1
|
Prato A, Fernando Santos E, Mendes Ferreira H, Akemi Oi C, Santos do Nascimento F, Rantala MJ, Krams I, Rodrigues de Souza A. Immune response in paper wasp workers: Task matters more than age. JOURNAL OF INSECT PHYSIOLOGY 2024; 154:104629. [PMID: 38430966 DOI: 10.1016/j.jinsphys.2024.104629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Workers of social hymenopterans (ants, bees and wasps) display specific tasks depending on whether they are younger or older. The relative importance of behavior and age in modulating immune function has seldom been addressed. We compared the strength of encapsulation-melanization immune response (hereafter melanotic encapsulation) in paper wasps displaying age polyethism or experimentally prevented from behavioral specialization. Foragers of Polybia paulista had higher melanotic encapsulation than guards, regardless of their age. Nevertheless, melanotic encapsulation decreased with age when wasps were prevented from behavioral specialization. Thus, in this species, worker melanotic encapsulation seems more sensitive to task than age. Foraging is considered one of the riskier behaviors in terms of pathogen exposure, so upregulating melanotic encapsulation in foragers can possibly improve both individual and colony-level resistance against infections.
Collapse
Affiliation(s)
- Amanda Prato
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brasil.
| | - Eduardo Fernando Santos
- Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho", São José do Rio Preto, Brasil
| | | | - Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium; Center for Biodiversity and Environmental Research, Department of Genetics and Evolution, UCL, London, United Kingdom
| | - Fábio Santos do Nascimento
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brasil
| | | | - Indrikis Krams
- Department of Biotechnology, Daugavpils University, Latvia; Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, Latvia; Institute of Ecology and Earth Sciences, University of Tartu, Estonia
| | - André Rodrigues de Souza
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
2
|
Polak M, Bose J, Benoit JB, Singh H. Heritability and preadult survivorship costs of ectoparasite resistance in the naturally occurring Drosophila-Gamasodes mite system. Evolution 2023; 77:2068-2080. [PMID: 37393947 DOI: 10.1093/evolut/qpad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/06/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
Our understanding of the evolutionary significance of ectoparasites in natural communities is limited by a paucity of information concerning the mechanisms and heritability of resistance to this ubiquitous group of organisms. Here, we report the results of artificial selection for increasing ectoparasite resistance in replicate lines of Drosophila melanogaster derived from a field-fresh population. Resistance, as ability to avoid infestation by naturally co-occurring Gamasodes queenslandicus mites, increased significantly in response to selection and realized heritability (SE) was estimated to be 0.11 (0.0090). Deployment of energetically expensive bursts of flight from the substrate was a main mechanism of host resistance that responded to selection, aligning with previously documented metabolic costs of fly behavioral defenses. Host body size, which affects parasitism rate in some fly-mite systems, was not shifted by selection. In contrast, resistant lines expressed significant reductions in larva-to-adult survivorship with increasing toxic (ammonia) stress, identifying an environmentally modulated preadult cost of resistance. Flies selected for resistance to G. queenslandicus were also more resistant to a different mite, Macrocheles subbadius, suggesting that we documented genetic variation and a pleiotropic cost of broad-spectrum behavioral immunity against ectoparasites. The results demonstrate significant evolutionary potential of resistance to an ecologically important class of parasites.
Collapse
Affiliation(s)
- Michal Polak
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Joy Bose
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Harmanpreet Singh
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
3
|
Gibson AK, Amoroso CR. Evolution and Ecology of Parasite Avoidance. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2022; 53:47-67. [PMID: 36479162 PMCID: PMC9724790 DOI: 10.1146/annurev-ecolsys-102220-020636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parasite avoidance is a host defense that reduces the contact rate with parasites. We investigate avoidance as a primary driver of variation among individuals in the risk of parasitism and the evolution of host-parasite interactions. To bridge mechanistic and taxonomic divides, we define and categorize avoidance by its function and position in the sequence of host defenses. We also examine the role of avoidance in limiting epidemics and evaluate evidence for the processes that drive its evolution. Throughout, we highlight important directions to advance our conceptual and theoretical understanding of the role of avoidance in host-parasite interactions. We emphasize the need to test assumptions and quantify the effect of avoidance independent of other defenses. Importantly, many open questions may be most tractable in host systems that have not been the focus of traditional behavioral avoidance research, such as plants and invertebrates.
Collapse
Affiliation(s)
- Amanda K Gibson
- Department of Biology; University of Virginia, Charlottesville, VA 22903
| | - Caroline R Amoroso
- Department of Biology; University of Virginia, Charlottesville, VA 22903
| |
Collapse
|
4
|
A paradox of parasite resistance: disease-driven trophic cascades increase the cost of resistance, selecting for lower resistance with parasites than without them. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Goutte A, Molbert N. Benefits of Parasitism in Polluted Environments: A Review and Perspectives. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.847869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The frequency and strength of biotic interactions are thought to be shaped by environmental conditions. In this study, we reviewed and discussed the potential effects of toxic chemicals in driving shifts along the parasite-mutualist continuum. Some parasites have the astonishing capacity to accumulate trace metals and organic pollutants from various taxa within freshwater, marine, and terrestrial ecosystems. Recent studies have provided evidence of clear benefits for the host: when exposed to contaminants, infected organisms exhibited reduced contamination levels, less severe oxidative stress, and histological alterations, as well as higher body condition and survival rate compared with their uninfected conspecifics. Such effects might arise when the costs of parasitism are lower than their benefits in specific environmental conditions. Assessing the potential outcomes for parasites exploiting contaminated hosts is a crucial but neglected issue, since ecotoxicological effects on parasites may alter interspecific relationships. We identified possible avenues for future research using innovative tools and long-term experimental manipulations of both parasitism and pollution to better understand how toxic chemicals can modulate the strength and direction of host-parasite interactions.
Collapse
|
6
|
Ortega N, Roznik EA, Surbaugh KL, Cano N, Price W, Campbell T, Rohr JR. Parasite spillover to native hosts from more tolerant, supershedding invasive hosts: Implications for management. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicole Ortega
- Department of Biology University of Tampa Tampa FL USA
| | - Elizabeth A. Roznik
- North Carolina Zoo Asheboro NC USA
- Department of Integrative Biology University of South Florida Tampa FL USA
| | - Kerri L. Surbaugh
- Department of Integrative Biology University of South Florida Tampa FL USA
| | - Natalia Cano
- Department of Integrative Biology University of South Florida Tampa FL USA
| | - Wayne Price
- Department of Biology University of Tampa Tampa FL USA
| | - Todd Campbell
- Department of Biology University of Tampa Tampa FL USA
| | - Jason R. Rohr
- Department of Biological Sciences University of Notre DameNotre Dame IN USA
| |
Collapse
|
7
|
Debray R, Herbert RA, Jaffe AL, Crits-Christoph A, Power ME, Koskella B. Priority effects in microbiome assembly. Nat Rev Microbiol 2021; 20:109-121. [PMID: 34453137 DOI: 10.1038/s41579-021-00604-w] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 11/09/2022]
Abstract
Advances in next-generation sequencing have enabled the widespread measurement of microbiome composition across systems and over the course of microbiome assembly. Despite substantial progress in understanding the deterministic drivers of community composition, the role of historical contingency remains poorly understood. The establishment of new species in a community can depend on the order and/or timing of their arrival, a phenomenon known as a priority effect. Here, we review the mechanisms of priority effects and evidence for their importance in microbial communities inhabiting a range of environments, including the mammalian gut, the plant phyllosphere and rhizosphere, soil, freshwaters and oceans. We describe approaches for the direct testing and prediction of priority effects in complex microbial communities and illustrate these with re-analysis of publicly available plant and animal microbiome datasets. Finally, we discuss the shared principles that emerge across study systems, focusing on eco-evolutionary dynamics and the importance of scale. Overall, we argue that predicting when and how current community state impacts the success of newly arriving microbial taxa is crucial for the management of microbiomes to sustain ecological function and host health. We conclude by discussing outstanding conceptual and practical challenges that are faced when measuring priority effects in microbiomes.
Collapse
Affiliation(s)
- Reena Debray
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA.
| | - Robin A Herbert
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA. .,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Alexander L Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Mary E Power
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
8
|
Polinski MP, Zhang Y, Morrison PR, Marty GD, Brauner CJ, Farrell AP, Garver KA. Innate antiviral defense demonstrates high energetic efficiency in a bony fish. BMC Biol 2021; 19:138. [PMID: 34253202 PMCID: PMC8276435 DOI: 10.1186/s12915-021-01069-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/09/2021] [Indexed: 11/18/2022] Open
Abstract
Background Viruses can impose energetic demands on organisms they infect, in part by hosts mounting resistance. Recognizing that oxygen uptake reliably indicates steady-state energy consumption in all vertebrates, we comprehensively evaluated oxygen uptake and select transcriptomic messaging in sockeye salmon challenged with either a virulent rhabdovirus (IHNV) or a low-virulent reovirus (PRV). We tested three hypotheses relating to the energetic costs of viral resistance and tolerance in this vertebrate system: (1) mounting resistance incurs a metabolic cost or limitation, (2) induction of the innate antiviral interferon system compromises homeostasis, and (3) antiviral defenses are weakened by acute stress. Results IHNV infections either produced mortality within 1–4 weeks or the survivors cleared infections within 1–9 weeks. Transcription of three interferon-stimulated genes (ISGs) was strongly correlated with IHNV load but not respiratory performance. Instead, early IHNV resistance was associated with a mean 19% (95% CI = 7–31%; p = 0.003) reduction in standard metabolic rate. The stress of exhaustive exercise did not increase IHNV transcript loads, but elevated host inflammatory transcriptional signaling up to sevenfold. For PRV, sockeye tolerated high-load systemic PRV blood infections. ISG transcription was transiently induced at peak PRV loads without associated morbidity, microscopic lesions, or major changes in aerobic or anaerobic respiratory performance, but some individuals with high-load blood infections experienced a transient, minor reduction in hemoglobin concentration and increased duration of excess post-exercise oxygen consumption. Conclusions Contrary to our first hypothesis, effective resistance against life-threatening rhabdovirus infections or tolerance to high-load reovirus infections incurred minimal metabolic costs to salmon. Even robust systemic activation of the interferon system did not levy an allostatic load sufficient to compromise host homeostasis or respiratory performance, rejecting our second hypothesis that this ancient innate vertebrate antiviral defense is itself energetically expensive. Lastly, an acute stress experienced during testing did not weaken host antiviral defenses sufficiently to promote viral replication; however, a possibility for disease intensification contingent upon underlying inflammation was indicated. These data cumulatively demonstrate that fundamental innate vertebrate defense strategies against potentially life-threatening viral exposure impose limited putative costs on concurrent aerobic or energetic demands of the organism. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01069-2.
Collapse
Affiliation(s)
- Mark P Polinski
- Fisheries and Oceans Canada Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, V9T6N7, Canada.
| | - Yangfan Zhang
- Faculty of Land and Food Systems, University of British Columbia, MCML 344-2357 Main Mall, Vancouver, V6T1Z4, Canada
| | - Phillip R Morrison
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, V6T1Z4, Canada
| | - Gary D Marty
- Animal Health Centre, Ministry of Agriculture, Food and Fisheries, 1767 Angus Campbell Rd, Abbotsford, V3G2M3, Canada
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, V6T1Z4, Canada
| | - Anthony P Farrell
- Faculty of Land and Food Systems, University of British Columbia, MCML 344-2357 Main Mall, Vancouver, V6T1Z4, Canada.,Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, V6T1Z4, Canada
| | - Kyle A Garver
- Fisheries and Oceans Canada Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, V9T6N7, Canada.
| |
Collapse
|
9
|
Koprivnikar J, Rochette A, Forbes MR. Risk-Induced Trait Responses and Non-consumptive Effects in Plants and Animals in Response to Their Invertebrate Herbivore and Parasite Natural Enemies. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.667030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Predators kill and consume prey, but also scare living prey. Fitness of prey can be reduced by direct killing and consumption, but also by non-consumptive effects (NCEs) if prey show costly risk-induced trait responses (RITRs) to predators, which are meant to reduce predation risk. Recently, similarities between predators and parasites as natural enemies have been recognized, including their potential to cause victim RITRs and NCEs. However, plant-herbivore and animal host-parasite associations might be more comparable as victim-enemy systems in this context than either is to prey-predator systems. This is because plant herbivores and animal parasites are often invertebrate species that are typically smaller than their victims, generally cause lower lethality, and allow for further defensive responses by victims after consumption begins. Invertebrate herbivores can cause diverse RITRs in plants through various means, and animals also exhibit assorted RITRs to increased parasitism risk. This synthesis aims to broadly compare these two enemy-victim systems by highlighting the ways in which plants and animals perceive threat and respond with a range of induced victim trait responses that can provide pre-emptive defense against invertebrate enemies. We also review evidence that RITRs are costly in terms of reducing victim fitness or abundance, demonstrating how work with one victim-enemy system can inform the other with respect to the frequency and magnitude of RITRs and possible NCEs. We particularly highlight gaps in our knowledge about plant and animal host responses to their invertebrate enemies that may guide directions for future research. Comparing how potential plant and animal victims respond pre-emptively to the threat of consumption via RITRs will help to advance our understanding of natural enemy ecology and may have utility for pest and disease control.
Collapse
|
10
|
Marjamäki PH, Dugdale HL, Delahay R, McDonald RA, Wilson AJ. Genetic, social and maternal contributions to Mycobacterium bovis infection status in European badgers (Meles meles). J Evol Biol 2021; 34:695-709. [PMID: 33617698 DOI: 10.1111/jeb.13775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 11/30/2022]
Abstract
Within host populations, individuals can vary in their susceptibility to infections and in the severity and progression of disease once infected. Though mediated through differences in behaviour, resistance or tolerance, variation in disease outcomes ultimately stems from genetic and environmental (including social) factors. Despite obvious implications for the evolutionary, ecological and epidemiological dynamics of disease traits, the relative importance of these factors has rarely been quantified in naturally infected wild animal hosts. Here, we use a long-term capture-mark-recapture study of group-living European badgers (Meles meles) to characterize genetic and environmental sources of variation in host infection status by Mycobacterium bovis, the causative agent of bovine tuberculosis (bTB). We find that genetic factors contribute to M. bovis infection status, whether measured over a lifetime or across repeated captures. In the latter case, the heritability (h2 ) of infection status is close to zero in cubs and yearlings but increases in adulthood. Overall, environmental influences arising from a combination of social group membership (defined in time and space) and maternal effects appear to be more important than genetic factors. Thus, while genes do contribute to among-individual variation, they play a comparatively minor role, meaning that rapid evolution of host defences under parasite-mediated selection is unlikely (especially if selection is on young animals where h2 is lowest). Conversely, our results lend further support to the view that social and early-life environments are important drivers of the dynamics of bTB infection in badger populations specifically, and of disease traits in wild hosts more generally.
Collapse
Affiliation(s)
- Paula H Marjamäki
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Hannah L Dugdale
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh, The Netherlands
| | - Richard Delahay
- National Wildlife Management Centre, Animal and Plant Health Agency, Gloucestershire, UK
| | - Robbie A McDonald
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
| | - Alastair J Wilson
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| |
Collapse
|
11
|
Daversa DR, Hechinger RF, Madin E, Fenton A, Dell AI, Ritchie EG, Rohr J, Rudolf VHW, Lafferty KD. Broadening the ecology of fear: non-lethal effects arise from diverse responses to predation and parasitism. Proc Biol Sci 2021; 288:20202966. [PMID: 33622122 DOI: 10.1098/rspb.2020.2966] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Research on the 'ecology of fear' posits that defensive prey responses to avoid predation can cause non-lethal effects across ecological scales. Parasites also elicit defensive responses in hosts with associated non-lethal effects, which raises the longstanding, yet unresolved question of how non-lethal effects of parasites compare with those of predators. We developed a framework for systematically answering this question for all types of predator-prey and host-parasite systems. Our framework reveals likely differences in non-lethal effects not only between predators and parasites, but also between different types of predators and parasites. Trait responses should be strongest towards predators, parasitoids and parasitic castrators, but more numerous and perhaps more frequent for parasites than for predators. In a case study of larval amphibians, whose trait responses to both predators and parasites have been relatively well studied, existing data indicate that individuals generally respond more strongly and proactively to short-term predation risks than to parasitism. Apart from studies using amphibians, there have been few direct comparisons of responses to predation and parasitism, and none have incorporated responses to micropredators, parasitoids or parasitic castrators, or examined their long-term consequences. Addressing these and other data gaps highlighted by our framework can advance the field towards understanding how non-lethal effects impact prey/host population dynamics and shape food webs that contain multiple predator and parasite species.
Collapse
Affiliation(s)
- D R Daversa
- La Kretz Center for California Conservation Science, Institute for the Environment and Sustainability, University of California, Los Angeles, CA, USA.,Institute of Integrative Biology, University of Liverpool, Liverpool, UK.,National Great Rivers Research and Education Centre (NGRREC), East Alton, IL 62024, USA
| | - R F Hechinger
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA
| | - E Madin
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kane'ohe, HI 96744, USA
| | - A Fenton
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - A I Dell
- National Great Rivers Research and Education Centre (NGRREC), East Alton, IL 62024, USA.,Department of Biology, Washington University of St Louis, St Louis, MO 63130, USA.,Department of Biology, Saint Louis University, Saint Louis, MO 63130, USA
| | - E G Ritchie
- School of Life and Environmental Sciences, Centre for Integrative Ecology (Burwood Campus), Deakin University, Geelong, Victoria 3220, Australia
| | - J Rohr
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | - K D Lafferty
- Western Ecological Research Center, US Geological Survey, at UC Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
12
|
Models suggest pathogen risks to wild fish can be mitigated by acquired immunity in freshwater aquaculture systems. Sci Rep 2020; 10:7513. [PMID: 32372052 PMCID: PMC7200699 DOI: 10.1038/s41598-020-64023-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 04/08/2020] [Indexed: 11/08/2022] Open
Abstract
The interaction of pathogens between wild and farmed aquatic animal populations is a concern that remains unclear and controversial. Ichthyophthirius multifiliis, a ciliated protozoan parasite, is a pathogen of freshwater finfish species with geographic and host range that causes significant economic losses in aquaculture. Flow-through farming systems may facilitate the transfer of such a parasite with free-living stages between farmed and wild stocks. Here, experimental and field study infection data are used to describe the infection dynamics of Ichthyophthirius multifiliis in rainbow trout using a simple macroparasite model by including host resistance. The study considered flow-through farming systems with a single or two age-class compartments and simulated the transfer of the parasite between farmed and wild fish populations. Results suggest that aquaculture can promote the prevalence of the resistance in wild stocks by increasing the parasite population in the wild environment. At the same time, acquired resistance in the farmed fish population may protect the wild fish population from lethal effects of the parasite by reducing the total parasite population. This study offers a promising mathematical basis for understanding the effects of freshwater aquaculture in disease spread in wildlife, developing risk assessment modeling, and exploring new ways of aquaculture management.
Collapse
|
13
|
Sheath DJ, Dick JTA, Dickey JWE, Guo Z, Andreou D, Britton JR. Winning the arms race: host-parasite shared evolutionary history reduces infection risks in fish final hosts. Biol Lett 2019; 14:rsbl.2018.0363. [PMID: 30045905 PMCID: PMC6083226 DOI: 10.1098/rsbl.2018.0363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/27/2018] [Indexed: 12/18/2022] Open
Abstract
Parasite manipulation of intermediate hosts evolves to increase parasite trophic transmission to final hosts, yet counter selection should act on the final host to reduce infection risk and costs. However, determining who wins this arms race and to what extent is challenging. Here, for the first time, comparative functional response analysis quantified final host consumption patterns with respect to intermediate host parasite status. Experiments used two evolutionarily experienced fish hosts and two naive hosts, and their amphipod intermediate hosts of the acanthocephalan parasite Pomphorhynchus tereticollis. The two experienced fish consumed significantly fewer infected than non-infected prey, with lower attack rates and higher handling times towards the former. Conversely, the two naive fish consumed similar numbers of infected and non-infected prey at most densities, with similar attack rates and handling times towards both. Thus, evolutionarily experienced final hosts can reduce their infection risks and costs via reduced intermediate host consumption, with this not apparent in naive hosts.
Collapse
Affiliation(s)
- Danny J Sheath
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, UK.,Institute of Global Health, University of Geneva, Geneva, Switzerland
| | - Jaimie T A Dick
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - James W E Dickey
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Zhiqiang Guo
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, UK.,State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou 570228, People's Republic of China
| | - Demetra Andreou
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, UK
| | - J Robert Britton
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, UK
| |
Collapse
|
14
|
Horn CJ, Luong LT. Current parasite resistance trades off with future defenses and flight performance. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2697-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Stutz WE, Calhoun DM, Johnson PTJ. Resistance and tolerance: A hierarchical framework to compare individual versus family-level host contributions in an experimental amphibian-trematode system. Exp Parasitol 2019; 199:80-91. [PMID: 30862495 DOI: 10.1016/j.exppara.2019.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/22/2019] [Accepted: 03/06/2019] [Indexed: 11/18/2022]
Abstract
Hosts have two general strategies for mitigating the fitness costs of parasite exposure and infection: resistance and tolerance. The resistance-tolerance framework has been well developed in plant systems, but only recently has it been applied to animal-parasite interactions. However, difficulties associated with estimating fitness, controlling parasite exposure, and quantifying parasite burden have limited application of this framework to animal systems. Here, we used an experimental approach to quantify the relative influence of variation among host individuals and genetic families in determining resistance and tolerance within an amphibian-trematode system. Importantly, we used multiple, alternative metrics to assess each strategy, and employed a Bayesian analytical framework to compare among responses while incorporating uncertainty. Relative to unexposed hosts, exposure to the pathogenic trematode (Ribeiroia ondatrae) reduced the survival and growth of California newts (Taricha torosa) (survival: 93% vs. 74%; growth: 0.29 vs. -0.5 vs mm day -1). Similarly, parasite infection success (the inverse of resistance) ranged from 8% to 100%. Yet despite this broad variation in host resistance and tolerance among individual newts, we found no evidence for transmissable, among-family variation in any of the resistance or tolerance metrics. This suggests that opportunities for evolution of these traits is limited, likely requiring significant increases in mutation, gene flow, or environmental heterogeneity. Our study provides a quantitative framework for evaluating the importance of alternative metrics of resistance and tolerance across multiple time points in the study of host-parasite interactions in animal systems.
Collapse
Affiliation(s)
- William E Stutz
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Dana M Calhoun
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA.
| | - Pieter T J Johnson
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| |
Collapse
|
16
|
Abstract
Molecular and cellular studies reveal that the resistance of hosts to parasites and pathogens is a cascade-like process with multiple steps required to be passed for successful infection. By contrast, much of evolutionary reasoning is based on strongly simplified, one- or two-step infection processes with simple genetics or on resistance being a quantitative trait. Here we attempt a conceptual unification of these two perspectives with the aim of cross-fostering research and filling some of the gaps in our concepts of the ecology and evolution of disease. This conceptual unification has a profound impact on the way we understand the genetics and evolution of host resistance, ecological immunity, evolution of virulence, defence portfolios, and host-pathogen coevolution.
Collapse
Affiliation(s)
- Matthew D Hall
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Gilberto Bento
- Zoological Institute, University of Basel, Basel 4051, Switzerland
| | - Dieter Ebert
- Zoological Institute, University of Basel, Basel 4051, Switzerland; Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany.
| |
Collapse
|
17
|
Abstract
Now-outdated estimates proposed that climate change should have increased the number of people at risk of malaria, yet malaria and several other infectious diseases have declined. Although some diseases have increased as the climate has warmed, evidence for widespread climate-driven disease expansion has not materialized, despite increased research attention. Biological responses to warming depend on the non-linear relationships between physiological performance and temperature, called the thermal response curve. This leads performance to rise and fall with temperature. Under climate change, host species and their associated parasites face extinction if they cannot either thermoregulate or adapt by shifting phenology or geographic range. Climate change might also affect disease transmission through increases or decreases in host susceptibility and infective stage (and vector) production, longevity, and pathology. Many other factors drive disease transmission, especially economics, and some change in time along with temperature, making it hard to distinguish whether temperature drives disease or just correlates with disease drivers. Although it is difficult to predict how climate change will affect infectious disease, an ecological approach can help meet the challenge.
Collapse
Affiliation(s)
- Kevin D Lafferty
- Western Ecological Research Center, U.S. Geological Survey at Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
18
|
Villa SM, Campbell HE, Bush SE, Clayton DH. Does antiparasite behavior improve with experience? An experimental test of the priming hypothesis. Behav Ecol 2016. [DOI: 10.1093/beheco/arw032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Dallas T, Holtackers M, Drake JM. Costs of resistance and infection by a generalist pathogen. Ecol Evol 2016; 6:1737-44. [PMID: 26929813 PMCID: PMC4757773 DOI: 10.1002/ece3.1889] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/10/2015] [Accepted: 11/19/2015] [Indexed: 12/11/2022] Open
Abstract
Pathogen infection is typically costly to hosts, resulting in reduced fitness. However, pathogen exposure may also come at a cost even if the host does not become infected. These fitness reductions, referred to as “resistance costs”, are inducible physiological costs expressed as a result of a trade‐off between resistance to a pathogen and aspects of host fitness (e.g., reproduction). Here, we examine resistance and infection costs of a generalist fungal pathogen (Metschnikowia bicuspidata) capable of infecting a number of host species. Costs were quantified as reductions in host lifespan, total reproduction, and mean clutch size as a function of pathogen exposure (resistance cost) or infection (infection cost). We provide empirical support for infection costs and modest support for resistance costs for five Daphnia host species. Specifically, only one host species examined incurred a significant cost of resistance. This species was the least susceptible to infection, suggesting the possibility that host susceptibility to infection is associated with the detectability and size of resistance cost. Host age at the time of pathogen exposure did not influence the magnitude of resistance or infection cost. Lastly, resistant hosts had fitness values intermediate between unexposed control hosts and infected hosts. Although not statistically significant, this could suggest that pathogen exposure does come at some marginal cost. Taken together, our findings suggest that infection is costly, resistance costs may simply be difficult to detect, and the magnitude of resistance cost may vary among host species as a result of host life history or susceptibility.
Collapse
Affiliation(s)
- Tad Dallas
- Odum School of Ecology University of Georgia 140 E. Green Street Athens Georgia 30602
| | | | - John M Drake
- Odum School of Ecology University of Georgia 140 E. Green Street Athens Georgia 30602
| |
Collapse
|
20
|
Tranter C, Fernández‐Marín H, Hughes WOH. Quality and quantity: transitions in antimicrobial gland use for parasite defense. Ecol Evol 2015; 5:5857-68. [PMID: 26811760 PMCID: PMC4717345 DOI: 10.1002/ece3.1827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 11/09/2022] Open
Abstract
Parasites are a major force in evolution, and understanding how host life history affects parasite pressure and investment in disease resistance is a general problem in evolutionary biology. The threat of disease may be especially strong in social animals, and ants have evolved the unique metapleural gland (MG), which in many taxa produce antimicrobial compounds that have been argued to have been a key to their ecological success. However, the importance of the MG in the disease resistance of individual ants across ant taxa has not been examined directly. We investigate experimentally the importance of the MG for disease resistance in the fungus-growing ants, a group in which there is interspecific variation in MG size and which has distinct transitions in life history. We find that more derived taxa rely more on the MG for disease resistance than more basal taxa and that there are a series of evolutionary transitions in the quality, quantity, and usage of the MG secretions, which correlate with transitions in life history. These shifts show how even small clades can exhibit substantial transitions in disease resistance investment, demonstrating that host-parasite relationships can be very dynamic and that targeted experimental, as well as large-scale, comparative studies can be valuable for identifying evolutionary transitions.
Collapse
Affiliation(s)
| | - Hermógenes Fernández‐Marín
- Instituto de Investigaciones Científicas y Servicios de Alta TecnologíaEdificio 219, Panamá 5Ciudad del SaberClaytonPanama CityPO Box 0843‐01105Republic of Panama
| | | |
Collapse
|
21
|
Reedy AM, Cox CL, Chung AK, Evans WJ, Cox RM. Both sexes suffer increased parasitism and reduced energy storage as costs of reproduction in the brown anole,Anolis sagrei. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12685] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Aaron M. Reedy
- Department of Biology; University of Virginia; 485 McCormick Road PO Box 400328 Charlottesville VA 22904 USA
| | - Christian L. Cox
- Department of Biology; Georgia Southern University; P.O. Box 8042 Statesboro GA 30460 USA
| | - Albert K. Chung
- Department of Biology; University of Virginia; 485 McCormick Road PO Box 400328 Charlottesville VA 22904 USA
| | - William J. Evans
- Department of Biology; University of Virginia; 485 McCormick Road PO Box 400328 Charlottesville VA 22904 USA
| | - Robert M. Cox
- Department of Biology; University of Virginia; 485 McCormick Road PO Box 400328 Charlottesville VA 22904 USA
| |
Collapse
|
22
|
|
23
|
Finiguerra M, Avery DE, Dam HG. Determining the Advantages, Costs, and Trade-Offs of a Novel Sodium Channel Mutation in the Copepod Acartia hudsonica to Paralytic Shellfish Toxins (PST). PLoS One 2015; 10:e0130097. [PMID: 26075900 PMCID: PMC4468163 DOI: 10.1371/journal.pone.0130097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 05/15/2015] [Indexed: 11/21/2022] Open
Abstract
The marine copepod Acartia hudsonica was shown to be adapted to dinoflagellate prey, Alexandrium fundyense, which produce paralytic shellfish toxins (PST). Adaptation to PSTs in other organisms is caused by a mutation in the sodium channel. Recently, a mutation in the sodium channel in A. hudsonica was found. In this study, we rigorously tested for advantages, costs, and trade-offs associated with the mutant isoform of A. hudsonica under toxic and non-toxic conditions. We combined fitness with wild-type: mutant isoform ratio measurements on the same individual copepod to test our hypotheses. All A. hudsonica copepods express both the wild-type and mutant sodium channel isoforms, but in different proportions; some individuals express predominantly mutant (PMI) or wild-type isoforms (PWI), while most individuals express relatively equal amounts of each (EI). There was no consistent pattern of improved performance as a function of toxin dose for egg production rate (EPR), ingestion rate (I), and gross growth efficiency (GGE) for individuals in the PMI group relative to individuals in the PWI expression group. Neither was there any evidence to indicate a fitness benefit to the mutant isoform at intermediate toxin doses. No clear advantage under toxic conditions was associated with the mutation. Using a mixed-diet approach, there was also no observed relationship between individual wild-type: mutant isoform ratios and among expression groups, on both toxic and non-toxic diets, for eggs produced over three days. Lastly, expression of the mutant isoform did not mitigate the negative effects of the toxin. That is, the reductions in EPR from a toxic to non-toxic diet for copepods were independent of expression groups. Overall, the results did not support our hypotheses; the mutant sodium channel isoform does not appear to be related to adaptation to PST in A. hudsonica. Other potential mechanisms responsible for the adaptation are discussed.
Collapse
Affiliation(s)
- Michael Finiguerra
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States of America
| | - David E. Avery
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States of America
| | - Hans G. Dam
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States of America
| |
Collapse
|
24
|
Izhar R, Ben-Ami F. Host age modulates parasite infectivity, virulence and reproduction. J Anim Ecol 2015; 84:1018-28. [PMID: 25661269 DOI: 10.1111/1365-2656.12352] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 01/24/2015] [Indexed: 01/15/2023]
Abstract
Host age is one of the most striking differences among hosts within most populations, but there is very little data on how age-dependent effects impact ecological and evolutionary dynamics of both the host and the parasite. Here, we examined the influence of host age (juveniles, young and old adults) at parasite exposure on host susceptibility, fecundity and survival as well as parasite transmission, using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa. Younger D. magna were more susceptible to infection than older ones, regardless of host or parasite clone. Also, younger-infected D. magna became castrated faster than older hosts, but host and parasite clone effects contributed to this trait as well. Furthermore, the early-infected D. magna produced considerably more parasite transmission stages than late-infected ones, while host age at exposure did not affect virulence as it is defined in models (host mortality). When virulence is defined more broadly as the negative effects of infection on host fitness, by integrating the parasitic effects on host fecundity and mortality, then host age at exposure seems to slide along a negative relationship between host and parasite fitness. Thus, the virulence-transmission trade-off differs strongly among age classes, which in turn affects predictions of optimal virulence. Age-dependent effects on host susceptibility, virulence and parasite transmission could pose an important challenge for experimental and theoretical studies of infectious disease dynamics and disease ecology. Our results present a call for a more explicit stage-structured theory for disease, which will incorporate age-dependent epidemiological parameters.
Collapse
Affiliation(s)
- Rony Izhar
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Frida Ben-Ami
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
25
|
Dybdahl MF, Jenkins CE, Nuismer SL. Identifying the Molecular Basis of Host-Parasite Coevolution: Merging Models and Mechanisms. Am Nat 2014; 184:1-13. [DOI: 10.1086/676591] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Otali D, Novak RJ, Wan W, Bu S, Moellering DR, De Luca M. Increased production of mitochondrial reactive oxygen species and reduced adult life span in an insecticide-resistant strain of Anopheles gambiae. BULLETIN OF ENTOMOLOGICAL RESEARCH 2014; 104:323-33. [PMID: 24555527 PMCID: PMC4008687 DOI: 10.1017/s0007485314000091] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Control of the malaria vector An. gambiae is still largely obtained through chemical intervention using pyrethroids, such as permethrin. However, strains of An. gambiae that are resistant to the toxic effects of pyrethroids have become widespread in several endemic areas over the last decade. The objective of this study was to assess differences in five life-history traits (larval developmental time and the body weight, fecundity, hatch rate, and longevity of adult females) and energy metabolism between a strain of An. gambiae that is resistant to permethrin (RSP), due to knockdown resistance and enhanced metabolic detoxification, and a permethrin susceptible strain reared under laboratory conditions. We also quantified the expression levels of five antioxidant enzyme genes: GSTe3, CAT, GPXH1, SOD1, and SOD2. We found that the RSP strain had a longer developmental time than the susceptible strain. Additionally, RSP adult females had higher wet body weight and increased water and glycogen levels. Compared to permethrin susceptible females, RSP females displayed reduced metabolic rate and mitochondrial coupling efficiency and higher mitochondrial ROS production. Furthermore, despite higher levels of GSTe3 and CAT transcripts, RSP females had a shorter adult life span than susceptible females. Collectively, these results suggest that permethrin resistance alleles might affect energy metabolism, oxidative stress, and adult survival of An. gambiae. However, because the strains used in this study differ in their genetic backgrounds, the results need to be interpreted with caution and replicated in other strains to have significant implications for malaria transmission and vector control.
Collapse
Affiliation(s)
- Dennis Otali
- Department of Biology, University of Alabama at Birmingham, 1720 2 Ave. South, Birmingham, AL 35294-1170, USA
- Corresponding Author: Dennis Otali, Department of Biology, University of Alabama at Birmingham, Campbell Hall 464, 1720 2 Ave S, Birmingham AL 35294-1170, Phone: (+1) 205-975-6205, Fax: (+1) 205-975-7128,
| | - Robert J. Novak
- William C Gorgas Center for Geographic Medicine, Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, 845 19th St. South, Birmingham, AL 35294-2170, USA
- Department of Global Health, University of South Florida, 13201 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Wen Wan
- Department of Biostatistics, Virginia Commonwealth University Medical Center, P.O. Box 980032, Richmond, VA 23298-0032, USA
| | - Su Bu
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1720 2 Ave. South, Birmingham, AL 35294-3360, USA
| | - Douglas R. Moellering
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1720 2 Ave. South, Birmingham, AL 35294-3360, USA
| | - Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1720 2 Ave. South, Birmingham, AL 35294-3360, USA
| |
Collapse
|
27
|
Dlugosz EM, Goüy de Bellocq J, Khokhlova IS, Degen A, Pinshow B, Krasnov BR. Age at weaning, immunocompetence and ectoparasite performance in a precocial desert rodent. J Exp Biol 2014; 217:3078-84. [DOI: 10.1242/jeb.106005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
We studied the effects of early weaning on immunocompetence and parasite resistance in a precocial rodent Acomys cahirinus. We hypothesized that if parasite resistance is energetically expensive and nutritional and immunological support from mothers are necessary for the long-term health of offspring, then early weaned animals would be immunologically weaker and less able to defend themselves against parasites than later weaned animals. We weaned pups at 14, 21, or 28 d after birth and assessed their immunocompetence and resistance against fleas Parapulex chephrenis when they attained adulthood. Immunocompetence was assessed using leukocyte concentrations (LC) and a phytohaemagglutinin injection assay (PHA test). To estimate resistance against fleas, we measured performance of fleas via the number of produced eggs and duration of development and resistance to starvation of the flea offspring. We found a significant positive effect of weaning age on the PHA response but not on LC. The effect of age at weaning on flea egg production was manifested in male but not female hosts, with egg production being higher if a host was weaned at 14 than at 28 d. Weaning age of the host did not affect either duration of development or resistance to starvation of fleas produced by mothers fed on these hosts. We concluded that even in relatively precocial mammals, weaning age is an important indicator of future immunological responses and the ability of an animal to resist parasite infestations. Hosts weaned at an earlier age make easier, less-resistant targets for parasite infestations than hosts weaned later in life.
Collapse
|
28
|
The three subtypes of tick-borne encephalitis virus induce encephalitis in a natural host, the bank vole (Myodes glareolus). PLoS One 2013; 8:e81214. [PMID: 24349041 PMCID: PMC3862475 DOI: 10.1371/journal.pone.0081214] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/09/2013] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) infects bank voles (Myodes glareolus) in nature, but the relevance of rodents for TBEV transmission and maintenance is unclear. We infected colonized bank voles subcutaneously to study and compare the infection kinetics, acute infection, and potential viral persistence of the three known TBEV subtypes: European (TBEV-Eur), Siberian (TBEV-Sib) and Far Eastern (TBEV-FE). All strains representing the three subtypes were infective and highly neurotropic. They induced (meningo)encephalitis in some of the animals, however most of the cases did not present with apparent clinical symptoms. TBEV-RNA was cleared significantly slower from the brain as compared to other organs studied. Supporting our earlier findings in natural rodent populations, TBEV-RNA could be detected in the brain for up to 168 days post infection, but we could not demonstrate infectivity by cell culture isolation. Throughout all time points post infection, RNA of the TBEV-FE was detected significantly more often than RNA of the other two strains in all organs studied. TBEV-FE also induced prolonged viremia, indicating distinctive kinetics in rodents in comparison to the other two subtypes. This study shows that bank voles can develop a neuroinvasive TBEV infection with persistence of viral RNA in brain, and mount an anti-TBEV IgG response. The findings also provide further evidence that bank voles can serve as sentinels for TBEV endemicity.
Collapse
|
29
|
Hangartner S, Sbilordo SH, Michalczyk Ł, Gage MJ, Martin OY. Are there genetic trade-offs between immune and reproductive investments in Tribolium castaneum? INFECTION GENETICS AND EVOLUTION 2013; 19:45-50. [DOI: 10.1016/j.meegid.2013.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/21/2013] [Accepted: 06/09/2013] [Indexed: 11/16/2022]
|
30
|
Auld SKJR, Penczykowski RM, Housley Ochs J, Grippi DC, Hall SR, Duffy MA. Variation in costs of parasite resistance among natural host populations. J Evol Biol 2013; 26:2479-86. [PMID: 24118613 DOI: 10.1111/jeb.12243] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/09/2013] [Accepted: 08/09/2013] [Indexed: 11/30/2022]
Abstract
Organisms that can resist parasitic infection often have lower fitness in the absence of parasites. These costs of resistance can mediate host evolution during parasite epidemics. For example, large epidemics will select for increased host resistance. In contrast, small epidemics (or no disease) can select for increased host susceptibility when costly resistance allows more susceptible hosts to outcompete their resistant counterparts. Despite their importance for evolution in host populations, costs of resistance (which are also known as resistance trade-offs) have mainly been examined in laboratory-based host-parasite systems. Very few examples come from field-collected hosts. Furthermore, little is known about how resistance trade-offs vary across natural populations. We addressed these gaps using the freshwater crustacean Daphnia dentifera and its natural yeast parasite, Metschnikowia bicuspidata. We found a cost of resistance in two of the five populations we studied - those with the most genetic variation in resistance and the smallest epidemics in the previous year. However, yeast epidemics in the current year did not alter slopes of these trade-offs before and after epidemics. In contrast, the no-cost populations showed little variation in resistance, possibly because large yeast epidemics eroded that variation in the previous year. Consequently, our results demonstrate variation in costs of resistance in wild host populations. This variation has important implications for host evolution during epidemics in nature.
Collapse
Affiliation(s)
- S K J R Auld
- School of Natural Sciences, University of Stirling, Stirling, UK; School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
31
|
Behavioural changes in the flour beetleTribolium confusuminfected with the spirurid nematodeProtospirura muricola. J Helminthol 2013; 89:68-79. [DOI: 10.1017/s0022149x13000606] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractWe examined changes to the behaviour of flour beetles,Tribolium confusum, infected with the rodent stomach worm, the spiruridProtospirura muricola, in the context of the ‘Behavioural Manipulation Hypothesis’.Trobolium confusuminfected with the third-stage infective larvae ofP. muricolashowed consistently altered patterns of behaviour. Relative to uninfected beetles, over a measured time period, beetles infected withP. muricolawere likely to move over a shorter distance, when moving their speed of movement was slower, they were more likely to stay in the illuminated area of their environment, more likely to emerge from darkened areas into the illuminated areas, and their longevity was significantly shortened. The changes in behaviour, as reflected in effects on speed of movement, were only evident among beetles that actually harboured infective cysts and not among those carrying younger infections when the larvae within their haemocoels would have been at an earlier stage of development and not yet capable of infecting the definitive murine hosts. We discuss whether these changes would have made the beetles more susceptible to predation by rodents, and specifically by the omnivorous eastern spiny mouse,Acomys dimidiatus, the natural definitive host of this parasite in Egypt, from where theP. muricolaisolate originated, and whether they support the Behavioural Manipulation Hypothesis or reflect parasite-induced pathology.
Collapse
|
32
|
Neilson EH, Goodger JQD, Woodrow IE, Møller BL. Plant chemical defense: at what cost? TRENDS IN PLANT SCIENCE 2013; 18:250-8. [PMID: 23415056 DOI: 10.1016/j.tplants.2013.01.001] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/20/2012] [Accepted: 01/04/2013] [Indexed: 05/18/2023]
Abstract
Plants are sessile organisms and dependent on deployment of secondary metabolites for their response to biotic and abiotic challenges. A trade-off is envisioned between resources allocated to growth, development, and reproduction and to the biosynthesis, storage, and maintenance of secondary metabolites. However, increasing evidence suggests that secondary metabolites serve auxiliary roles, including functions associated with primary metabolism. In this opinion article, we examine how the costs of plant chemical defense can be offset by multifunctional biosynthesis and the optimization of primary metabolism. These additional benefits may negate the trade-off between primary and secondary metabolism, and provide plants with an innate plasticity required for growth, development, and interactions with their environment.
Collapse
|
33
|
Rauw WM. Immune response from a resource allocation perspective. Front Genet 2012; 3:267. [PMID: 23413205 PMCID: PMC3571735 DOI: 10.3389/fgene.2012.00267] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 11/05/2012] [Indexed: 01/28/2023] Open
Abstract
The immune system is a life history trait that can be expected to trade off against other life history traits. Whether or not a trait is considered to be a life history trait has consequences for the expectation on how it responds to natural selection and evolution; in addition, it may have consequences for the outcome of artificial selection when it is included in the breeding objective. The immune system involved in pathogen resistance comprises multiple mechanisms that define a host's defensive capacity. Immune resistance involves employing mechanisms that either prevent pathogens from invading or eliminate the pathogens when they do invade. On the other hand, tolerance involves limiting the damage that is caused by the infection. Both tolerance and resistance traits require (re)allocation of resources and carry physiological costs. Examples of trade-offs between immune function and growth, reproduction and stress response are provided in this review, in addition to consequences of selection for increased production on immune function and vice versa. Reaction norms are used to deal with questions of immune resistance vs. tolerance to pathogens that relate host health to infection intensity. In essence, selection for immune tolerance in livestock is a particular case of selection for animal robustness. Since breeding goals that include robustness traits are required in the implementation of more sustainable agricultural production systems, it is of interest to investigate whether immune tolerance is a robustness trait that is positively correlated with overall animal robustness. Considerably more research is needed to estimate the shapes of the cost functions of different immune strategies, and investigate trade-offs and cross-over benefits of selection for disease resistance and/or disease tolerance in livestock production.
Collapse
Affiliation(s)
- Wendy M Rauw
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Madrid, Spain
| |
Collapse
|
34
|
Van den Wyngaert S, Gsell AS, Spaak P, Ibelings BW. Herbicides in the environment alter infection dynamics in a microbial host-parasite system. Environ Microbiol 2012; 15:837-47. [DOI: 10.1111/j.1462-2920.2012.02874.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/08/2012] [Accepted: 08/17/2012] [Indexed: 11/30/2022]
Affiliation(s)
| | - Alena S. Gsell
- Department of Aquatic Ecology; Netherlands Institute of Ecology; Droevendaalsesteeg 10; 6708 PB; Wageningen; The Netherlands
| | | | | |
Collapse
|
35
|
Bonner KM, Bayne CJ, Larson MK, Blouin MS. Effects of Cu/Zn superoxide dismutase (sod1) genotype and genetic background on growth, reproduction and defense in Biomphalaria glabrata. PLoS Negl Trop Dis 2012; 6:e1701. [PMID: 22724037 PMCID: PMC3378597 DOI: 10.1371/journal.pntd.0001701] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 05/03/2012] [Indexed: 01/09/2023] Open
Abstract
Resistance of the snail Biomphalaria glabrata to the trematode Schistosoma mansoni is correlated with allelic variation at copper-zinc superoxide dismutase (sod1). We tested whether there is a fitness cost associated with carrying the most resistant allele in three outbred laboratory populations of snails. These three populations were derived from the same base population, but differed in average resistance. Under controlled laboratory conditions we found no cost of carrying the most resistant allele in terms of fecundity, and a possible advantage in terms of growth and mortality. These results suggest that it might be possible to drive resistant alleles of sod1 into natural populations of the snail vector for the purpose of controlling transmission of S. mansoni. However, we did observe a strong effect of genetic background on the association between sod1 genotype and resistance. sod1 genotype explained substantial variance in resistance among individuals in the most resistant genetic background, but had little effect in the least resistant genetic background. Thus, epistatic interactions with other loci may be as important a consideration as costs of resistance in the use of sod1 for vector manipulation. Driving resistance genes into vector populations remains a promising but underused method for reducing transmission of vector-borne diseases. Understanding the genetic mechanisms governing resistance and how resistance is maintained in vector populations is essential for the development of resistant vectors as a means of eradicating vector-borne diseases. We investigated the utility of one gene (cytosolic copper-zinc superoxide dismutase - sod1) for driving resistance associated alleles into populations of the snail Biomphalaria glabrata, a vector of the trematode parasite of humans, Schistosoma mansoni. Under controlled laboratory conditions we found no evidence for costs of resistance associated with carrying the most resistant allele at sod1 (in terms of growth, fecundity, or mortality). However, we did find a strong effect of genetic background on how strongly sod1 genotype influences resistance. Thus, epistatic interactions with other loci may be as important a consideration as costs of resistance in the use of sod1 for vector manipulation in the field.
Collapse
Affiliation(s)
- Kaitlin M Bonner
- Department of Zoology, Oregon State University, Corvallis, Oregon, USA.
| | | | | | | |
Collapse
|
36
|
Zhan J, Yang L, Zhu W, Shang L, Newton AC. Pathogen populations evolve to greater race complexity in agricultural systems--evidence from analysis of Rhynchosporium secalis virulence data. PLoS One 2012; 7:e38611. [PMID: 22723870 PMCID: PMC3377678 DOI: 10.1371/journal.pone.0038611] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 05/08/2012] [Indexed: 11/19/2022] Open
Abstract
Fitness cost associated with pathogens carrying unnecessary virulence alleles is the fundamental assumption for preventing the emergence of complex races in plant pathogen populations but this hypothesis has rarely been tested empirically on a temporal and spatial scale which is sufficient to distinguish evolutionary signals from experimental error. We analyzed virulence characteristics of ≈ 1000 isolates of the barley pathogen Rhynchosporium secalis collected from different parts of the United Kingdom between 1984 and 2005. We found a gradual increase in race complexity over time with a significant correlation between sampling date and race complexity of the pathogen (r(20) = 0.71, p = 0.0002) and an average loss of 0.1 avirulence alleles (corresponding to an average gain of 0.1 virulence alleles) each year. We also found a positive and significant correlation between barley cultivar diversity and R. secalis virulence variation. The conditions assumed to favour complex races were not present in the United Kingdom and we hypothesize that the increase in race complexity is attributable to the combination of natural selection and genetic drift. Host resistance selects for corresponding virulence alleles to fixation or dominant frequency. Because of the weak fitness penalty of carrying the unnecessary virulence alleles, genetic drift associated with other evolutionary forces such as hitch-hiking maintains the frequency of the dominant virulence alleles even after the corresponding resistance factors cease to be used.
Collapse
Affiliation(s)
- Jiasui Zhan
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
| | | | | | | | | |
Collapse
|
37
|
Leung TLF, King KC, Wolinska J. Escape from the Red Queen: an overlooked scenario in coevolutionary studies. OIKOS 2012. [DOI: 10.1111/j.1600-0706.2011.19873.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Poisot T, Bell T, Martinez E, Gougat-Barbera C, Hochberg ME. Terminal investment induced by a bacteriophage in a rhizosphere bacterium. F1000Res 2012; 1:21. [PMID: 27512559 PMCID: PMC4964844 DOI: 10.12688/f1000research.1-21.v2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2013] [Indexed: 11/24/2022] Open
Abstract
Despite knowledge about microbial responses to abiotic stress, few studies have investigated stress responses to antagonistic species, such as competitors, predators and pathogens. While it is often assumed that interacting populations of bacteria and phage will coevolve resistance and exploitation strategies, an alternative is that individual bacteria tolerate or evade phage predation through inducible responses to phage presence. Using the microbial model
Pseudomonas fluorescens SBW25 and its lytic DNA phage SBW25Φ2, we demonstrate the existence of an inducible response in the form of a transient increase in population growth rate, and found that the response was induced by phage binding. This response was accompanied by a decrease in bacterial cell size, which we propose to be an associated cost. We discuss these results in the context of bacterial ecology and phage-bacteria co-evolution.
Collapse
Affiliation(s)
- Timothée Poisot
- Université Montpellier II, Institut des Sciences de l'Evolution, Montpellier, France; Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC, G5L 3A1, Canada; Québec Centre for Biodiversity Sciences, Stewart Biological Sciences Building, Montréal, QC, H3A 1B1, Canada
| | - Thomas Bell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
| | - Esteban Martinez
- Université Montpellier II, Institut des Sciences de l'Evolution, Montpellier, France
| | - Claire Gougat-Barbera
- Université Montpellier II, Institut des Sciences de l'Evolution, Montpellier, France
| | - Michael E Hochberg
- Université Montpellier II, Institut des Sciences de l'Evolution, Montpellier, France; Santa Fe Institute, Santa Fe, NM, 87501, USA
| |
Collapse
|
39
|
Duncan AB, Fellous S, Kaltz O. REVERSE EVOLUTION: SELECTION AGAINST COSTLY RESISTANCE IN DISEASE-FREE MICROCOSM POPULATIONS OF PARAMECIUM CAUDATUM. Evolution 2011; 65:3462-74. [DOI: 10.1111/j.1558-5646.2011.01388.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Refardt D, Ebert D. The impact of infection on host competition and its relationship to parasite persistence in a Daphnia microparasite system. Evol Ecol 2011. [DOI: 10.1007/s10682-011-9487-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Cutrera AP, Zenuto RR, Lacey EA. MHC variation, multiple simultaneous infections and physiological condition in the subterranean rodent Ctenomys talarum. INFECTION GENETICS AND EVOLUTION 2011; 11:1023-36. [PMID: 21497205 DOI: 10.1016/j.meegid.2011.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 02/28/2011] [Accepted: 03/24/2011] [Indexed: 01/15/2023]
Abstract
Parasites and pathogens can play a significant role in shaping the genetic diversity of host populations, particularly at genes associated with host immune response. To explore this relationship in a natural population of vertebrates, we characterized Major Histocompatibility Complex (MHC) variation in the subterranean rodent Ctenomys talarum (the talas tuco-tuco) as a function of parasite load and ability to mount an adaptive immune response against a novel antigen. Specifically, we quantified genotypic diversity at the MHC class II DRB locus in relation to (1) natural variation in infection by multiple genera of parasites (potential agents of selection on MHC genes) and (2) antibody production in response to injection with sheep red blood cells (a measure of immunocompetence). Data were analyzed using co-inertia multivariate statistics, with epidemiological proxies for individual condition (hematocrit, leukocyte profile, body weight) and risk of parasite exposure (season of capture, sex). A significant excess of DRB heterozygotes was evident in the study population. Co-inertia analyses revealed significant associations between specific DRB alleles and both parasite load and intensity of humoral immune response against sheep red blood cells. The presence of specific DRB aminoacid sequences appeared to be more strongly associated with parasite load and response to a novel antigen than was heterozygosity at the DRB locus. These data suggest a role for parasite-driven balancing selection in maintaining MHC variation in natural populations of C. talarum. At the same time, these findings underscore the importance of using diverse parameters to study interactions among physiological conditions, immunocompetence, and MHC diversity in free-living animals that are confronted with multiple simultaneous immune challenges.
Collapse
Affiliation(s)
- Ana Paula Cutrera
- Laboratorio de Ecofisiología, Departamento de Biología, Universidad Nacional de Mar del Plata, CONICET, CC 1245, Mar del Plata, Argentina.
| | | | | |
Collapse
|
42
|
Parker BJ, Barribeau SM, Laughton AM, de Roode JC, Gerardo NM. Non-immunological defense in an evolutionary framework. Trends Ecol Evol 2011; 26:242-8. [PMID: 21435735 DOI: 10.1016/j.tree.2011.02.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 11/18/2022]
Abstract
After parasite infection, invertebrates activate immune system-based defenses such as encapsulation and the signaling pathways of the innate immune system. However, hosts are often able to defend against parasites without using these mechanisms. The non-immunological defenses, such as behaviors that prevent or combat infection, symbiont-mediated defense, and fecundity compensation, are often ignored but can be important in host-parasite dynamics. We review recent studies showing that heritable variation in these traits exists among individuals, and that they are costly to activate and maintain. We also discuss findings from genome annotation and expression studies to show how immune system-based and non-immunological defenses interact. Placing these studies into an evolutionary framework emphasizes their importance for future studies of host-parasite coevolution.
Collapse
Affiliation(s)
- Benjamin J Parker
- Department of Biology, Emory University, O. Wayne Rollins Research Center, 1510 E. Clifton Rd. N.E., Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
43
|
Labbé P, Vale PF, Little TJ. Successfully resisting a pathogen is rarely costly in Daphnia magna. BMC Evol Biol 2010; 10:355. [PMID: 21083915 PMCID: PMC2998533 DOI: 10.1186/1471-2148-10-355] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 11/17/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A central hypothesis in the evolutionary ecology of parasitism is that trade-offs exist between resistance to parasites and other fitness components such as fecundity, growth, survival, and predator avoidance, or resistance to other parasites. These trade-offs are called costs of resistance. These costs fall into two broad categories: constitutive costs of resistance, which arise from a negative genetic covariance between immunity and other fitness-related traits, and inducible costs of resistance, which are the physiological costs incurred by hosts when mounting an immune response. We sought to study inducible costs in depth using the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa. RESULTS We designed specific experiments to study the costs induced by exposure to this parasite, and we re-analysed previously published data in an effort to determine the generality of such costs. However, despite the variety of genetic backgrounds of both hosts and parasites, and the different exposure protocols and environmental conditions used in these experiment, this work showed that costs of exposure can only rarely be detected in the D. magna-P. ramosa system. CONCLUSIONS We discuss possible reasons for this lack of detectable costs, including scenarios where costs of resistance to parasites might not play a major role in the co-evolution of hosts and parasites.
Collapse
Affiliation(s)
- Pierrick Labbé
- University of Edinburgh, Institute of Evolutionary Biology, King's Buildings, Edinburgh, EH9 3JT, UK.
| | | | | |
Collapse
|
44
|
Costs of defense: correlated responses to divergent selection for foliar glucosinolate content in Brassica rapa. Evol Ecol 2010. [DOI: 10.1007/s10682-010-9443-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
de Roij J, Harris PD, MacColl ADC. Divergent resistance to a monogenean flatworm among three‐spined stickleback populations. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2010.01775.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Job de Roij
- School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Philip D. Harris
- National Centre for Biosystematics, Natural History Museum, University of Oslo, P.O. Box 1172, Oslo, Norway
| | - Andrew D. C. MacColl
- School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
46
|
Lefèvre T, Williams AJ, de Roode JC. Genetic variation in resistance, but not tolerance, to a protozoan parasite in the monarch butterfly. Proc Biol Sci 2010; 278:751-9. [PMID: 20843849 DOI: 10.1098/rspb.2010.1479] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Natural selection should strongly favour hosts that can protect themselves against parasites. Most studies on animals so far have focused on resistance, a series of mechanisms through which hosts prevent infection, reduce parasite growth or clear infection. However, animals may instead evolve tolerance, a defence mechanism by which hosts do not reduce parasite infection or growth, but instead alleviate the negative fitness consequences of such infection and growth. Here, we studied genetic variation in resistance and tolerance in the monarch butterfly (Danaus plexippus) to its naturally occurring protozoan parasite, Ophryocystis elektroscirrha. We exposed 560 monarch larvae of 19 different family lines to one of five different parasite inoculation doses (0, 1, 5, 10 and 100 infective spores) to create a range of parasite loads in infected butterflies. We then used two proxies of host fitness (adult lifespan and body mass) to quantify: (i) qualitative resistance (the ability to prevent infection; also known as avoidance or anti-infection resistance); (ii) quantitative resistance (the ability to limit parasite growth upon infection; also known as control or anti-growth resistance); and (iii) tolerance (the ability to maintain fitness with increasing parasite infection intensity). We found significant differences among host families in qualitative and quantitative resistance, indicating genetic variation in resistance. However, we found no genetic variation in tolerance. This may indicate that all butterflies in our studied population have evolved maximum tolerance, as predicted by some theoretical models.
Collapse
Affiliation(s)
- Thierry Lefèvre
- Biology Department, Emory University, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
47
|
Spatial variation in parasite-induced mortality in an amphipod: shore height versus exposure history. Oecologia 2010; 163:651-9. [DOI: 10.1007/s00442-010-1593-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
|
48
|
Cutrera AP, Zenuto RR, Luna F, Antenucci CD. Mounting a specific immune response increases energy expenditure of the subterranean rodent Ctenomys talarum (tuco-tuco): implications for intraspecific and interspecific variation in immunological traits. J Exp Biol 2010; 213:715-24. [DOI: 10.1242/jeb.037887] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
It was recently hypothesised that specific induced defences, which require substantial time and resources and are mostly beneficial against repeated infections, are more likely to be favoured in ‘slow-living-pace’ species. Therefore, understanding how different types of immune defences might vary with life history requires knowledge of the costs and benefits of defence components. Studies that have explored the energetic costs of immunity in vertebrates have done so with a focus primarily on birds and less so on mammals, particularly surface-dwelling rodents. In this study, we evaluated whether an experimental induction of the immune system with a non-pathogenic antigen elevates the energetic expenditure of a subterranean rodent: Ctenomys talarum (tuco-tucos). In both seasons studied, a significant increase in oxygen consumption was verified in immune-challenged tuco-tucos injected with sheep red blood cells (SRBC) compared with control animals. The increase in oxygen consumption 10 days after the exposure to SRBC was lower for female tuco-tucos monitored in the breeding season compared with females in the non-breeding season. Interestingly, antibody titres of female tuco-tucos did not decrease during the breeding season. Our results add new insight into the role of other factors such as basal metabolic rate or degree of parasite exposure besides ‘pace of life’ in modulating the interspecific immunological variation observed in natural populations of mammals.
Collapse
Affiliation(s)
- A. P. Cutrera
- Laboratorio de Ecofisiología, Departamento de Biología—Universidad Nacional de Mar del Plata, C. C. 1245, Mar del Plata, Argentina
| | - R. R. Zenuto
- Laboratorio de Ecofisiología, Departamento de Biología—Universidad Nacional de Mar del Plata, C. C. 1245, Mar del Plata, Argentina
| | - F. Luna
- Laboratorio de Ecofisiología, Departamento de Biología—Universidad Nacional de Mar del Plata, C. C. 1245, Mar del Plata, Argentina
| | - C. D. Antenucci
- Laboratorio de Ecofisiología, Departamento de Biología—Universidad Nacional de Mar del Plata, C. C. 1245, Mar del Plata, Argentina
| |
Collapse
|
49
|
Hurd H. Evolutionary drivers of parasite-induced changes in insect life-history traits from theory to underlying mechanisms. ADVANCES IN PARASITOLOGY 2009; 68:85-110. [PMID: 19289191 DOI: 10.1016/s0065-308x(08)00604-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Many hosts are able to tolerate infection by altering life-history traits that are traded-off one against another. Here the reproductive fitness of insect hosts and vectors is reviewed in the context of theories concerning evolutionary mechanisms driving such alterations. These include the concepts that changes in host reproductive fitness are by-products of infection, parasite manipulations, host adaptations, mafia-like strategies or host compensatory responses. Two models are examined in depth, a tapeworm/beetle association, Hymenolepis diminuta/Tenebrio molitor and malaria infections in anopheline mosquitoes. Parasite-induced impairment of vitellogenesis ultimately leads to a decrease in female reproductive success in both cases, though by different means. Evidence is put forwards for both a manipulator molecule of parasite origin and for host-initiated regulation. These models are backed by other examples in which mechanisms underlying fecundity reduction or fecundity compensation are explored. It is concluded that evolutionary theories must be supported by empirical evidence gained from studying molecular, biochemical and physiological mechanisms underlying changes in host life-history traits, ideally using organisms that have evolved together and that are in their natural environment.
Collapse
Affiliation(s)
- Hilary Hurd
- Institute for Science and Technology in Medicine, Centre for Applied Entomology and Parasitilogy, School of life Sciences, Keele University, United Kingdom
| |
Collapse
|
50
|
DEVEVEY GODEFROY, CHAPUISAT MICHEL, CHRISTE PHILIPPE. Longevity differs among sexes but is not affected by repeated immune activation in voles (Microtus arvalis). Biol J Linn Soc Lond 2009. [DOI: 10.1111/j.1095-8312.2009.01216.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|