Affiliation(s)
- G Daniels
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant, Bristol, UK.
| |
Collapse
|
27
|
van de Sande WWJ, Fahal A, Verbrugh H, van Belkum A. Polymorphisms in Genes Involved in Innate Immunity Predispose Toward Mycetoma Susceptibility. THE JOURNAL OF IMMUNOLOGY 2007; 179:3065-74. [PMID: 17709521 DOI: 10.4049/jimmunol.179.5.3065] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Madurella mycetomatis is the main causative agent of mycetoma, a tumorous fungal infection characterized by the infiltration of large numbers of neutrophils at the site of infection. In endemic areas the majority of inhabitants have Abs to M. mycetomatis, although only a small proportion of individuals actually develop mycetomal disease. It therefore appears that neutrophils are unable to clear the infection in some individuals. To test this hypothesis, 11 single nucleotide polymorphisms involved in neutrophil function were studied in a population of Sudanese mycetoma patients vs geographically and ethnically matched controls. Significant differences in allele distribution for IL-8 (CXCL8), its receptor CXCR2, thrombospondin-4 (TSP-4), NO synthase 2 (NOS2), and complement receptor 1 (CR1) were found. Further, the NOS2(Lambaréné) polymorphism was clearly associated with lesion size. The genotypes obtained for CXCL8, its receptor CXCR2, and TSP-4 all predisposed to a higher CXCL8 expression in patients, which was supported by the detection of significantly elevated levels of CXCL8 in patient serum. The NOS2 genotype observed in healthy controls was correlated with an increase in NOS2 expression and higher concentrations of nitrate and nitrite in control serum. We present the first evidence of human genetic predisposition toward susceptibility to mycetoma, a neglected infection of the poor.
Collapse
Affiliation(s)
- Wendy W J van de Sande
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
28
|
Wagner C, Hänsch GM. Receptors for complement C3 on T-lymphocytes: Relics of evolution or functional molecules? Mol Immunol 2006; 43:22-30. [PMID: 16019070 DOI: 10.1016/j.molimm.2005.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite the fact that receptors for complement on T-cells have been described many years ago the function remains unclear as is the role of complement in the T-cell response. In this review we will evaluate how the accumulated wisdom concur with the current concepts of the adaptive T-cell response.
Collapse
Affiliation(s)
- Christof Wagner
- Institut für Immunologie der Universitäl Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | | |
Collapse
|
29
|
Thomas BN, Donvito B, Cockburn I, Fandeur T, Rowe JA, Cohen JHM, Moulds JM. A complement receptor-1 polymorphism with high frequency in malaria endemic regions of Asia but not Africa. Genes Immun 2005; 6:31-6. [PMID: 15578041 PMCID: PMC2877660 DOI: 10.1038/sj.gene.6364150] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Complement receptor-1 (CR1) is a ligand for rosette formation, a phenomenon associated with cerebral malaria (CM). Binding is dependent on erythrocyte CR1 copy number. In Caucasians, low CR1 expressors have two linked mutations. We determined the Q981H and HindIII RFLP distribution in differing population groups to ascertain a possible role in adaptive evolution. We examined 194 Caucasians, 180 Choctaw Indians, 93 Chinese-Taiwanese, 304 Cambodians, 89 Papua New Guineans (PNG) and 366 Africans. PCR/RFLP used HindIII for CR1 expression and BstNI for the Q981H mutation. DNA sequencing and pyrosequencing were performed to resolve inconclusive results. Gene frequencies for the L allele were 0.15 in Africans, 0.16 in Choctaws, 0.18 in Caucasians, 0.29 in Chinese-Taiwanese, 0.47 in Cambodians and 0.58 in PNG. Allelic frequency for 981H were 0.07 in Africans, 0.15 in Caucasians, 0.18 in Choctaws, 0.29 in Chinese-Taiwanese, 0.47 in Cambodians and 0.54 in PNG. The Q981H polymorphism correlates with the HindIII RFLP in most groups except West Africans and appears to be part of a low CR1 expression haplotype. The gene frequency for the haplotype is highest in the malaria-endemic areas of Asia, suggesting that this haplotype may have evolved because it protects from rosetting and CM.
Collapse
Affiliation(s)
- BN Thomas
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - B Donvito
- PPDH, EA 3309, IFR 53, URCA, Reims, France
| | - I Cockburn
- ICAPB, University of Edinburgh, Ashworth Laboratories, Edinburgh, UK
| | - T Fandeur
- Institut Pasteur du Cambodge (IPC), Monivong Bd, Phnom Penh, Cambodia
| | - JA Rowe
- ICAPB, University of Edinburgh, Ashworth Laboratories, Edinburgh, UK
| | - JHM Cohen
- PPDH, EA 3309, IFR 53, URCA, Reims, France
| | - JM Moulds
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
30
|
O'Leary JM, Bromek K, Black GM, Uhrinova S, Schmitz C, Wang X, Krych M, Atkinson JP, Uhrin D, Barlow PN. Backbone dynamics of complement control protein (CCP) modules reveals mobility in binding surfaces. Protein Sci 2004; 13:1238-50. [PMID: 15096630 PMCID: PMC2286753 DOI: 10.1110/ps.03582704] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The regulators of complement activation (RCA) are critical to health and disease because their role is to ensure that a complement-mediated immune response to infection is proportionate and targeted. Each protein contains an uninterrupted array of from four to 30 examples of the very widely occurring complement control protein (CCP, or sushi) module. The CCP modules mediate specific protein-protein and protein-carbohydrate interactions that are key to the biological function of the RCA and, paradoxically, provide binding sites for numerous pathogens. Although structural and mutagenesis studies of CCP modules have addressed some aspects of molecular recognition, there have been no studies of the role of molecular dynamics in the interaction of CCP modules with their binding partners. NMR has now been used in the first full characterization of the backbone dynamics of CCP modules. The dynamics of two individual modules-the 16th of the 30 modules of complement receptor type 1 (CD35), and the N-terminal module of membrane cofactor protein (CD46)-as well as their solution structures, are compared. Although both examples share broadly similar three-dimensional structures, many structurally equivalent residues exhibit different amplitudes and timescales of local backbone motion. In each case, however, regions of the module-surface implicated by mutagenesis as sites of interactions with other proteins include several mobile residues. This observation suggests further experiments to explore binding mechanisms and identify new binding sites.
Collapse
Affiliation(s)
- Joanne M O'Leary
- Schools of Chemistry and Biology, University of Edinburgh, Edinburgh EH9 3JJ, Scotland
| | | | | | | | | | | | | | | | | | | |
Collapse
|