1
|
Baweja GS, Gupta S, Kumar B, Patel P, Asati V. Recent updates on structural insights of MAO-B inhibitors: a review on target-based approach. Mol Divers 2024; 28:1823-1845. [PMID: 36977955 PMCID: PMC10047469 DOI: 10.1007/s11030-023-10634-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by slow movement, tremors, and stiffness caused due to loss of dopaminergic neurons caused in the brain's substantia nigra. The concentration of dopamine is decreased in the brain. Parkinson's disease may be happened because of various genetic and environmental factors. Parkinson's disease is related to the irregular expression of the monoamine oxidase (MAO) enzyme, precisely type B, which causes the oxidative deamination of biogenic amines such as dopamine. MAO-B inhibitors, available currently in the market, carry various adverse effects such as dizziness, nausea, vomiting, lightheadedness, fainting, etc. So, there is an urgent need to develop new MAO-B inhibitors with minimum side effects. In this review, we have included recently studied compounds (2018 onwards). Agrawal et al. reported MAO-B inhibitors with IC50 0.0051 µM and showed good binding affinity. Enriquez et al. reported a compound with IC50 144 nM and bind with some critical amino acid residue Tyr60, Ile198, and Ile199. This article also describes the structure-activity relationship of the compounds and clinical trial studies of related derivatives. These compounds may be used as lead compounds to develop potent compounds as MAO-B inhibitors.
Collapse
Affiliation(s)
- Gurkaran Singh Baweja
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shankar Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
2
|
Ji M, Niu SQ, Mi HY, Jiang P, Li Y. Vinpocetine improves dyskinesia in Parkinson's disease rats by reducing oxidative stress and activating the Wnt/β-catenin signaling pathway. Chem Biol Drug Des 2024; 103:e14358. [PMID: 37749299 DOI: 10.1111/cbdd.14358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
Parkinson's disease (PD) is the commonest neurodegenerative disorder. It reduces motor and cognitive function in patients. Vinpocetine (Vinp) has the effects of anti-inflammatory and antioxidant, and could improve cognitive function in patients. This study was aimed to investigating the therapeutic effects of Vinp on dyskinesia in a 6-Hydroxydopamine hydrobromide (6-OHDA)-induced PD rat model. We constructed a PD rat model by injecting 6-OHDA, and intervened with Vinp for 7 days. The motor function of the rats was evaluated by an open-field test and rotation test. Besides, H&E staining was applied to observe the changes of dopaminergic neurons in the striatum. The levels of superoxide dismutase (SOD) and malondialdehyde (MDA) in the rat striatum were detected. We assessed the impact of Vinp on α-synuclein (α-Syn) and Wnt/β-catenin signaling pathway-related molecules by western blot and qRT-PCR. Rats in the PD group showed reduced horizontal movement frequency and number of squares crossed, increased contact time and rotation frequency, and reduced number of dopaminergic neurons accompanied by severe morphological damage. Vinp treatment increased the horizontal movement frequency and number of squares crossed, reduced the contact time, and rotation frequency in PD rats. Also, Vinp downregulated α-Syn protein expression and MDA level, while upregulated SOD activity in the striatum of PD rats. Furthermore, Vinp treatment activated the Wnt/β-catenin signaling pathway in the striatum of PD rats. In conclusion, Vinp improved the dyskinesia in 6-OHDA-induced PD rats by alleviating oxidative stress, and these effects may be associated with activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Meng Ji
- Department of Neurology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Shi-Qin Niu
- Department of Neurology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - He-Yin Mi
- Department of Neurology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Peng Jiang
- Department of Neurology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Yue Li
- Department of Neurology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Wang C, Zhou C, Guo T, Jiaerken Y, Yang S, Huang P, Xu X, Zhang M. Association of coffee consumption and striatal volume in patients with Parkinson's disease and healthy controls. CNS Neurosci Ther 2023; 29:2800-2810. [PMID: 37032638 PMCID: PMC10493673 DOI: 10.1111/cns.14216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/30/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Mounting studies have demonstrated that coffee consumption significantly reduces the risk of developing Parkinson's disease (PD). However, there have been few investigations about the role of chronic coffee consumption in nigrostriatal structural neurodegeneration in PD. We aimed to investigate whether chronic coffee consumption is associated with the change in striatal volume in PD. METHODS In this study, 130 de novo patients with PD and 69 healthy controls were enrolled from the Parkinson's Progression Markers Initiative cohort. Patients with PD and healthy controls were, respectively, divided into three subgroups, including current, ever, and never coffee consumers. Then, striatal volume was compared across the three subgroups. Correlation analyses were performed to assess the relationship between cups consumed per day and striatal volume. Furthermore, we included the factors that may have influenced nigrostriatal dopaminergic neurons in multiple linear regression analyses to identify significant contributing factors to striatal volume in each investigated striatal region. RESULTS Current coffee consumers had decreased striatal volume compared with ever consumers in controls but not patients with PD. Furthermore, the correlation analyses revealed that cups per day were negatively correlated with striatal volume in current consumers of patients with PD and controls. In addition, multiple linear regression analyses showed that current coffee consumption remained as an independent predictor of a decrease in striatal volume in controls. CONCLUSIONS Our study showed that chronic coffee consumption was negatively correlated with striatal volume. In addition, our study showed that chronic coffee consumption was associated with the change in striatal volume in current-rather than ever coffee consumers, which suggests that the chronic effects of caffeine on striatal morphology may fade and even compensate after quitting coffee. Our study provides evidence for the effect of chronic coffee consumption on striatal volume in human brain in vivo.
Collapse
Affiliation(s)
- Chao Wang
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tao Guo
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Siyu Yang
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Minming Zhang
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
4
|
Fujimaki A, Ohuchi K, Takizawa S, Murakami T, Kurita H, Hozumi I, Wen X, Kitamura Y, Wu Z, Maekawa Y, Inden M. The neuroprotective effects of FG-4592, a hypoxia-inducible factor-prolyl hydroxylase inhibitor, against oxidative stress induced by alpha-synuclein in N2a cells. Sci Rep 2023; 13:15629. [PMID: 37731009 PMCID: PMC10511692 DOI: 10.1038/s41598-023-42903-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. The pathological hallmark of PD is the appearance of intraneuronal cytoplasmic α-synuclein (α-Syn) aggregation, called Lewy bodies. α-Syn aggregation is deeply involved in the pathogenesis of PD. Oxidative stress is also associated with the progression of PD. In the present study, to investigate whether a hypoxia-inducible factor (HIF)-prolyl hydroxylase (PH) inhibitor, FG-4592 (also called roxadustat), has neuroprotective effects against α-Syn-induced neurotoxicity, we employed a novel α-Syn stably expressing cell line (named α-Syn-N2a cells) utilizing a piggyBac transposon system. In α-Syn-N2a cells, oxidative stress and cell death were induced by α-Syn, and FG-4592 showed significant protection against this neurotoxicity. However, FG-4592 did not affect α-Syn protein levels. FG-4592 triggered heme oxygenase-1 (HO-1) expression downstream of HIF-1α in a concentration-dependent manner. In addition, FG-4592 decreased the production of reactive oxygen species possibly via the activation of HO-1 and subsequently suppressed α-Syn-induced neurotoxicity. Moreover, FG-4592 regulated mitochondrial biogenesis and respiration via the induction of the peroxisome proliferator-activated receptor-γ coactivator-1α. As FG-4592 has various neuroprotective effects against α-Syn and is involved in drug repositioning, it may have novel therapeutic potential for PD.
Collapse
Affiliation(s)
- Ayaka Fujimaki
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Kazuki Ohuchi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Shinnosuke Takizawa
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Takanori Murakami
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Xiaopeng Wen
- Laboratory of Pharmacology and Neurobiology, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Yoshihisa Kitamura
- Laboratory of Pharmacology and Neurobiology, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Zhiliang Wu
- Department of Parasitology and Infectious Diseases, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Yoichi Maekawa
- Department of Parasitology and Infectious Diseases, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
- Division of Preemptive Food Research, Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Science (GUIAS), Gifu, 501-1194, Japan
- Division of Animal Medical Science, Center for One Medicine Innovative Translational Research (COMIT), Gifu University Institute for Advanced Science (GUIAS), Gifu, 501-1194, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, 501-1196, Japan.
| |
Collapse
|
5
|
Silva da Fonsêca V, Goncalves VDC, Augusto Izidoro M, Guimarães de Almeida AC, Luiz Affonso Fonseca F, Alexandre Scorza F, Finsterer J, Scorza CA. Parkinson's Disease and the Heart: Studying Cardiac Metabolism in the 6-Hydroxydopamine Model. Int J Mol Sci 2023; 24:12202. [PMID: 37569578 PMCID: PMC10418594 DOI: 10.3390/ijms241512202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Parkinson's-disease (PD) is an incurable, age-related neurodegenerative disease, and its global prevalence of disability and death has increased exponentially. Although motor symptoms are the characteristic manifestations of PD, the clinical spectrum also contains a wide variety of non-motor symptoms, which are the main cause of disability and determinants of the decrease in a patient's quality of life. Noteworthy in this regard is the stress on the cardiac system that is often observed in the course of PD; however, its effects have not yet been adequately researched. Here, an untargeted metabolomics approach was used to assess changes in cardiac metabolism in the 6-hydroxydopamine model of PD. Beta-sitosterol, campesterol, cholesterol, monoacylglycerol, α-tocopherol, stearic acid, beta-glycerophosphoric acid, o-phosphoethanolamine, myo-inositol-1-phosphate, alanine, valine and allothreonine are the metabolites that significantly discriminate parkinsonian rats from sham counterparts. Upon analysis of the metabolic pathways with the aim of uncovering the main biological pathways involved in concentration patterns of cardiac metabolites, the biosynthesis of both phosphatidylethanolamine and phosphatidylcholine, the glucose-alanine cycle, glutathione metabolism and plasmalogen synthesis most adequately differentiated sham and parkinsonian rats. Our results reveal that both lipid and energy metabolism are particularly involved in changes in cardiac metabolism in PD. These results provide insight into cardiac metabolic signatures in PD and indicate potential targets for further investigation.
Collapse
Affiliation(s)
- Victor Silva da Fonsêca
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (V.S.d.F.); (V.d.C.G.); (F.A.S.)
| | - Valeria de Cassia Goncalves
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (V.S.d.F.); (V.d.C.G.); (F.A.S.)
| | - Mario Augusto Izidoro
- Laboratório de Espectrometria de Massas-Associação Beneficente de Coleta de Sangue (COLSAN), São Paulo 04038-000, Brazil;
| | - Antônio-Carlos Guimarães de Almeida
- Laboratório de Neurociências Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), São João del Rei 36301-160, Brazil;
| | - Fernando Luiz Affonso Fonseca
- Laboratório de Análises Clínicas da Faculdade de Medicina do ABC, Santo André 09060-650, Brazil;
- Departamento de Ciências Farmacêuticas da Universidade Federal de Sao Paulo (UNIFESP), Diadema 09972-270, Brazil
| | - Fulvio Alexandre Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (V.S.d.F.); (V.d.C.G.); (F.A.S.)
| | | | - Carla Alessandra Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (V.S.d.F.); (V.d.C.G.); (F.A.S.)
| |
Collapse
|
6
|
Zolotarev YA, Shram SI, Dadayan AK, Dolotov OV, Markov DD, Nagaev IY, Kudrin VS, Narkevich VB, Sokolov OY, Kost NV. HLDF-6 peptides exhibit neuroprotective effects in the experimental model of preclinical Parkinson's disease. Neuropeptides 2022; 96:102287. [PMID: 36280440 DOI: 10.1016/j.npep.2022.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/05/2022] [Accepted: 09/10/2022] [Indexed: 10/14/2022]
Abstract
The mechanisms of the neuroprotective action of the hexapeptides HLDF-6 encoded by the amino acid sequence 41-46 of Human Leukemia Differentiation Factor and its homoserine derivative HLDF-6H were studied in an experimental 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced model of Parkinson's disease (PD). C57Bl/6 mice received two intraperitoneal injections of 18 mg/kg MPTP-HCl, with an interval of 2 hours. MPTP-induced motor dysfunction was assessed using horizontal grid test. Our data show that chronic intranasal administration of peptides (3 weeks, 300 μg/kg/day) restored normal levels of dopamine and improved its turnover rates in the striatum. Furthermore, peptide administration increased serum estradiol levels and led to a significant improvement in motor functions in MPTP-treated mice. Additionally, peptide treatment increased the levels of mRNA encoding neurotrophin BDNF, but normalized the levels of mRNA encoding the inflammatory mediators TGFβ1, IL1β and IFNγ in the brain. Collectively, our behavioral and biochemical studies demonstrate that HLDF-6 peptides have a therapeutic potential for treating PD. We propose that HLDF-6 peptides may exert their neuroprotective mechanism, at least in part, by normalizing estradiol levels and modulating the expression of key factors involved in neurotrophic support and neuroinflammation.
Collapse
Affiliation(s)
- Yurii A Zolotarev
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia.
| | - Stanislav I Shram
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia
| | - Aleksandr K Dadayan
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia
| | - Oleg V Dolotov
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitriy D Markov
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia
| | - Igor Yu Nagaev
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», Moscow, Russia
| | | | | | | | | |
Collapse
|
7
|
Dos Santos LA, Dos Santos GS, Fernandes GAB, Corrêa MF, de Faria Almeida CA, Fernandes L, Marcourakis T, Fernandes JPS, Garcia RCT. Neurotoxicity Assessment of 1-[(2,3-Dihydro-1-Benzofuran-2-yl)Methyl]Piperazine (LINS01 Series) Derivatives and their Protective Effect on Cocaine-Induced Neurotoxicity Model in SH-SY5Y Cell Culture. Neurotox Res 2022; 40:1653-1663. [PMID: 36342586 DOI: 10.1007/s12640-022-00601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Excessive levels of dopamine in the synaptic cleft, induced by cocaine for example, activates dopaminergic receptors, mainly D1R, D2R, and D3R subtypes, contributing to neurotoxic effects. New synthetic 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazine derivatives (the LINS01 compounds), designed as histaminergic receptor (H3R) ligands, are also dopaminergic receptor ligands, mainly D2R and D3R. This study aims to evaluate the neurotoxicity of these new synthetic LINS01 compounds (LINS01003, LINS01004, LINS01011, and LINS01018), as well as to investigate their protective potential on a cocaine model of dopamine-induced neurotoxicity using SH-SY5Y cell line culture. Neurotoxicity was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and automated cell counting with fluorescent dyes (acridyl orange and propidium iodide) assays. Concentration-response curves (CRCs) were performed for all LINS compounds and cocaine using MTT assay. The results show that LINS series did not decrease cell viability after 48h of exposure-except for 100 µM LINS01018, which was discontinued from the study. Likewise, MTT, LDH, and fluorescent dyes staining showed no difference is cell viability for LINS compounds at 10 µM. When incubated with 2.5 mM cocaine (lethal concentration 50) for 48h, 10 µM of each LINS compound, metoclopramide (D2R antagonist) and haloperidol (D2R/D3R antagonist), ameliorated cocaine-induced neurotoxicity. However, only metoclopramide, haloperidol, and LINS01011 compound significantly decreased LDH released in the culture medium, suggesting that this new synthetic compound presents a more robust effect. This preliminary in vitro neurotoxicity study suggests that LINS01 compounds are not neurotoxic, and that they play a promising role in preventing cocaine-induced neurotoxicity.
Collapse
Affiliation(s)
- Laísa Aliandro Dos Santos
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Gabriela Salles Dos Santos
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Gustavo Ariel Borges Fernandes
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Michelle Fidelis Corrêa
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Liliam Fernandes
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Tania Marcourakis
- Departament of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - João Paulo S Fernandes
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Raphael Caio Tamborelli Garcia
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil.
| |
Collapse
|
8
|
Altharawi A, Alharthy KM, Althurwi HN, Albaqami FF, Alzarea SI, Al-Abbasi FA, Nadeem MS, Kazmi I. Europinidin Inhibits Rotenone-Activated Parkinson's Disease in Rodents by Decreasing Lipid Peroxidation and Inflammatory Cytokines Pathways. Molecules 2022; 27:molecules27217159. [PMID: 36363986 PMCID: PMC9658735 DOI: 10.3390/molecules27217159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Europinidin is a derivative of delphinidin obtained from the plants Plumbago Europea and Ceratostigma plumbaginoides. This herb has wide medicinal applications in treating various diseases but there are very few studies available on this bioactive compound. Considering this background, the present study is designed for the evaluation of Europinidin against Parkinson’s disease. Aim: The investigation aims to assess the effect of Europinidin in the rotenone-activated Parkinson’s paradigm. Methods: To evaluate neuroprotective activity, rotenone (1.5 mg/kg s.c) and europinidin (10 mg/kg and 20 mg/kg) was administered in rats for 21 days. The behavioural parameters were performed before sacrificing the rats. On the 22nd day, all the rats were assessed for biochemical markers (SOD, GSH, MDA, Catalase), neurotransmitter levels (Dopamine, 5-HIAA, DOPAC, and HVA levels), and neuroinflammatory markers (IL-6, IL-1β and TNF-α). Results: It was found that rotenone produced significant (p < 0.001) oxidative damage, a cholinergic deficit, dopaminergic loss, and a rise in neuroinflammatory markers in rats. Conclusion: The study concludes that europinidin possesses anti-oxidant and anti-inflammatory properties. The results suggest the therapeutic role of europinidin against rotenone-activated behavioural, biochemical, and neuroinflammatory alterations in rats.
Collapse
Affiliation(s)
- Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: (A.A.); (I.K.); Tel.: +966-543-970-731 (I.K.)
| | - Khalid M. Alharthy
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hassan N. Althurwi
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faisal F. Albaqami
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (A.A.); (I.K.); Tel.: +966-543-970-731 (I.K.)
| |
Collapse
|
9
|
Goncalves VC, Silva da Fonsêca V, de Paula Faria D, Izidoro MA, Berretta AA, de Almeida ACG, Affonso Fonseca FL, Scorza FA, Scorza CA. Propolis induces cardiac metabolism changes in 6-hydroxydopamine animal model: A dietary intervention as a potential cardioprotective approach in Parkinson’s disease. Front Pharmacol 2022; 13:1013703. [PMID: 36313332 PMCID: PMC9606713 DOI: 10.3389/fphar.2022.1013703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
While there is sustained growth of the older population worldwide, ageing is a consistent risk factor for neurodegenerative diseases, such as Parkinson’s-disease (PD). Considered an emblematic movement disorder, PD comprises a miscellany of non-motor symptoms, for which effective management remains an unfulfilled need in clinical practice. Highlighted are the cardiovascular abnormalities, that cause significant burden in PD patients. Evidence suggests that key biological processes underlying PD pathophysiology can be modulated by diet-derived bioactive compounds, such as green propolis, a natural functional food with biological and pharmacological properties. The effects of propolis on cardiac affection associated to PD have received little coverage. In this study, a metabolomics approach and Positron Emission Tomography (PET) imaging were used to assess the metabolic response to diet supplementation with green propolis on heart outcomes of rats with Parkinsonism induced by 6-hydroxydopamine (6-OHDA rats). Untargeted metabolomics approach revealed four cardiac metabolites (2-hydroxybutyric acid, 3-hydroxybutyric acid, monoacylglycerol and alanine) that were significantly modified between animal groups (6-OHDA, 6-OHDA + Propolis and sham). Propolis-induced changes in the level of these cardiac metabolites suggest beneficial effects of diet intervention. From the metabolites affected, functional analysis identified changes in propanoate metabolism (a key carbohydrate metabolism related metabolic pathway), glucose-alanine cycle, protein and fatty acid biosynthesis, energy metabolism, glutathione metabolism and urea cycle. PET imaging detected higher glucose metabolism in the 17 areas of the left ventricle of all rats treated with propolis, substantially contrasting from those rats that did not consume propolis. Our results bring new insights into cardiac metabolic substrates and pathways involved in the mechanisms of the effects of propolis in experimental PD and provide potential novel targets for research in the quest for future therapeutic strategies.
Collapse
Affiliation(s)
- Valeria C. Goncalves
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- *Correspondence: Valeria C. Goncalves, ; Carla Alessandra Scorza,
| | - Victor Silva da Fonsêca
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Mario Augusto Izidoro
- Laboratório de Espectrometria de Massas—Associação Beneficente de Coleta de Sangue (COLSAN), São Paulo, Brazil
| | | | - Antônio-Carlos G. de Almeida
- Laboratório de Neurociências Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João Del-Rei (UFSJ), Minas Gerais, Brazil
| | - Fernando Luiz Affonso Fonseca
- Laboratório de Análises Clínicas da Faculdade de Medicina Do ABC, Santo André, São Paulo, Brazil
- Departamento de Ciencias Farmaceuticas da Universidade Federal de Sao Paulo (UNIFESP), Diadema, Brazil
| | - Fulvio Alexandre Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Carla Alessandra Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- *Correspondence: Valeria C. Goncalves, ; Carla Alessandra Scorza,
| |
Collapse
|
10
|
Tafuri B, Lombardi A, Nigro S, Urso D, Monaco A, Pantaleo E, Diacono D, De Blasi R, Bellotti R, Tangaro S, Logroscino G. The impact of harmonization on radiomic features in Parkinson's disease and healthy controls: A multicenter study. Front Neurosci 2022; 16:1012287. [PMID: 36300169 PMCID: PMC9589497 DOI: 10.3389/fnins.2022.1012287] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Radiomics is a challenging development area in imaging field that is greatly capturing interest of radiologists and neuroscientists. However, radiomics features show a strong non-biological variability determined by different facilities and imaging protocols, limiting the reproducibility and generalizability of analysis frameworks. Our study aimed to investigate the usefulness of harmonization to reduce site-effects on radiomics features over specific brain regions. We selected T1-weighted magnetic resonance imaging (MRI) by using the MRI dataset Parkinson's Progression Markers Initiative (PPMI) from different sites with healthy controls (HC) and Parkinson's disease (PD) patients. First, the investigation of radiomics measure discrepancies were assessed on healthy brain regions-of-interest (ROIs) via a classification pipeline based on LASSO feature selection and support vector machine (SVM) model. Then, a ComBat-based harmonization approach was applied to correct site-effects. Finally, a validation step on PD subjects evaluated diagnostic accuracy before and after harmonization of radiomics data. Results on healthy subjects demonstrated a dependence from site-effects that could be corrected with ComBat harmonization. LASSO regressor after harmonization was unable to select any feature to distinguish controls by site. Moreover, harmonized radiomics features achieved an area under the receiving operating characteristic curve (AUC) of 0.77 (compared to AUC of 0.71 for raw radiomics measures) in distinguish Parkinson's patients from HC. We found a not-negligible site-effect studying radiomics of HC pre- and post-harmonization of features. Our validation study on PD patients demonstrated a significant influence of non-biological noise source in diagnostic performances. Finally, harmonization of multicenter radiomic data represent a necessary step to make analysis pipelines reliable and replicable for multisite neuroimaging studies.
Collapse
Affiliation(s)
- Benedetta Tafuri
- Dipartimento di Ricerca Clinica in Neurologia, Centro per le Malattie Neurodegenerative e l’Invecchiamento Cerebrale, Pia Fondazione Cardinale G. Panico, Università degli Studi di Bari Aldo Moro, Lecce, Italy
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Angela Lombardi
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Bari, Italy
- Dipartimento Interateneo di Fisica M. Merlin, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Salvatore Nigro
- Dipartimento di Ricerca Clinica in Neurologia, Centro per le Malattie Neurodegenerative e l’Invecchiamento Cerebrale, Pia Fondazione Cardinale G. Panico, Università degli Studi di Bari Aldo Moro, Lecce, Italy
- Istituto di Nanotecnologia, Consiglio Nazionale delle Ricerche (CNR-NANOTEC), Lecce, Italy
| | - Daniele Urso
- Dipartimento di Ricerca Clinica in Neurologia, Centro per le Malattie Neurodegenerative e l’Invecchiamento Cerebrale, Pia Fondazione Cardinale G. Panico, Università degli Studi di Bari Aldo Moro, Lecce, Italy
- Department of Neurosciences, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Alfonso Monaco
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Bari, Italy
| | - Ester Pantaleo
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Bari, Italy
- Dipartimento Interateneo di Fisica M. Merlin, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Domenico Diacono
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Bari, Italy
| | - Roberto De Blasi
- Dipartimento di Ricerca Clinica in Neurologia, Centro per le Malattie Neurodegenerative e l’Invecchiamento Cerebrale, Pia Fondazione Cardinale G. Panico, Università degli Studi di Bari Aldo Moro, Lecce, Italy
- Dipartimento di Radiologia, Pia Fondazione Cardinale G. Panico, Lecce, Italy
| | - Roberto Bellotti
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Bari, Italy
- Dipartimento Interateneo di Fisica M. Merlin, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Sabina Tangaro
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Bari, Italy
- Dipartimento di Scienze del Suolo, Della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Giancarlo Logroscino
- Dipartimento di Ricerca Clinica in Neurologia, Centro per le Malattie Neurodegenerative e l’Invecchiamento Cerebrale, Pia Fondazione Cardinale G. Panico, Università degli Studi di Bari Aldo Moro, Lecce, Italy
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso, Università degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
11
|
Acıkara OB, Karatoprak GŞ, Yücel Ç, Akkol EK, Sobarzo-Sánchez E, Khayatkashani M, Kamal MA, Kashani HRK. A Critical Analysis of Quercetin as the Attractive Target for the Treatment of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:795-817. [PMID: 34872486 DOI: 10.2174/1871527320666211206122407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/01/2021] [Accepted: 09/28/2021] [Indexed: 02/08/2023]
Abstract
Parkinson's Disease (PD) is a multifaceted disorder with various factors suggested to play a synergistic pathophysiological role, such as oxidative stress, autophagy, pro-inflammatory events, and neurotransmitter abnormalities. While it is crucial to discover new treatments in addition to preventing PD, recent studies have focused on determining whether nutraceuticals will exert neuroprotective actions and pharmacological functions in PD. Quercetin, a flavonol-type flavonoid, is found in many fruits and vegetables and is recognised as a complementary therapy for PD. The neuroprotective effect of quercetin is directly associated with its antioxidant activity, in addition to stimulating cellular defence against oxidative stress. Other related mechanisms are activating Sirtuins (SIRT1) and inducing autophagy, in addition to induction of Nrf2-ARE and Paraoxonase 2 (PON2). Quercetin, whose neuroprotective activity has been demonstrated in many studies, unfortunately, has a disadvantage because of its poor water solubility, chemical instability, and low oral bioavailability. It has been reported that the disadvantages of quercetin have been eliminated with nanocarriers loaded with quercetin. The role of nanotechnology and nanodelivery systems in reducing oxidative stress during PD provides an indisputable advantage. Accordingly, the present review aims to shed light on quercetin's beneficial effects and underlying mechanisms in neuroprotection. In addition, the contribution of nanodelivery systems to the neuroprotective effect of quercetin is also discussed.
Collapse
Affiliation(s)
- Ozlem Bahadır Acıkara
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Tandoğan, 06100 Ankara, Turkey
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38039, Kayseri, Turkey
| | - Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38039, Kayseri, Turkey
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507, Santiago, Chile.,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh.,Enzymoics, Novel Global Community Educational Foundation, Sydney, Australia
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Delijewski M, Radad K, Krewenka C, Kranner B, Moldzio R. The Reassessed Impact of Nicotine against Neurotoxicity in Mesencephalic Dopaminergic Cell Cultures and Neuroblastoma N18TG2 Cells. PLANTA MEDICA 2022; 88:548-558. [PMID: 34229355 DOI: 10.1055/a-1527-1390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neuroprotective effects of nicotine are still under debate, so further studies on its effectiveness against Parkinson's disease are required. In our present study, we used primary dopaminergic cell cultures and N18TG2 neuroblastoma cells to investigate the effect of nicotine and its neuroprotective potential against rotenone toxicity. Nicotine protected dopaminergic (tyrosine hydroxylase immunoreactive) neurons against rotenone. This effect was not nAChR receptor-dependent. Moreover, the alkaloid at a concentration of 5 µM caused an increase in neurite length, and at a concentration of 500 µM, it caused an increase in neurite count in dopaminergic cells exposed to rotenone. Nicotine alone was not toxic in either cell culture model, while the highest tested concentration of nicotine (500 µM) caused growth inhibition of N18TG2 neuroblastoma cells. Nicotine alone increased the level of glutathione in both cell cultures and also in rotenone-treated neuroblastoma cells. The obtained results may be helpful to explain the potential neuroprotective action of nicotine on neural cell cultures.
Collapse
Affiliation(s)
- Marcin Delijewski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Khaled Radad
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Christopher Krewenka
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Kranner
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Rudolf Moldzio
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
13
|
Wang C, Zhou C, Guo T, Huang P, Xu X, Zhang M. Association between cigarette smoking and Parkinson’s disease: a neuroimaging study. Ther Adv Neurol Disord 2022; 15:17562864221092566. [PMID: 35464739 PMCID: PMC9019319 DOI: 10.1177/17562864221092566] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Mounting evidence has revealed an inverse association between cigarette smoking and the risk of Parkinson’s disease (PD). Meanwhile, cigarette smoking has been found to be associated with cognitive impairment in PD patients. However, the neural mechanisms of the association between cigarette smoking and PD are not fully understood. Objective: The aim of this study is to explore the neural mechanisms of the association between cigarette smoking and PD. Methods: A total of 129 PD patients and 69 controls were recruited from the Parkinson’s Progression Markers Initiative (PPMI) cohort, including 39 PD patients with regular smoking history (PD-S), 90 PD patients without regular smoking history (PD-NS), 26 healthy controls with regular smoking history (HC-S), and 43 healthy controls without regular smoking history (HC-NS). Striatal dopamine transporter (DAT) binding and gray matter (GM) volume of the whole brain were compared among the four groups. Results: PD patients showed significantly reduced striatal DAT binding compared with healthy controls, and HC-S showed significantly reduced striatal DAT binding compared with HC-NS. Moreover, smoking and PD showed a significant interaction effect in the left medial prefrontal cortex (mPFC). PD-S showed reduced GM volume in the left mPFC compared with PD-NS. Conclusion: The degeneration of dopaminergic neurons in PD results in a substantial reduction of the DAT and dopamine levels. Nicotine may act as a stimulant to inhibit the action of striatal DAT, increasing dopamine levels in the synaptic gap. The inverse alteration of dopamine levels between PD and nicotine addiction may be the reason for the inverse association between smoking and the risk of PD. In addition, the mPFC atrophy in PD-S may be associated with cognitive impairment.
Collapse
Affiliation(s)
- Chao Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou 310009, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Alam M, Ali S, Ahmed S, Elasbali AM, Adnan M, Islam A, Hassan MI, Yadav DK. Therapeutic Potential of Ursolic Acid in Cancer and Diabetic Neuropathy Diseases. Int J Mol Sci 2021; 22:12162. [PMID: 34830043 PMCID: PMC8621142 DOI: 10.3390/ijms222212162] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Ursolic acid (UA) is a pentacyclic triterpenoid frequently found in medicinal herbs and plants, having numerous pharmacological effects. UA and its analogs treat multiple diseases, including cancer, diabetic neuropathy, and inflammatory diseases. UA inhibits cancer proliferation, metastasis, angiogenesis, and induced cell death, scavenging free radicals and triggering numerous anti- and pro-apoptotic proteins. The biochemistry of UA has been examined broadly based on the literature, with alterations frequently having been prepared on positions C-3 (hydroxyl), C12-C13 (double bonds), and C-28 (carboxylic acid), leading to several UA derivatives with increased potency, bioavailability and water solubility. UA could be used as a protective agent to counter neural dysfunction via anti-oxidant and anti-inflammatory effects. It is a potential therapeutic drug implicated in the treatment of cancer and diabetic complications diseases provide novel machinery to the anti-inflammatory properties of UA. The pharmacological efficiency of UA is exhibited by the therapeutic theory of one-drug → several targets → one/multiple diseases. Hence, UA shows promising therapeutic potential for cancer and diabetic neuropathy diseases. This review aims to discuss mechanistic insights into promising beneficial effects of UA. We further explained the pharmacological aspects, clinical trials, and potential limitations of UA for the management of cancer and diabetic neuropathy diseases.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Sarfraz Ahmed
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Abdelbaset Mohamed Elasbali
- Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon 21924, Korea
| |
Collapse
|
15
|
Petiet A. Current and Emerging MR Methods and Outcome in Rodent Models of Parkinson's Disease: A Review. Front Neurosci 2021; 15:583678. [PMID: 33897339 PMCID: PMC8058186 DOI: 10.3389/fnins.2021.583678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/05/2021] [Indexed: 12/03/2022] Open
Abstract
Parkinson’s disease (PD) is a major neurodegenerative disease characterized by massive degeneration of the dopaminergic neurons in the substantia nigra pars compacta, α-synuclein-containing Lewy bodies, and neuroinflammation. Magnetic resonance (MR) imaging plays a crucial role in the diagnosis and monitoring of disease progression and treatment. A variety of MR methods are available to characterize neurodegeneration and other disease features such as iron accumulation and metabolic changes in animal models of PD. This review aims at giving an overview of how those physiopathological features of PD have been investigated using various MR methods in rodent models. Toxin-based and genetic-based models of PD are first described. MR methods for neurodegeneration evaluation, iron load, and metabolism alterations are then detailed, and the main findings are provided in those models. Ultimately, future directions are suggested for neuroinflammation and neuromelanin evaluations in new animal models.
Collapse
Affiliation(s)
- Alexandra Petiet
- Centre de Neuroimagerie de Recherche, Institut du Cerveau, Paris, France.,Inserm U1127, CNRS UMR 7225, Sorbonne Universités, Paris, France
| |
Collapse
|
16
|
Magalingam KB, Radhakrishnan AK, Somanath SD, Md S, Haleagrahara N. Influence of serum concentration in retinoic acid and phorbol ester induced differentiation of SH-SY5Y human neuroblastoma cell line. Mol Biol Rep 2020; 47:8775-8788. [PMID: 33098048 DOI: 10.1007/s11033-020-05925-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
Numerous protocols to establish dopaminergic phenotype in SH-SY5Y cells have been reported. In most of these protocols there are variations in concentration of serum used. In this paper, we compared the effects of high (10%), low (3%) and descending (2.5%/1%) serum concentration in differentiation medium containing different proportion of retinoic acid (RA) and 12-O-Tetradecanoylphorbol-13-acetate (TPA) or RA-only on the undifferentiated SH-SY5Y cells with regards to cell morphology, biochemical and gene expression alterations. Cells differentiated in culture medium containing low and descending serum concentrations showed increased number of neurite projections and reduced proliferation rates when compared to undifferentiated cells. The SH-SY5Y cells differentiated in culture medium containing 3% RA and low serum or descending (2.5%/1% RA/TPA) were found to be more susceptible to 6-hydroxydopamine (6-OHDA) induced cytotoxicity. Cells differentiated with RA/TPA or RA differentiated showed increased production of the α-synuclein (SNCA) neuroprotein and dopamine neurotransmitter compared to undifferentiated cells, regardless serum concentrations used. There was no significant difference in the expression of tyrosine hydroxylase (TH) gene between undifferentiated and differentiated SH-SY5Y cells. However, the expression of dopamine receptor D2 (DRD2) gene was markedly increased (p<0.05) in differentiated cells with 3% serum and RA only when compared to undifferentiated cells. In conclusion, to terminally differentiate SH-SY5Y cells to be used as a cell-based model to study Parkinson's disease (PD) to investigate molecular mechanisms and drug discovery, the optimal differentiation medium should contain 3% serum in RA-only.
Collapse
Affiliation(s)
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Bandar Sunway, Malaysia
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Sushela Devi Somanath
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Nagaraja Haleagrahara
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia.
- College of Public Health, Medicine and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia.
| |
Collapse
|
17
|
Siracusa R, Scuto M, Fusco R, Trovato A, Ontario ML, Crea R, Di Paola R, Cuzzocrea S, Calabrese V. Anti-inflammatory and Anti-oxidant Activity of Hidrox ® in Rotenone-Induced Parkinson's Disease in Mice. Antioxidants (Basel) 2020; 9:antiox9090824. [PMID: 32899274 PMCID: PMC7576486 DOI: 10.3390/antiox9090824] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/12/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In developed countries, the extension of human life is increasingly accompanied by a progressive increase in neurodegenerative diseases, most of which do not yet have effective therapy but only symptomatic treatments. In recent years, plant polyphenols have aroused considerable interest in the scientific community. The mechanisms currently hypothesized for the pathogenesis of Parkinson's disease (PD) are neuroinflammation, oxidative stress and apoptosis. Hydroxytyrosol (HT), the main component of Hidrox® (HD), has been shown to have some of the highest free radical evacuation and anti-inflammatory activities. Here we wanted to study the role of HD on the neurobiological and behavioral alterations induced by rotenone. METHODS A study was conducted in which mice received HD (10 mg/kg, i.p.) concomitantly with rotenone (5 mg/kg, o.s.) for 28 days. RESULTS Locomotor activity, catalepsy, histological damage and several characteristic markers of the PD, such as the dopamine transporter (DAT) content, tyrosine hydroxylase (TH) and accumulation of α-synuclein, have been evaluated. Moreover, we observed the effects of HD on oxidative stress, neuroinflammation, apoptosis and inflammasomes. Taken together, the results obtained highlight HD's ability to reduce the loss of dopaminergic neurons and the damage associated with it by counteracting the three main mechanisms of PD pathogenesis. CONCLUSION HD is subject to fewer regulations than traditional drugs to improve patients' brain health and could represent a promising nutraceutical choice to prevent PD.
Collapse
Affiliation(s)
- Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (R.S.); (R.F.); (S.C.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (R.S.); (R.F.); (S.C.)
| | - Angela Trovato
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
- Correspondence: (A.T.); (R.D.P.); Tel.: +39-09-5478-1165 (A.T.); +39-09-0676-5208 (R.D.P.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Roberto Crea
- Oliphenol LLC., 26225 Eden Landing Road, Unit C, Hayward, CA 94545, USA;
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (R.S.); (R.F.); (S.C.)
- Correspondence: (A.T.); (R.D.P.); Tel.: +39-09-5478-1165 (A.T.); +39-09-0676-5208 (R.D.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (R.S.); (R.F.); (S.C.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| |
Collapse
|
18
|
Fraternine, a Novel Wasp Peptide, Protects against Motor Impairments in 6-OHDA Model of Parkinsonism. Toxins (Basel) 2020; 12:toxins12090550. [PMID: 32867207 PMCID: PMC7551070 DOI: 10.3390/toxins12090550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition that affects the Central Nervous System (CNS). Insect venoms show high molecular variability and selectivity in the CNS of mammals and present potential for the development of new drugs for the treatment of PD. In this study, we isolated and identified a component of the venom of the social wasp Parachartergus fraternus and evaluated its neuroprotective activity in the murine model of PD. For this purpose, the venom was filtered and separated through HPLC; fractions were analyzed through mass spectrometry and the active fraction was identified as a novel peptide, called Fraternine. We performed two behavioral tests to evaluate motor discoordination, as well as an apomorphine-induced rotation test. We also conducted an immunohistochemical assay to assess protection in TH+ neurons in the Substantia Nigra (SN) region. Group treated with 10 μg/animal of Fraternine remained longer in the rotarod compared to the lesioned group. In the apomorphine test, Fraternine decreased the number of rotations between treatments. This dose also inhibited dopaminergic neuronal loss, as indicated by immunohistochemical analysis. This study identified a novel peptide able to prevent the death of dopaminergic neurons of the SN and recover motor deficit in a 6-OHDA-induced murine model of PD.
Collapse
|
19
|
Küçükdoğru R, Türkez H, Arslan ME, Tozlu ÖÖ, Sönmez E, Mardinoğlu A, Cacciatore I, Di Stefano A. Neuroprotective effects of boron nitride nanoparticles in the experimental Parkinson's disease model against MPP+ induced apoptosis. Metab Brain Dis 2020; 35:947-957. [PMID: 32215836 DOI: 10.1007/s11011-020-00559-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/05/2020] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is one of the most aggressive neurodegenerative diseases and characterized by the loss of dopamine-sensitive neurons in the substantia nigra region of the brain. There is no any definitive treatment to completely cure PD and existing treatments can only ease the symptoms of the disease. Boron nitride nanoparticles have been extensively studied in nano-biological studies and researches showed that it can be a promising candidate for PD treatment with its biologically active unique properties. In the present study, it was aimed to investigate ameliorative effects of hexagonal boron nitride nanoparticles (hBNs) against toxicity of 1-methyl-4-phenylpyridinium (MPP+) in experimental PD model. Experimental PD model was constituted by application of MPP+ to differentiated pluripotent human embryonal carcinoma cell (Ntera-2, NT-2) culture in wide range of concentrations (0.62 to 2 mM). Neuroprotective activity of hBNs against MPP+ toxicity was determined by cell viability assays including MTT and LDH release. Oxidative alterations by hBNs application in PD cell culture model were investigated using total antioxidant capacity (TAC) and total oxidant status (TOS) tests. The impacts of hBNs and MPP+ on nuclear integrity were analyzed by Hoechst 33258 fluorescent staining method. Acetylcholinesterase (AChE) enzyme activities were determined by a colorimetric assay towards to hBNs treatment. Cell death mechanisms caused by hBNs and MPP+ exposure was investigated by flow cytometry analysis. Experimental results showed that application of hBNs increased cell viability in PD model against MPP+ application. TAS and TOS analysis were determined that antioxidant capacity elevated after hBNs applications while oxidant levels were reduced. Furthermore, flow cytometric analysis executed that MPP+ induced apoptosis was prevented significantly (p < 0.05) after application with hBNs. In a conclusion, the obtained results indicated that hBNs have a huge potential against MPP+ toxicity and can be used in PD treatment as novel neuroprotective agent and drug delivery system.
Collapse
Affiliation(s)
- Recep Küçükdoğru
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, 25240, Türkiye
| | - Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, 25240, Türkiye
| | - Mehmet Enes Arslan
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, 25240, Türkiye.
| | - Özlem Özdemir Tozlu
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, 25240, Türkiye
| | - Erdal Sönmez
- Department of Physics, Kazım Karabekir Education Faculty, Atatürk University, Erzurum, Turkey
| | - Adil Mardinoğlu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-17121, Stockholm, Sweden
| | - Ivana Cacciatore
- Department of Pharmacology, G. D'Annunzio University, Chieti, Italy
| | | |
Collapse
|
20
|
C. Gonçalves V, J. L. L. Pinheiro D, de la Rosa T, G. de Almeida AC, A. Scorza F, A. Scorza C. Propolis as A Potential Disease-Modifying Strategy in Parkinson's Disease: Cardioprotective and Neuroprotective Effects in the 6-OHDA Rat Model. Nutrients 2020; 12:E1551. [PMID: 32466610 PMCID: PMC7352297 DOI: 10.3390/nu12061551] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Patients with Parkinson's disease (PD) manifest nonmotor and motor symptoms. Autonomic cardiovascular dysregulation is a common nonmotor manifestation associated with increased morbimortality. Conventional clinical treatment alleviates motor signs but does not change disease progression and fails in handling nonmotor features. Nutrition is a key modifiable determinant of chronic disease. This study aimed to assess the effects of propolis on cardiological features, heart rate (HR) and heart rate variability (HRV) and on nigrostriatal dopaminergic damage, detected by tyrosine hydroxylase (TH) immunoreactivity, in the 6-hydroxydopamine (6-OHDA) rat model of PD. Male Wistar rats were injected bilaterally with 6-OHDA or saline into the striatum and were treated with propolis or water for 40 days. Autonomic function was assessed by time domain parameters (standard deviation of all normal-to-normal intervals (SDNN) and square root of the mean of the squared differences between adjacent normal RR intervals (RMSSD)) of HRV calculated from electrocardiogram recordings. Reductions in HR (p = 1.47×10-19), SDNN (p = 3.42×10-10) and RMSSD (p = 8.2×10-6) detected in parkinsonian rats were reverted by propolis. Propolis attenuated neuronal loss in the substantia nigra (p = 5.66×10-15) and reduced striatal fiber degeneration (p = 7.4×10-5) in 6-OHDA-injured rats, which also showed significant weight gain (p = 1.07×10-5) in comparison to 6-OHDA-lesioned counterparts. Propolis confers cardioprotection and neuroprotection in the 6-OHDA rat model of PD.
Collapse
Affiliation(s)
- Valeria C. Gonçalves
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (D.J.L.L.P.); (T.d.l.R.); (F.A.S.)
| | - Daniel J. L. L. Pinheiro
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (D.J.L.L.P.); (T.d.l.R.); (F.A.S.)
| | - Tomás de la Rosa
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (D.J.L.L.P.); (T.d.l.R.); (F.A.S.)
| | - Antônio-Carlos G. de Almeida
- Laboratório de Neurociências Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), Minas Gerais 36301-160, Brazil;
| | - Fúlvio A. Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (D.J.L.L.P.); (T.d.l.R.); (F.A.S.)
| | - Carla A. Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (D.J.L.L.P.); (T.d.l.R.); (F.A.S.)
| |
Collapse
|
21
|
Liu P, Wang H, Zheng S, Zhang F, Zhang X. Parkinson's Disease Diagnosis Using Neostriatum Radiomic Features Based on T2-Weighted Magnetic Resonance Imaging. Front Neurol 2020; 11:248. [PMID: 32322236 PMCID: PMC7156586 DOI: 10.3389/fneur.2020.00248] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Parkinson's disease (PD) is a neurodegenerative disease in which the neostriatum, including the caudate nucleus (CN) and putamen (PU), has an important role in the pathophysiology. However, conventional magnetic resonance imaging (MRI) lacks sufficient specificity to diagnose PD. Therefore, the study's aim was to investigate the feasibility of using a radiomics approach to distinguish PD patients from healthy controls on T2-weighted images of the neostriatum and provide a basis for the clinical diagnosis of PD. Methods: T2-weighted images from 69 PD patients and 69 age- and sex-matched healthy controls were obtained on the same 3.0T MRI scanner. Regions of interest (ROIs) were manually placed at the CN and PU on the slices showing the largest respective sizes of the CN and PU. We extracted 274 texture features from each ROI and then used the least absolute shrinkage and selection operator regression to perform feature selection and radiomics signature building to identify the CN and PU radiomics signatures consisting of optimal features. We used a receiver operating characteristic curve analysis to assess the diagnostic performance of two radiomics signatures in a training group and estimate the generalization performance in the test group. Results: There were no significant differences in the demographic and clinical characteristics between the PD patients and healthy controls. The CN and PU radiomics signatures were built using 12 and 7 optimal features, respectively. The performance of the two radiomics signatures to distinguish PD patients from healthy controls was good. In the training and test groups, the AUCs of the CN radiomics signatures were 0.9410 (95% confidence interval [CI]: 0.8986–0.9833) and 0.7732 (95% CI: 0.6292–0.9173), respectively, and the AUCs of the PU radiomics signature were 0.8767 (95% CI: 0.8066–0.9469) and 0.7143 (95% CI: 0.5540–0.8746), respectively. Vertl_GlevNonU_R appeared simultaneously in both the CN and PU radiomics signatures as an optimal feature. A t-test analysis revealed significantly higher levels of texture values of the CN and PU in the PD patients than healthy controls (P < 0.05). Conclusion: Neostriatum radiomics signatures achieved good diagnostic performance for PD and potentially could serve as a basis for the clinical diagnosis of PD.
Collapse
Affiliation(s)
- Panshi Liu
- Department of Radiology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Han Wang
- Medical Imaging Center, Taian Central Hospital, Taian, China
| | - Shilei Zheng
- Department of Radiology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Fan Zhang
- Department of Neurology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xianglin Zhang
- Department of Radiology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
22
|
Carvacrol Protects Against 6-Hydroxydopamine-Induced Neurotoxicity in In Vivo and In Vitro Models of Parkinson's Disease. Neurotox Res 2019; 37:156-170. [PMID: 31364033 DOI: 10.1007/s12640-019-00088-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/23/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder characterized by selective loss of dopaminergic neurons that project from the substantia nigra pars compacta to the striatum. Evidence from human and animal studies has suggested that oxidative damage critically contributes to neuronal loss in PD. Carvacrol (CAR), a monoterpenic phenol, is the main constituents in the essential oil of many aromatic plants and possesses some properties including anti-inflammatory and anti-oxidant effects. In this study, in vitro and in vivo experiments were performed with the CAR in order to investigate its potential neuroprotective effects in models of PD. Post-treatment with CAR in vitro was found to protect rat adrenal pheochromocytoma PC12 cells from toxicity induced by 6-hydroxydopamine (6-OHDA) administration in a dose-dependent manner by (1) increasing cell viability and (2) reduction in intracellular reactive oxygen species, intracellular lipid peroxidation, and annexin-positive cells. In vivo, post-treatment with CAR (15 and 20 mg/kg) was protective against neurodegenerative phenotypes associated with systemic administration of 6-OHDA. Results indicated that CAR improved the locomotor activity, catalepsy, akinesia, bradykinesia, and motor coordination and reduced the apomorphine-caused rotation in 6-OHDA-stimulated rats. Increased level of reduced glutathione content and a decreased level of MDA (malondialdehyde) were observed in the 6-OHDA rats post-treated with CAR. These findings suggest that CAR exerts protective effects, possibly related to an anti-oxidation mechanism, in these in vitro and in vivo models of Parkinson's disease.
Collapse
|
23
|
|
24
|
Hawk BJD, Khounlo R, Shin YK. Alpha-Synuclein Continues to Enhance SNARE-Dependent Vesicle Docking at Exorbitant Concentrations. Front Neurosci 2019; 13:216. [PMID: 30949020 PMCID: PMC6437117 DOI: 10.3389/fnins.2019.00216] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/25/2019] [Indexed: 11/18/2022] Open
Abstract
Recently, Parkinson’s disease-associated α-synuclein (αS) has emerged as an important regulator for SNARE-dependent vesicle fusion. However, it is controversial if excessive accumulation of αS, even in the absence of aggregation, impairs neurotransmission. Here we use a single vesicle fusion assay with ms time resolution capable of dissecting the impact of αS on each step of membrane fusion. Unlike the previous results from various in vitro, cellular, and in vivo studies, we find that non-aggregated αS promotes vesicle merger even at exorbitant concentrations. The enhancement has been seen as much as 13 fold. Delving into the kinetics of the intermediate states for vesicle fusion reveals that αS stimulates vesicle docking without altering the dynamics of bilayer merger (lipid mixing). However, minute amounts of soluble aggregated species abolish SNARE-dependent bilayer merger completely. Thus, the results show that excessive accumulation of non-aggregated αS may not be toxic for neurotransmitter release.
Collapse
Affiliation(s)
- Brenden J D Hawk
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Ryan Khounlo
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Yeon-Kyun Shin
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
25
|
Lebedeva OS, Lagarkova MA. Pluripotent Stem Cells for Modelling and Cell Therapy of Parkinson's Disease. BIOCHEMISTRY (MOSCOW) 2018; 83:1046-1056. [PMID: 30472943 DOI: 10.1134/s0006297918090067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Studying pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD), requires adequate disease models. The available patient's material is limited to biological fluids and post mortem brain samples. Disease modeling and drug screening can be done in animal models, although this approach has its own limitations, since laboratory animals do not suffer from many neurodegenerative diseases, including PD. The use of neurons obtained by targeted differentiation from induced pluripotent stem cells (iPSCs) with known genetic mutations, as well as from carriers of sporadic forms of the disease, will allow to elucidate new components of the molecular mechanisms of neurodegeneration. Such neuronal cultures can also serve as unique models for testing neuroprotective compounds and monitoring neurodegenerative changes against a background of various therapeutic interventions. In the future, dopaminergic neurons differentiated from iPSCs can be used for cell therapy of PD.
Collapse
Affiliation(s)
- O S Lebedeva
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - M A Lagarkova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.
| |
Collapse
|
26
|
Perlbarg V, Lambert J, Butler B, Felfli M, Valabrègue R, Privat AL, Lehéricy S, Petiet A. Alterations of the nigrostriatal pathway in a 6-OHDA rat model of Parkinson's disease evaluated with multimodal MRI. PLoS One 2018; 13:e0202597. [PMID: 30188909 PMCID: PMC6126820 DOI: 10.1371/journal.pone.0202597] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/05/2018] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease is characterized by neurodegeneration of the dopaminergic neurons in the substantia nigra pars compacta. The 6-hydroxydopamine (6-OHDA) rat model has been used to study neurodegeneration in the nigro-striatal dopaminergic system. The goal of this study was to evaluate the reliability of diffusion MRI and resting-state functional MRI biomarkers in monitoring neurodegeneration in the 6-OHDA rat model assessed by quantitative histology. We performed a unilateral injection of 6-OHDA in the striatum of Sprague Dawley rats to produce retrograde degeneration of the dopamine neurons in the substantia nigra pars compacta. We carried out a longitudinal study with a multi-modal approach combining structural and functional MRI together with quantitative histological validation to follow the effects of the lesion. Functional and structural connectivity were assessed in the brain of 6-OHDA rats and sham rats (NaCl injection) at 3 and 6 weeks post-lesioning using resting-state functional MRI and diffusion-weighted. Our results showed (i) increased functional connectivity in ipsi- and contra-lesioned regions of the cortico-basal ganglia network pathway including the motor cortex, the globus pallidus, and the striatum regions at 3 weeks; (ii) increased fractional anisotropy (FA) in the ipsi- and contralateral striatum of the 6-OHDA group at 3 weeks, and increased axial diffusivity (AD) and mean diffusivity in the ipsilateral striatum at 6 weeks; (iii) a trend for increased FA in both substantia nigra of the 6-OHDA group at 3 weeks. Optical density measurements of tyrosine-hydroxylase (TH) staining of the striatum showed good correlations with the FA and AD measurements in the striatum. No correlations were found between the number of TH-stained dopaminergic neurons and MRI measurements in the substantia nigra. This study suggested that (i) FA and AD were reliable biomarkers to evaluate neurodegeneration in the cortico-basal ganglia network of the 6-OHDA model, (ii) diffusion MRI and resting-state functional MRI (rsfMRI) were not sensitive enough to detect changes in the substantia nigra in this model.
Collapse
Affiliation(s)
- Vincent Perlbarg
- UPMC / INSERM UMR975, Brain and Spine Institute, Paris, France
- Bioinformatics and Biostatistics Core Facility, Brain and Spine Institute, Paris, France
| | - Justine Lambert
- Center for Neuroimaging Research, Brain and Spine Institute, Paris, France
| | - Benjamin Butler
- Center for Neuroimaging Research, Brain and Spine Institute, Paris, France
| | - Mehdi Felfli
- Center for Neuroimaging Research, Brain and Spine Institute, Paris, France
| | - Romain Valabrègue
- UPMC / INSERM UMR975, Brain and Spine Institute, Paris, France
- Center for Neuroimaging Research, Brain and Spine Institute, Paris, France
| | | | - Stéphane Lehéricy
- UPMC / INSERM UMR975, Brain and Spine Institute, Paris, France
- Center for Neuroimaging Research, Brain and Spine Institute, Paris, France
| | - Alexandra Petiet
- UPMC / INSERM UMR975, Brain and Spine Institute, Paris, France
- Center for Neuroimaging Research, Brain and Spine Institute, Paris, France
- * E-mail:
| |
Collapse
|
27
|
Özdemir A, Sever B, Altıntop MD, Kaya Tilki E, Dikmen M. Design, Synthesis, and Neuroprotective Effects of a Series of Pyrazolines against 6-Hydroxydopamine-Induced Oxidative Stress. Molecules 2018; 23:E2151. [PMID: 30150574 PMCID: PMC6225304 DOI: 10.3390/molecules23092151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023] Open
Abstract
Parkinson's disease (PD) is a chronic, progressive, and age-related neurodegenerative disorder characterized by the loss of midbrain dopaminergic neurons caused by the accumulation of free radicals and oxidative stress. Based on the neuroprotective properties of 2-pyrazoline derivatives, in the current work, 1-(phenyl/4-substituted phenyl)-3-(2-furanyl/thienyl)-5-aryl-2-pyrazolines (3a⁻i, 4a⁻i) were synthesized via the cyclization of the chalcones (1, 2) with suitable phenylhydrazine hydrochloride derivatives. All these compounds were investigated for their neuroprotective effects using an in vitro 6-hydroxydopamine (6-OHDA)-induced neurotoxicity model of PD in the rat pheochromocytoma (PC-12) Adh cell line. In addition, some different pharmacokinetic parameters of all compounds were in silico predicted by the QikProp module of Schrödinger's Maestro molecular modeling package. 4-Methylsulfonylphenyl substituted compounds 3h (20%) and 4h (23%) were determined as the most promising neuroprotective agents related to their inductive roles in cell viability when compared with the 6-OHDA-positive control group (43% and 42%, respectively). Moreover, in silico pharmacokinetic results indicated that all compounds were within the acceptable range intended for human use. According to both in vitro and in silico studies, compounds 3h and 4h draw attention as potential orally bioavailable therapeutic drug candidates against neurodegeneration in PD.
Collapse
Affiliation(s)
- Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Elif Kaya Tilki
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Miriş Dikmen
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| |
Collapse
|
28
|
Levodopa-Reduced Mucuna pruriens Seed Extract Shows Neuroprotective Effects against Parkinson's Disease in Murine Microglia and Human Neuroblastoma Cells, Caenorhabditis elegans, and Drosophila melanogaster. Nutrients 2018; 10:nu10091139. [PMID: 30131460 PMCID: PMC6164394 DOI: 10.3390/nu10091139] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Mucuna pruriens (Mucuna) has been prescribed in Ayurveda for various brain ailments including 'kampavata' (tremors) or Parkinson's disease (PD). While Mucuna is a well-known natural source of levodopa (L-dopa), published studies suggest that other bioactive compounds may also be responsible for its anti-PD effects. To investigate this hypothesis, an L-dopa reduced (<0.1%) M. pruriens seeds extract (MPE) was prepared and evaluated for its anti-PD effects in cellular (murine BV-2 microglia and human SH-SY5Y neuroblastoma cells), Caenorhabditis elegans, and Drosophila melanogaster models. In BV-2 cells, MPE (12.5⁻50 μg/mL) reduced hydrogen peroxide-induced cytotoxicity (15.7-18.6%), decreased reactive oxygen species production (29.1-61.6%), and lowered lipopolysaccharide (LPS)-induced nitric oxide species release by 8.9⁻60%. MPE (12.5-50 μg/mL) mitigated SH-SY5Y cell apoptosis by 6.9-40.0% in a non-contact co-culture assay with cell-free supernatants from LPS-treated BV-2 cells. MPE (12.5-50 μg/mL) reduced 6-hydroxydopamine (6-OHDA)-induced cell death of SH-SY5Y cells by 11.85⁻38.5%. Furthermore, MPE (12.5-50 μg/mL) increased median (25%) and maximum survival (47.8%) of C. elegans exposed to the dopaminergic neurotoxin, methyl-4-phenylpyridinium. MPE (40 μg/mL) ameliorated dopaminergic neurotoxin (6-OHDA and rotenone) induced precipitation of innate negative geotaxis behavior of D. melanogaster by 35.3 and 32.8%, respectively. Therefore, MPE contains bioactive compounds, beyond L-dopa, which may impart neuroprotective effects against PD.
Collapse
|
29
|
Yesil-Celiktas O, Hassan S, Miri AK, Maharjan S, Al-kharboosh R, Quiñones-Hinojosa A, Zhang YS. Mimicking Human Pathophysiology in Organ-on-Chip Devices. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800109] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ozlem Yesil-Celiktas
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Department of Bioengineering; Faculty of Engineering; Ege University; Bornova-Izmir 35100 Turkey
| | - Shabir Hassan
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
| | - Amir K. Miri
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Department of Mechanical Engineering Rowan University; 401 North Campus Drive Glassboro NJ 08028 USA
| | - Sushila Maharjan
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Research Institute for Bioscience and Biotechnology; Nakkhu-4 Lalitpur 44600 Nepal
| | - Rawan Al-kharboosh
- Mayo Clinic College of Medicine; Mayo Clinic Graduate School; Neuroscience, NBD Track Rochester MN 55905 USA
- Department of Neurosurgery, Oncology, Neuroscience; Mayo Clinic; Jacksonville FL 32224 USA
| | | | - Yu Shrike Zhang
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
| |
Collapse
|
30
|
Sarukhani M, Haghdoost-Yazdi H, Sarbazi Golezari A, Babayan-Tazehkand A, Dargahi T, Rastgoo N. Evaluation of the antiparkinsonism and neuroprotective effects of hydrogen sulfide in acute 6-hydroxydopamine-induced animal model of Parkinson’s disease: behavioral, histological and biochemical studies. Neurol Res 2018; 40:523-531. [DOI: 10.1080/01616412.2017.1390903] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mohammad Sarukhani
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hashem Haghdoost-Yazdi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | | | - Tahere Dargahi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nafiseh Rastgoo
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
31
|
Schwerdt JI, Lopez-Leon M, Cónsole GM, Brown OA, Morel GR, Spinedi E, Goya RG. Rejuvenating Effect of Long-Term Insulin-Like Growth Factor-I Gene Therapy in the Hypothalamus of Aged Rats with Dopaminergic Dysfunction. Rejuvenation Res 2018; 21:102-108. [DOI: 10.1089/rej.2017.1935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- José I. Schwerdt
- INIBIOLP-Pathology B, UNLP, La Plata, Argentina
- Department of Histology and Embryology B, UNLP, La Plata, Argentina
| | - Micaela Lopez-Leon
- INIBIOLP-Pathology B, UNLP, La Plata, Argentina
- Department of Histology and Embryology B, UNLP, La Plata, Argentina
| | | | - Oscar A Brown
- INIBIOLP-Pathology B, UNLP, La Plata, Argentina
- Department of Histology and Embryology B, UNLP, La Plata, Argentina
| | - Gustavo R. Morel
- INIBIOLP-Pathology B, UNLP, La Plata, Argentina
- Department of Histology and Embryology B, UNLP, La Plata, Argentina
| | | | - Rodolfo G. Goya
- INIBIOLP-Pathology B, UNLP, La Plata, Argentina
- Department of Histology and Embryology B, UNLP, La Plata, Argentina
| |
Collapse
|
32
|
Clobenpropit, a histamine H 3 receptor antagonist/inverse agonist, inhibits [ 3 H]-dopamine uptake by human neuroblastoma SH-SY5Y cells and rat brain synaptosomes. Pharmacol Rep 2018; 70:146-155. [DOI: 10.1016/j.pharep.2017.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 08/12/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022]
|
33
|
Kim C, Lee J, Ko YU, Oh YJ. Cyclin-dependent kinase 5-mediated phosphorylation of CHIP promotes the tAIF-dependent death pathway in rotenone-treated cortical neurons. Neurosci Lett 2018; 662:295-301. [PMID: 29111393 DOI: 10.1016/j.neulet.2017.10.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/21/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase. Its dysregulation has been implicated in various neurodegenerative diseases. We previously reported that phosphorylation of the C-terminus of the Hsc70-interacting protein (CHIP) by Cdk5 promotes truncated apoptosis-inducing factor (tAIF)-mediated neuronal death induced by oxidative stress. Here, we determined whether this Cdk5-dependent cell death signaling pathway is present in experimental models of Parkinson's disease. First, we showed that rotenone activates Cdk5 in primary cultures of cortical neurons and causes tAIF-dependent neuronal cell death. This event was attenuated by negative regulation of endogenous Cdk5 activity by the pharmacological Cdk5 inhibitor, roscovitine, or by lentiviral knockdown of Cdk5. Cdk5 phosphorylates CHIP at Ser20 in rotenone-treated neurons. Consequently, overexpression of CHIPS20A, but not CHIPWT, attenuates tAIF-induced cell death in rotenone-treated cortical neurons. Taken together, these results indicate that phosphorylation of CHIP at Ser20 by Cdk5 activation inhibits CHIP-mediated tAIF degradation, thereby contributing to tAIF-induced neuronal cell death following rotenone treatment.
Collapse
Affiliation(s)
- Chiho Kim
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Republic of Korea; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juhyung Lee
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Republic of Korea; Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yeon Uk Ko
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Republic of Korea
| | - Young J Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Republic of Korea.
| |
Collapse
|
34
|
Ramos-Hryb AB, Pazini FL, Kaster MP, Rodrigues ALS. Therapeutic Potential of Ursolic Acid to Manage Neurodegenerative and Psychiatric Diseases. CNS Drugs 2017; 31:1029-1041. [PMID: 29098660 DOI: 10.1007/s40263-017-0474-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ursolic acid is a pentacyclic triterpenoid found in several plants. Despite its initial use as a pharmacologically inactive emulsifier in pharmaceutical, cosmetic and food industries, several biological activities have been reported for this compound so far, including anti-tumoural, anti-diabetic, cardioprotective and hepatoprotective properties. The biological effects of ursolic acid have been evaluated in vitro, in different cell types and against several toxic insults (i.e. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, amyloid-β peptides, kainic acid and others); in animal models of brain-related disorders (Alzheimer disease, Parkinson disease, depression, traumatic brain injury) and ageing; and in clinical studies with cancer patients and for muscle atrophy. Most of the protective effects of ursolic acid are related to its ability to prevent oxidative damage and excessive inflammation, common mechanisms associated with multiple brain disorders. Additionally, ursolic acid is capable of modulating the monoaminergic system, an effect that might be involved in its ability to prevent mood and cognitive dysfunctions associated with neurodegenerative and psychiatric conditions. This review presents and discusses the available evidence of the possible beneficial effects of ursolic acid for the management of neurodegenerative and psychiatric disorders. We also discuss the chemical features, major sources and potential limitations of the use of ursolic acid as a pharmacological treatment for brain-related diseases.
Collapse
Affiliation(s)
- Ana B Ramos-Hryb
- Department of Biochemistry, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Francis L Pazini
- Department of Biochemistry, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Manuella P Kaster
- Department of Biochemistry, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
35
|
Piri H, Haghdoost-Yazdi H, Fraidouni N, Dargahi T, Yaghoubidoust M, Azadmehr A. The Anti-Parkinsonism Effects of K ATP Channel Blockade in the 6-Hydroxydopamine-Induced Animal Model: The Role of Oxidative Stress. Basic Clin Neurosci 2017; 8:183-192. [PMID: 28781726 PMCID: PMC5535324 DOI: 10.18869/nirp.bcn.8.3.183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Studies suggest that ATP-sensitive potassium (KATP) channels are a potential pharmacotherapeutic target for neuroprotection in neurodegenerative diseases. The current study aimed at evaluating the effect of pretreatment with glibenclamide (Glib) and B vitamins supplement on the severity of behavioral symptoms in 6-hydroxydopamine (OHDA)-induced Parkinsonism. Also malondialdehyde (MDA) concentration was measured in the blood and brain suspensions to find probable neuroprotective mechanism of Glib. METHODS The 6-OHDA was injected into striatum of rats by stereotaxic surgery. Treatment with Glib and B vitamins was started before the surgery and continued up to 3 weeks after that. Development and severity of Parkinsonism were evaluated by conventional behavioral tests. MDA values were measured spectrophotometrically using thiobarbituric acid and MDA standard curve. RESULTS Pretreatments with Glib, at both doses of 1 and 5 mg/kg or B vitamins significantly ameliorated severity of the behavioral symptoms. Pretreatment with a combination of Glib and B vitamins was more effective than pretreatment with Glib or B vitamins alone. Also, pretreatment with B vitamins, Glib, or a combination of them reduced MDA concentration in the brain suspensions. Decrease in MDA concentration in the group of rats that received a combination of B vitamins and Glib was more prominent than that of the Glib groups. CONCLUSION As severity of the behavioral symptoms in the 6-OHDA-induced Parkinsonism reflects the degree of the lesion in Substantia Nigra (SN) dopaminergic neurons, it is suggested that Glib pretreatment has neuroprotective effect against 6-OHDA-induced neurotoxicity. The current study data also showed that this effect may be mediated by antioxidant effect of Glib.
Collapse
Affiliation(s)
- Hossein Piri
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hashem Haghdoost-Yazdi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Negin Fraidouni
- Student Research Committee, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Tahereh Dargahi
- Student Research Committee, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Abbas Azadmehr
- Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
36
|
Wang S, Zhao Y, Gao J, Guo Y, Wang X, Huo J, Wei P, Cao J. In Vivo Effect of a 5-HT 7 Receptor Agonist on 5-HT Neurons and GABA Interneurons in the Dorsal Raphe Nuclei of Sham and PD Rats. Am J Alzheimers Dis Other Demen 2017; 32:73-81. [PMID: 28084087 PMCID: PMC10852805 DOI: 10.1177/1533317516685425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
The 5-hydroxytryptamine (5-HT; serotonin) neurotransmission is severely affected by the degeneration of nigrostriatal dopaminergic neurons. Here, we report the effects of the systemic administration of the 5-HT7 receptor agonist AS-19. In sham rats, the mean response of the 5-HT neurons in the dorsal raphe nucleus (DRN) to systemic AS-19 was excitatory and the mean response of the γ-aminobutyric acid (GABA) interneurons was inhibitory. In Parkinson disease (PD) rats, the same dose did not affect the 5-HT neurons and only high doses (640 μg/kg intravenous) were able to the increase GABA interneuron activity. These results indicate that DRN 5-HT neurons and GABA interneurons are regulated by the activation of 5-HT7 receptors and that the degeneration of the nigrostriatal pathway leads to decreased responses of these neurons to AS-19, which in turn suggests that the 5-HT7 receptors on 5-HT neurons and GABA interneurons in PD rats are dysfunctional and downregulated.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Pathophysiology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Yan Zhao
- Department of Pathophysiology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Jie Gao
- Department of Pathophysiology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Yufang Guo
- Department of Pathophysiology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Xiang Wang
- Department of Pathophysiology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Jian Huo
- Department of Pathophysiology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Ping Wei
- Department of Immunology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Jian Cao
- Department of Physiology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| |
Collapse
|
37
|
Yue P, Gao L, Wang X, Ding X, Teng J. Intranasal Administration of GDNF Protects Against Neural Apoptosis in a Rat Model of Parkinson’s Disease Through PI3K/Akt/GSK3β Pathway. Neurochem Res 2017; 42:1366-1374. [DOI: 10.1007/s11064-017-2184-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 12/16/2022]
|
38
|
Zhang ZN, Zhang JS, Xiang J, Yu ZH, Zhang W, Cai M, Li XT, Wu T, Li WW, Cai DF. Subcutaneous rotenone rat model of Parkinson's disease: Dose exploration study. Brain Res 2017; 1655:104-113. [DOI: 10.1016/j.brainres.2016.11.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/13/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022]
|
39
|
Zanatta G, Della Flora Nunes G, Bezerra EM, da Costa RF, Martins A, Caetano EWS, Freire VN, Gottfried C. Two Binding Geometries for Risperidone in Dopamine D3 Receptors: Insights on the Fast-Off Mechanism through Docking, Quantum Biochemistry, and Molecular Dynamics Simulations. ACS Chem Neurosci 2016; 7:1331-1347. [PMID: 27434874 DOI: 10.1021/acschemneuro.6b00074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Risperidone is an atypical antipsychotic used in the treatment of schizophrenia and of symptoms of irritability associated with autism spectrum disorder (ASD). Its main action mechanism is the blockade of D2-like receptors acting over positive and negative symptoms of schizophrenia with small risk of extrapyramidal symptoms (EPS) at doses corresponding to low/moderate D2 occupancy. Such a decrease in the side effect incidence can be associated with its fast unbinding from D2 receptors in the nigrostriatal region allowing the recovery of dopamine signaling pathways. We performed docking essays using risperidone and the D3 receptor crystallographic data and results suggested two possible distinct orientations for risperidone at the binding pocket. Orientation 1 is more close to the opening of the binding site and has the 6-fluoro-1,2 benzoxazole fragment toward the bottom of the D3 receptor cleft, while orientation 2 is deeper inside the binding pocket with the same fragment toward to the receptor surface. In order to unveil the implications of these two binding orientations, classical molecular dynamics and quantum biochemistry computations within the density functional theory formalism and the molecular fractionation with conjugate caps framework were performed. Quantum mechanics/molecular mechanics suggests that orientation 2 (considering the contribution of Glu90) is slightly more energetically stable than orientation 1 with the main contribution coming from residue Asp110. The residue Glu90, positioned at the opening of the binding site, is closer to orientation 1 than 2, suggesting that it may have a key role in stability through attractive interaction with risperidone. Therefore, although orientations 1 and 2 are both likely to occur, we suggest that the occurrence of the first may contribute to the reduction of side effects in patients taking risperidone due to the reduction of dopamine receptor occupancy in the nigrostriatal region through a mechanism of fast dissociation. The atypical effect may be obtained simply by either delaying D3R full blockage by spatial hindrance of orientation 1 at the binding site or through an effective blockade followed by orientation 1 fast dissociation. While the molecular interpretation suggested in this work shed some light on the potential molecular mechanisms accounting for the reduced extrapyramidal symptoms observed during risperidone treatment, further studies are necessary in order to evaluate the implications of both orientations during the receptor activation/inhibition. Altogether these data highlight important hot spots in the dopamine receptor binding site bringing relevant information for the development of novel/derivative agents with atypical profile.
Collapse
Affiliation(s)
- Geancarlo Zanatta
- Department of Biochemistry, Federal University of Rio Grande do Sul, 90035-003 Porto
Alegre, RS Brazil
| | - Gustavo Della Flora Nunes
- Department of Biochemistry, Federal University of Rio Grande do Sul, 90035-003 Porto
Alegre, RS Brazil
| | - Eveline M. Bezerra
- Post-graduate Program in Pharmaceutical Sciences, Pharmacy Faculty, Federal University of Ceará, 60430-372 Fortaleza, CE Brazil
| | - Roner F. da Costa
- Department of Physics, Universidade Federal Rural do Semi-Árido, 59780-000 Caraúbas, RN Brazil
| | - Alice Martins
- Post-graduate Program in Pharmaceutical Sciences, Pharmacy Faculty, Federal University of Ceará, 60430-372 Fortaleza, CE Brazil
| | - Ewerton W. S. Caetano
- Federal Institute of Education, Science and Technology, 60040-531 Fortaleza, CE Brazil
| | - Valder N. Freire
- Department of Physics, Federal University of Ceará, 60455-760 Fortaleza, CE Brazil
| | - Carmem Gottfried
- Department of Biochemistry, Federal University of Rio Grande do Sul, 90035-003 Porto
Alegre, RS Brazil
| |
Collapse
|
40
|
Hood RL, Liguore WA, Moore C, Pflibsen L, Meshul CK. Exercise intervention increases spontaneous locomotion but fails to attenuate dopaminergic system loss in a progressive MPTP model in aged mice. Brain Res 2016; 1646:535-542. [DOI: 10.1016/j.brainres.2016.06.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/06/2016] [Accepted: 06/21/2016] [Indexed: 02/04/2023]
|
41
|
Grow DA, McCarrey JR, Navara CS. Advantages of nonhuman primates as preclinical models for evaluating stem cell-based therapies for Parkinson's disease. Stem Cell Res 2016; 17:352-366. [PMID: 27622596 DOI: 10.1016/j.scr.2016.08.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 01/29/2023] Open
Abstract
The derivation of dopaminergic neurons from induced pluripotent stem cells brings new hope for a patient-specific, stem cell-based replacement therapy to treat Parkinson's disease (PD) and related neurodegenerative diseases; and this novel cell-based approach has already proven effective in animal models. However, there are several aspects of this procedure that have yet to be optimized to the extent required for translation to an optimal cell-based transplantation protocol in humans. These challenges include pinpointing the optimal graft location, appropriately scaling up the graft volume, and minimizing the risk of chronic immune rejection, among others. To advance this procedure to the clinic, it is imperative that a model that accurately and fully recapitulates characteristics most pertinent to a cell-based transplantation to the human brain is used to optimize key technical aspects of the procedure. Nonhuman primates mimic humans in multiple ways including similarities in genomics, neuroanatomy, neurophysiology, immunogenetics, and age-related changes in immune function. These characteristics are critical to the establishment of a relevant model in which to conduct preclinical studies to optimize the efficacy and safety of cell-based therapeutic approaches to the treatment of PD. Here we review previous studies in rodent models, and emphasize additional advantages afforded by nonhuman primate models in general, and the baboon model in particular, for preclinical optimization of cell-based therapeutic approaches to the treatment of PD and other neurodegenerative diseases. We outline current unresolved challenges to the successful application of stem cell therapies in humans and propose that the baboon model in particular affords a number of traits that render it most useful for preclinical studies designed to overcome these challenges.
Collapse
Affiliation(s)
- Douglas A Grow
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States
| | - Christopher S Navara
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States.
| |
Collapse
|
42
|
Javed H, Azimullah S, Haque ME, Ojha SK. Cannabinoid Type 2 (CB2) Receptors Activation Protects against Oxidative Stress and Neuroinflammation Associated Dopaminergic Neurodegeneration in Rotenone Model of Parkinson's Disease. Front Neurosci 2016; 10:321. [PMID: 27531971 PMCID: PMC4969295 DOI: 10.3389/fnins.2016.00321] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/27/2016] [Indexed: 01/12/2023] Open
Abstract
The cannabinoid type two receptors (CB2), an important component of the endocannabinoid system, have recently emerged as neuromodulators and therapeutic targets for neurodegenerative diseases including Parkinson's disease (PD). The downregulation of CB2 receptors has been reported in the brains of PD patients. Therefore, both the activation and the upregulation of the CB2 receptors are believed to protect against the neurodegenerative changes in PD. In the present study, we investigated the CB2 receptor-mediated neuroprotective effect of β-caryophyllene (BCP), a naturally occurring CB2 receptor agonist, in, a clinically relevant, rotenone (ROT)-induced animal model of PD. ROT (2.5 mg/kg BW) was injected intraperitoneally (i.p.) once daily for 4 weeks to induce PD in male Wistar rats. ROT injections induced a significant loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and DA striatal fibers, following activation of glial cells (astrocytes and microglia). ROT also caused oxidative injury evidenced by the loss of antioxidant enzymes and increased nitrite levels, and induction of proinflammatory cytokines: IL-1β, IL-6 and TNF-α, as well as inflammatory mediators: NF-κB, COX-2, and iNOS. However, treatment with BCP attenuated induction of proinflammatory cytokines and inflammatory mediators in ROT-challenged rats. BCP supplementation also prevented depletion of glutathione concomitant to reduced lipid peroxidation and augmentation of antioxidant enzymes: SOD and catalase. The results were further supported by tyrosine hydroxylase immunohistochemistry, which illustrated the rescue of the DA neurons and fibers subsequent to reduced activation of glial cells. Interestingly, BCP supplementation demonstrated the potent therapeutic effects against ROT-induced neurodegeneration, which was evidenced by BCP-mediated CB2 receptor activation and the fact that, prior administration of the CB2 receptor antagonist AM630 diminished the beneficial effects of BCP. The present study suggests that BCP has the potential therapeutic efficacy to elicit significant neuroprotection by its anti-inflammatory and antioxidant activities mediated by activation of the CB2 receptors.
Collapse
Affiliation(s)
- Hayate Javed
- Departments of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University Al Ain, UAE
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University Al Ain, UAE
| | - M Emdadul Haque
- Departments of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University Al Ain, UAE
| | - Shreesh K Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University Al Ain, UAE
| |
Collapse
|
43
|
Friedemann T, Ying Y, Wang W, Kramer ER, Schumacher U, Fei J, Schröder S. Neuroprotective Effect of Coptis chinensis in MPP+ and MPTP-Induced Parkinson’s Disease Models. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:907-25. [DOI: 10.1142/s0192415x16500506] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The rhizome of Coptis chinensis is commonly used in traditional Chinese medicine alone or in combination with other herbs to treat diseases characterized by causing oxidative stress including inflammatory diseases, diabetes mellitus and neurodegenerative diseases. In particular, there is emerging evidence that Coptis chinensis is effective in the treatment of neurodegenerative diseases associated with oxidative stress. Hence, the aim of this study was to investigate the neuroprotective effect of Coptis chinensis in vitro and in vivo using MPP[Formula: see text] and MPTP models of Parkinson’s disease. MPP[Formula: see text] treated human SH-SY5Y neuroblastoma cells were used as a cell model of Parkinson’s disease. A 24[Formula: see text]h pre-treatment of the cells with the watery extract of Coptis chinensis significantly increased cell viability, as well as the intracellular ATP concentration and attenuated apoptosis compared to the MPP[Formula: see text] control. Further experiments with the main alkaloids of Coptidis chinensis, berberine, coptisine, jaterorrhizine and palmatine revealed that berberine and coptisine were the main active compounds responsible for the observed neuroprotective effect. However, the full extract of Coptis chinensis was more effective than the tested single alkaloids. In the MPTP-induced animal model of Parkinson’s disease, Coptis chinensis dose-dependently improved motor functions and increased tyrosine hydroxylase-positive neurons in the substantia nigra compared to the MPTP control. Based on the results of this work, Coptis chinensis and its main alkaloids could be considered potential candidates for the development of new treatment options for Parkinson’s disease.
Collapse
Affiliation(s)
- Thomas Friedemann
- HanseMerkur Center for Traditional Chinese Medicine at the University Medical Center Hamburg-Eppendorf, Hamburg 20246, Martinistr. 52, Germany
| | - Yue Ying
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Weigang Wang
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Edgar R. Kramer
- Development and Maintenance of the Nervous System, Centre for Molecular Neurobiology Hamburg (ZMNH), Falkenried 94, Hamburg 20251, Germany
- Institute of Applied Physiology, Ulm University, 89081 Ulm Albert-Einstein-Allee 11, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Martinistr. 52, Germany
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Sven Schröder
- HanseMerkur Center for Traditional Chinese Medicine at the University Medical Center Hamburg-Eppendorf, Hamburg 20246, Martinistr. 52, Germany
| |
Collapse
|
44
|
Neuroprotective Effects of Germinated Brown Rice in Rotenone-Induced Parkinson's-Like Disease Rats. Neuromolecular Med 2016; 18:334-46. [PMID: 27430236 DOI: 10.1007/s12017-016-8427-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/08/2016] [Indexed: 12/21/2022]
Abstract
The effects of germinated brown rice (GBR) on the motor deficits and the dopaminergic (DA) cell death were investigated in Parkinson's-like disease (PD) rats. Reactive oxidative species generated by chronic subcutaneous injection of rotenone (RT) lead to neuronal apoptosis particularly in the nigrostriatal DA system and produce many features of PD, bradykinesis, postural instability and rigidity. In this study, 4-phenylbutyric acid (4-PBA), previously reported to inhibit RT-induced DA cell death, was used as the positive control. Results show that pretreatment with GBR as well as 4-PBA significantly enhanced the motor activity after RT injection, and GBR affected significantly in open field test, only in the ambulation but not the mobility duration, and ameliorated the time to orient down (t-turn) and total time to descend the pole (t-total) in pole test as compared to RT group, but significantly lowered both t-turn and t-total only in 4-PBA group. The percentage of apoptotic cells in brain measured by flow cytometry and the inflammatory effect measured by ELISA of TNF-α showed significant increase in RT group as compared to the control (CT) group at P < 0.05. Apoptotic cells in RT group (85.98 %) showed a significant (P < 0.05) increase versus CT group (17.50 %), and this effect was attenuated in GBR+RT group by decreasing apoptotic cells (79.32 %), whereas, increased viable cells (17.94 %) versus RT group (10.79 %). GBR in GBR + RT group could decrease TNF-α both in the serum and in brain. In summary, GBR showed a neuroprotective effect in RT-induced PD rats, and it may be useful as a value-added functional food to prevent neurodegenerative disease or PD.
Collapse
|
45
|
Duan X, Zhang X, Xu B, Wang F, Lei M. Computational Study and Modified Design of Selective Dopamine D3 Receptor Agonists. Chem Biol Drug Des 2016; 88:142-54. [PMID: 26851125 DOI: 10.1111/cbdd.12743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/27/2015] [Accepted: 01/31/2016] [Indexed: 12/15/2022]
Abstract
Dopamine D3 receptor (D3 R) is considered as a potential target for the treatment of nervous system disorders, such as Parkinson's disease. Current research interests primarily focus on the discovery and design of potent D3 agonists. In this work, we selected 40 D3 R agonists as the research system. Comparative molecular field analysis (CoMFA) of three-dimensional quantitative structure-activity relationship (3D-QSAR), structure-selectivity relationship (3D-QSSR), and molecular docking was performed on D3 receptor agonists to obtain the details at atomic level. The results indicated that both the CoMFA model (r(2) = 0.982, q(2) = 0.503, rpred2 = 0.893, SEE = 0.057, F = 166.308) for structure-activity and (r(2) = 0.876, q(2) = 0.436, rpred2 = 0.828, F = 52.645) for structure-selectivity have good predictive capabilities. Furthermore, docking studies on three compounds binding to D3 receptor were performed to analyze the binding modes and interactions. The results elucidate that agonists formed hydrogen bond and hydrophobic interactions with key residues. Finally, we designed six molecules under the guidance of 3D-QSAR/QSSR models. The activity and selectivity of designed molecules have been improved, and ADMET properties demonstrate they have low probability of hepatotoxicity (<0.5). These results from 3D-QSAR/QSSR and docking studies have great significance for designing novel dopamine D3 selective agonists in the future.
Collapse
Affiliation(s)
- Xinli Duan
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Binglin Xu
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fang Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
46
|
Carriere CH, Kang NH, Niles LP. Chronic low-dose melatonin treatment maintains nigrostriatal integrity in an intrastriatal rotenone model of Parkinson's disease. Brain Res 2015; 1633:115-125. [PMID: 26740407 DOI: 10.1016/j.brainres.2015.12.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/11/2015] [Accepted: 12/18/2015] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is a major neurodegenerative disorder which primarily involves the loss of dopaminergic neurons in the substantia nigra and related projections in the striatum. The pesticide/neurotoxin, rotenone, has been shown to cause systemic inhibition of mitochondrial complex I activity in nigral dopaminergic neurons, with consequent degeneration of the nigrostriatal pathway, as observed in Parkinson's disease. A novel intrastriatal rotenone model of Parkinson's disease was used to examine the neuroprotective effects of chronic low-dose treatment with the antioxidant indoleamine, melatonin, which can upregulate neurotrophic factors and other protective proteins in the brain. Sham or lesioned rats were treated with either vehicle (0.04% ethanol in drinking water) or melatonin at a dose of 4 µg/mL in drinking water. The right striatum was lesioned by stereotactic injection of rotenone at three sites (4 μg/site) along its rostrocaudal axis. Apomorphine administration to lesioned animals resulted in a significant (p<0.001) increase in ipsilateral rotations, which was suppressed by melatonin. Nine weeks post-surgery, animals were sacrificed by transcardial perfusion. Subsequent immunohistochemical examination revealed a decrease in tyrosine hydroxylase immunoreactivity within the striatum and substantia nigra of rotenone-lesioned animals. Melatonin treatment attenuated the decrease in tyrosine hydroxylase in the striatum and abolished it in the substantia nigra. Stereological cell counts indicated a significant (p<0.05) decrease in dopamine neurons in the substantia nigra of rotenone-lesioned animals, which was confirmed by Nissl staining. Importantly, chronic melatonin treatment blocked the loss of dopamine neurons in rotenone-lesioned animals. These findings strongly support the therapeutic potential of long-term and low-dose melatonin treatment in Parkinson's disease.
Collapse
Affiliation(s)
- Candace H Carriere
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, HSC-4N77, 1200 Main Street West, Hamilton, ON, Canada L8N 3Z5.
| | - Na Hyea Kang
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, HSC-4N77, 1200 Main Street West, Hamilton, ON, Canada L8N 3Z5.
| | - Lennard P Niles
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, HSC-4N77, 1200 Main Street West, Hamilton, ON, Canada L8N 3Z5.
| |
Collapse
|
47
|
Li H, Park G, Bae N, Kim J, Oh MS, Yang HO. Anti-apoptotic effect of modified Chunsimyeolda-tang, a traditional Korean herbal formula, on MPTP-induced neuronal cell death in a Parkinson's disease mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:336-344. [PMID: 26593210 DOI: 10.1016/j.jep.2015.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 11/01/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The modified-Chungsimyeolda-tang (DG) is an important traditional Korean herbal formula used in traditional oriental medicine for treatment of cerebrovascular disorders, including stroke. The formula is based on the book "Dongui Sasang Shinpyun". AIM OF THE STUDY In the previous studies, the neuroprotective effect of DG is demonstrated in an in vitro Parkinson's disease (PD) model, and in this study, the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) animal model of PD is used to evaluate the behavioral effect of DG and possible mechanism through anti-apoptosis of DG. 6-Hydroxydopamine (6-OHDA) also is used to evaluate the anti-apoptosis effect of DG in SH-SY5Y cells. MATERIALS AND METHODS MPTP was used to evaluate the behavioral damage and neurotoxicity in mice. The bradykinesia symptom was measured by a Pole test and a Rota-rod test in mice. Also the loss of tyrosine hydroxylase (TH)-positive neurons induced by MPTP was examined by an immunohistochemical assay. The DG-mediated anti-apoptosis effect was measured using an immunoblotting assay with apoptosis-related markers such as Bax and cleaved caspase-3. DG and 1-methyl-4-phenylpyridinium (MPP(+)) were co-treated with primary dopaminergic neurons to evaluate the protective effect of DG. The expression of caspase-3 and PARP was measured to detect the protective effect of DG from the damage by 6-OHDA. RESULTS AND CONCLUSIONS The treatment with DG resulted in prophylactic effects on MPTP-induced Parkinsonian bradykinesia and the immunohistochemical analysis showed that DG provided the neuroprotection against the MPP(+)-induced dopaminergic neurons loss through the anti-apoptosis effect. The present results suggested that it might be possible to use DG for the prevention of substantia nigra pars compacta (SNpc) degeneration induced by exposure to the toxic substances, such as MPTP/MPP(+), in PD mouse model.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Animals
- Antiparkinson Agents/pharmacology
- Antiparkinson Agents/therapeutic use
- Apoptosis/drug effects
- Behavior, Animal/drug effects
- Brain/cytology
- Brain/drug effects
- Brain/metabolism
- Caspase 3/metabolism
- Cell Death/drug effects
- Cell Line, Tumor
- Cells, Cultured
- Disease Models, Animal
- Dopaminergic Neurons/drug effects
- Humans
- Korea
- Male
- Medicine, Traditional
- Mice, Inbred C57BL
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Neurotoxins
- Parkinson Disease/drug therapy
- Parkinson Disease/metabolism
- Phytotherapy
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- Rats, Sprague-Dawley
- bcl-2-Associated X Protein/metabolism
Collapse
Affiliation(s)
- Huan Li
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 210-340, Republic of Korea; Department of Biological Chemistry, University of Science & Technology (UST), Daejeon 305-350, Republic of Korea; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Gunhyuk Park
- Department of Life and Nanopharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Nayoung Bae
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 210-340, Republic of Korea; Department of Sasang Constitution Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870, Republic of Korea
| | - Joonki Kim
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 210-340, Republic of Korea
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul 130-701, Republic of Korea.
| | - Hyun Ok Yang
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 210-340, Republic of Korea; Department of Biological Chemistry, University of Science & Technology (UST), Daejeon 305-350, Republic of Korea.
| |
Collapse
|
48
|
Liu Y, Sun JD, Song LK, Li J, Chu SF, Yuan YH, Chen NH. Environment-contact administration of rotenone: A new rodent model of Parkinson’s disease. Behav Brain Res 2015; 294:149-61. [DOI: 10.1016/j.bbr.2015.07.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/26/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022]
|
49
|
Protective Mechanisms of Flavonoids in Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:314560. [PMID: 26576219 PMCID: PMC4630416 DOI: 10.1155/2015/314560] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/29/2015] [Indexed: 12/11/2022]
Abstract
Parkinson's disease is a chronic, debilitating neurodegenerative movement disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta region in human midbrain. To date, oxidative stress is the well accepted concept in the etiology and progression of Parkinson's disease. Hence, the therapeutic agent is targeted against suppressing and alleviating the oxidative stress-induced cellular damage. Within the past decades, an explosion of research discoveries has reported on the protective mechanisms of flavonoids, which are plant-based polyphenols, in the treatment of neurodegenerative disease using both in vitro and in vivo models. In this paper, we have reviewed the literature on the neuroprotective mechanisms of flavonoids in protecting the dopaminergic neurons hence reducing the symptoms of this movement disorder. The mechanism reviewed includes effect of flavonoids in activation of endogenous antioxidant enzymes, suppressing the lipid peroxidation, inhibition of inflammatory mediators, flavonoids as a mitochondrial target therapy, and modulation of gene expression in neuronal cells.
Collapse
|
50
|
Intravenous mesenchymal stem cell administration exhibits therapeutic effects against 6-hydroxydopamine-induced dopaminergic neurodegeneration and glial activation in rats. Neurosci Lett 2015; 584:276-81. [DOI: 10.1016/j.neulet.2014.10.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 01/30/2023]
|