1
|
Núñez R, Guijarro A, Alberola P, Santamaría N, Poveda M, Mora A, Masip M, Sánchez S, Alonso S, Rubio T, Barros I, González P, Gili S, Santiago Álvarez I. Study of Seminal Quality Variations in Men Across 12 Geographical Locations in Spain. Arch Med Res 2024; 55:103140. [PMID: 39615375 DOI: 10.1016/j.arcmed.2024.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVE This study aimed to evaluate possible variations in semen quality among patients undergoing fertility evaluation in 12 different geographical locations in Spain. METHODS The study was conducted in 12 assisted reproduction centers located in different regions of Spain. Semen samples from 2,336 men seeking fertility assessment were analyzed. Seminal parameters-including semen volume, sperm concentration, motility, morphology, vitality, and total motile sperm count (TMS) were compared by geographic location. All parameters were evaluated using standardized methodologies, with interlaboratory quality controls to ensure consistency. RESULTS No significant differences in patient age were found between centers (ANOVA, p >0.05). However, statistically significant variations in semen volume, sperm concentration, total motility, and TMS were observed between the centers (p = 0.020, 0.004, 0.000, and 0.008, respectively). Men from Asturias exhibited the highest values for sperm concentration (mean: 59.8 ± 48.7 × 106 sperm/mL), motility (mean total motility: 54.3 ± 20.7%), and TMS (mean: 101.2 ± 107.5 × 10^6), with statistically significant differences compared to other regions. Patients from Cataluña, Almería, and Málaga followed in these metrics. In contrast, men from Granada presented the lowest sperm concentration and TMS (mean concentration: 43.1 ± 35.8 × 10^6 sperm/mL; mean TMS: 43.1 ± 34.6 × 10^6), followed by individuals from Alicante and Madrid. No significant differences in sperm morphology or vitality were observed between centers. CONCLUSION Since all seminal parameters were assessed using standardized methodologies, the observed differences in semen quality between regions are unlikely to be due to laboratory variability.
Collapse
Affiliation(s)
- Rocío Núñez
- Reproductive Unit International Group, Alicante, Spain.
| | | | | | | | | | - Ada Mora
- Unidad de Reprodución Puerta del Sur, Jerez, Cadiz, Spain
| | | | | | - Sara Alonso
- Unidad de Reprodución El Angel, Málaga, Spain
| | | | | | | | - Sonia Gili
- Unidad de Reprodución Lleida, Lérida, Spain
| | | |
Collapse
|
2
|
Muñoz E, Fuentes F, Felmer R, Arias ME, Yeste M. Effects of Reactive Oxygen and Nitrogen Species on Male Fertility. Antioxid Redox Signal 2024; 40:802-836. [PMID: 38019089 DOI: 10.1089/ars.2022.0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Significance: In recent decades, male fertility has been severely reduced worldwide. The causes underlying this decline are multifactorial, and include, among others, genetic alterations, changes in the microbiome, and the impact of environmental pollutants. Such factors can dysregulate the physiological levels of reactive species of oxygen (ROS) and nitrogen (RNS) in the patient, generating oxidative and nitrosative stress that impairs fertility. Recent Advances: Recent studies have delved into other factors involved in the dysregulation of ROS and RNS levels, such as diet, obesity, persistent infections, environmental pollutants, and gut microbiota, thus leading to new strategies to solve male fertility problems, such as consuming prebiotics to regulate gut flora or treating psychological conditions. Critical Issues: The pathways where ROS or RNS may be involved as modulators are still under investigation. Moreover, the extent to which treatments can rescue male infertility as well as whether they may have side effects remains, in most cases, to be elucidated. For example, it is known that prescription of antioxidants to treat nitrosative stress can alter sperm chromatin condensation, which makes DNA more exposed to ROS and RNS, and may thus affect fertilization and early embryo development. Future Directions: The involvement of extracellular vesicles, which might play a crucial role in cell communication during spermatogenesis and epididymal maturation, and the relevance of other factors such as sperm epigenetic signatures should be envisaged in the future.
Collapse
Affiliation(s)
- Erwin Muñoz
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Doctoral Program in Sciences, Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Fernanda Fuentes
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Doctoral Program in Sciences, Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Agricultural Production, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
3
|
Lazzaretti C, Roy N, Paradiso E, Capponi C, Ferrari T, Reggianini F, Sperduti S, Perri C, Baschieri L, Mascolo E, Varani M, Canu G, Trenti T, Nicoli A, Morini D, Iannotti F, Villani MT, Vicini E, Simoni M, Casarini L. Benzo[a]pyrene disrupts LH/hCG-dependent mouse Leydig cell steroidogenesis through receptor/Gαs protein targeting. Sci Rep 2024; 14:844. [PMID: 38191651 PMCID: PMC10774265 DOI: 10.1038/s41598-024-51516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/06/2024] [Indexed: 01/10/2024] Open
Abstract
Steroidogenesis of gonadal cells is tightly regulated by gonadotropins. However, certain polycyclic aromatic hydrocarbons, including Benzo[a]pyrene (BaP), induce reproductive toxicity. Several existing studies have considered higher than environmentally relevant concentrations of BaP on male and female steroidogenesis following long-term exposure. Also, the impact of short-term exposure to BaP on gonadotropin-stimulated cells is understudied. Therefore, we evaluated the effect of 1 nM and 1 µM BaP on luteinizing hormone/choriogonadotropin (LH/hCG)-mediated signalling in two steroidogenic cell models, i.e. the mouse tumor Leydig cell line mLTC1, and the human primary granulosa lutein cells (hGLC) post 8- and 24-h exposure. Cell signalling studies were performed by homogeneous time-resolved fluorescence (HTRF) assay, bioluminescence energy transfer (BRET) and Western blotting, while immunostainings and immunoassays were used for intracellular protein expression and steroidogenesis analyses, respectively. BaP decreased cAMP production in gonadotropin-stimulated mLTC1 interfering with Gαs activation. Therefore, decrease in gonadotropin-mediated CREB phosphorylation in mLTC1 treated with 1 μM BaP was observed, while StAR protein levels in gonadotropin-stimulated mLTC1 cells were unaffected by BaP. Further, BaP decreased LH- and hCG-mediated progesterone production in mLTC1. Contrastingly, BaP failed to mediate any change in cAMP, genes and proteins of steroidogenic machinery and steroidogenesis of gonadotropin-treated hGLC. Our results indicate that short-term exposure to BaP significantly impairs steroidogenic signalling in mLTC1 interfering with Gαs. These findings could have a significant impact on our understanding of the mechanism of reproductive toxicity by endocrine disruptors.
Collapse
Affiliation(s)
- Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy.
| | - Neena Roy
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
| | - Chiara Capponi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Tommaso Ferrari
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
| | - Francesca Reggianini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
| | - Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125, Modena, Italy
| | - Carmela Perri
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
| | - Lara Baschieri
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125, Modena, Italy
| | - Elisa Mascolo
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
| | - Manuela Varani
- Department of Laboratory Medicine and Pathology, Azienda USL/Azienda Ospedaliero-Universitaria di Modena, 41126, Modena, Italy
| | - Giulia Canu
- Department of Laboratory Medicine and Pathology, Azienda USL/Azienda Ospedaliero-Universitaria di Modena, 41126, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Azienda USL/Azienda Ospedaliero-Universitaria di Modena, 41126, Modena, Italy
| | - Alessia Nicoli
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Daria Morini
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Francesca Iannotti
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Maria Teresa Villani
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Elena Vicini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, La Sapienza University, Rome, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125, Modena, Italy
| |
Collapse
|
4
|
Thacharodi A, Hassan S, Acharya G, Vithlani A, Hoang Le Q, Pugazhendhi A. Endocrine disrupting chemicals and their effects on the reproductive health in men. ENVIRONMENTAL RESEARCH 2023; 236:116825. [PMID: 37544467 DOI: 10.1016/j.envres.2023.116825] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Endocrine Disrupting Chemicals (EDCs) are harmful compounds that enter the environment naturally or through anthropogenic activities and disrupt normal endocrine functions in humans, adversely affecting reproductive health. Among the most significant sources of EDC contaminants are the pharmaceutical, cosmetic, and packaging industries. EDCs have been identified to have a deteriorating effect on male reproductive system, as evidenced by the increasing number of male infertility cases. A large number of case studies have been published in which men exposed to EDCs experienced testicular cancer, undescended testicles, a decrease in serum testosterone levels, and poor semen quality. Furthermore, epidemiological evidence suggested a link between prenatal EDC exposure and cryptorchidism or undescended testicles, hypospadias, and decreased anogenital distance in infants. The majority of these findings, however, are incongruent due to the lack of long-term follow-up studies that would demonstrate EDCs to be associated with male reproductive disorders. This review aims to provide an overview on recent scientific progress on the association of EDCs to male reproductive health with special emphasis on its toxicity and possible mechanism of EDCs that disrupt male reproductive system.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Dr. Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India; American Society for Microbiology, Washington, 20036, USA
| | - Gururaj Acharya
- Department of Civil Engineering, NMAM Institute of Technology, NITTE (Deemed to be university), Karnataka, 574110, India
| | - Avadh Vithlani
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
5
|
Mohanty G, Tourzani DA, Gervasi MG, Houle E, Oluwayiose O, Suvorov A, Richard Pilsner J, Visconti PE. Effects of preconception exposure to phthalates on mouse sperm capacitation parameters. Andrology 2023; 11:1484-1494. [PMID: 36891737 PMCID: PMC11004914 DOI: 10.1111/andr.13423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/04/2023] [Accepted: 02/28/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Phthalates have been linked to adverse male reproductive health, including poor sperm quality and embryo quality as well as a longer time to pregnancy (months of unprotected intercourse before conception occurs). The present study aimed to evaluate the effect of preconception exposure to two ubiquitous phthalate chemicals, di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DBP), and their mixture on sperm function, fertilization, and embryo development in mice. MATERIALS AND METHODS Adult male C57BL/6J mice aged 8-9 weeks were exposed to di(2-ethylhexyl) phthalate, di-n-butyl phthalate, or their mixture (di-n-butyl phthalate + di(2-ethylhexyl) phthalate) at 2.5 mg/kg/day or vehicle for 40 days (equivalent to one spermatogenic cycle) via surgically implanted osmotic pumps. Caudal epididymal spermatozoa were extracted and analyzed for motility using computer-assisted sperm analyses. Sperm phosphorylation of protein kinase A substrates and tyrosine phosphorylation, markers of early and late capacitation events, respectively, were analyzed by Western blots. In vitro fertilization was used to evaluate the sperm fertilizing capacity. RESULTS While the study did not reveal any significant differences in sperm motility and fertilization potential, abnormal sperm morphology was observed in all phthalate exposures, particularly in the phthalate mixture group. In addition, the study revealed significant differences in sperm concentration between control and exposed groups. Moreover, protein phosphorylation of protein kinase A substrates was decreased in the di(2-ethylhexyl) phthalate and mixture exposure groups, while no significant changes in protein tyrosine phosphorylation were observed in any of the groups. Assessment of the reproductive functionality did not reveal significant effects on in vitro fertilization and early embryo development rates but showed wide variability in the phthalate mixture group. CONCLUSION Our findings suggest that preconception phthalate exposure affects sperm numbers and phosphorylation of protein kinase A substrates involved in capacitation. Future research is warranted to examine the associations between phthalate exposure and capacitation in human spermatozoa.
Collapse
Affiliation(s)
- Gayatri Mohanty
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, USA
| | - Darya A. Tourzani
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, USA
| | - María G. Gervasi
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, USA
| | - Emily Houle
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Oladele Oluwayiose
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Alexander Suvorov
- Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - J. Richard Pilsner
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Pablo E. Visconti
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, USA
| |
Collapse
|
6
|
Hildorf SE. Clinical aspects of histological and hormonal parameters in boys with cryptorchidism: Thesis for PhD degree. APMIS 2022; 130 Suppl 143:1-58. [PMID: 35822689 PMCID: PMC9542020 DOI: 10.1111/apm.13247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Simone Engmann Hildorf
- Department of Pediatric Surgery and Department of PathologyCopenhagen University Hospital RigshospitaletCopenhagenDenmark
| |
Collapse
|
7
|
Østergaard CS, Ernst A, Gaml-Sørensen A, Brix N, Toft G, Haervig KK, Hougaard KS, Bonde JP, Tøttenborg SS, Ramlau-Hansen CH. Use of paracetamol (acetaminophen) as a nonprescription analgesic and semen quality in young men: A cross-sectional study. Andrology 2021; 10:495-504. [PMID: 34779581 DOI: 10.1111/andr.13129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/31/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Paracetamol (acetaminophen) is a frequently used nonprescription analgesic with suggested endocrine-disrupting properties. Epidemiological evidence on the effect of paracetamol on male fecundity is sparse. OBJECTIVES To investigate if the use of paracetamol as an oral nonprescription mild analgesic was associated with semen quality in young men. MATERIALS AND METHODS This cross-sectional study was based on data from the Fetal Programming of Semen Quality (FEPOS; 2017-2019) cohort of 1058 young men (18-21 years) included in the Danish National Birth Cohort. Participants completed a comprehensive online questionnaire on health behavior including analgesic use and provided a semen sample. Negative binomial regression models were used to estimate the percentage differences (adjusted mean ratios [aMR]) in semen quality characteristics according to paracetamol use (no; yes) and frequency of use (almost never; <1/month; ≥1/month; ≥1/week). RESULTS In total, 28% of the 913 participants with available data reported the use of paracetamol within the last 6 months. We found a slightly higher total sperm count (aMR 1.13 95% CI [0.99-1.30]) in users compared to nonusers but other semen characteristics were unaffected. The frequency of use was suggestive of lower total sperm count and morphologically normal sperm cells primarily among users ≥1/week, however, CIs were wide. DISCUSSION We were unable to account for the underlying reason for paracetamol use, which may induce confounding by indication. Exposure misclassification due to recall is likely but probably nondifferential due to the participants' young age and unawareness of semen quality. Due to the rapid plasma half-life of paracetamol and few frequent users, it was not possible to conclude on potential high-dose effects. CONCLUSION Our findings do not suggest any strong detrimental effect of paracetamol use on semen quality within this sample of young Danish men. However, the effects of high dose and frequent use cannot be excluded.
Collapse
Affiliation(s)
| | - Andreas Ernst
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus, Denmark.,Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Gaml-Sørensen
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus, Denmark
| | - Nis Brix
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Gunnar Toft
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Katia Keglberg Haervig
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Karin Sørig Hougaard
- Department of Public Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Jens Peter Bonde
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Public Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sandra Søgaard Tøttenborg
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
8
|
Giovanni SM, Letizia AAM, Chiara M, Vincenzo S, Erika P, Marta S. The Male Reproductive System and Endocrine Disruptors. Endocr Metab Immune Disord Drug Targets 2021; 22:686-703. [PMID: 34607552 DOI: 10.2174/1871530321666211004100633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022]
Abstract
The male reproductive system is exposed to a great number of chemical substances which can interfere with the normal hormonal milieu and reproductive function; these are called endocrine disruptors (EDs). Despite a growing number of studies evaluating the negative effects of EDs, their production is continuously growing although some of which have been prohibited. The prevalence of poor semen quality, hypospadias, cryptorchidism, and testicular cancer have increased in the last decades, and recently, it has been postulated that these could all be part of a unique syndrome called testicular dysgenesis syndrome. This syndrome could be related to exposure to a number of EDs which cause imbalances in the hormonal milieu and oestrogenic over-exposure during the foetal stage. The same EDs can also impair spermatogenesis in offspring and have epigenetic effects. Although studies on animal and in vitro models have raised concerns, data are conflicting. However, these studies must be considered as the basis for future research to promote male reproductive health.
Collapse
Affiliation(s)
| | | | - Maneschi Chiara
- Department of Internal Medicine, Villa Salus Hospital, Mestre (VE). Italy
| | - Sciabica Vincenzo
- Department of Internal Medicine, Villa Salus Hospital, Mestre (VE). Italy
| | - Pigatto Erika
- Department of Internal Medicine, Villa Salus Hospital, Mestre (VE). Italy
| | - Sanna Marta
- Department of Internal Medicine, Villa Salus Hospital, Mestre (VE). Italy
| |
Collapse
|
9
|
Fighting Bisphenol A-Induced Male Infertility: The Power of Antioxidants. Antioxidants (Basel) 2021; 10:antiox10020289. [PMID: 33671960 PMCID: PMC7919053 DOI: 10.3390/antiox10020289] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 01/23/2023] Open
Abstract
Bisphenol A (BPA), a well-known endocrine disruptor present in epoxy resins and polycarbonate plastics, negatively disturbs the male reproductive system affecting male fertility. In vivo studies showed that BPA exposure has deleterious effects on spermatogenesis by disturbing the hypothalamic–pituitary–gonadal axis and inducing oxidative stress in testis. This compound seems to disrupt hormone signalling even at low concentrations, modifying the levels of inhibin B, oestradiol, and testosterone. The adverse effects on seminal parameters are mainly supported by studies based on urinary BPA concentration, showing a negative association between BPA levels and sperm concentration, motility, and sperm DNA damage. Recent studies explored potential approaches to treat or prevent BPA-induced testicular toxicity and male infertility. Since the effect of BPA on testicular cells and spermatozoa is associated with an increased production of reactive oxygen species, most of the pharmacological approaches are based on the use of natural or synthetic antioxidants. In this review, we briefly describe the effects of BPA on male reproductive health and discuss the use of antioxidants to prevent or revert the BPA-induced toxicity and infertility in men.
Collapse
|
10
|
Silva JF, Moreira BP, Rato L, de Lourdes Pereira M, Oliveira PF, Alves MG. Is Technical-Grade Chlordane an Obesogen? Curr Med Chem 2021; 28:548-568. [PMID: 31965937 DOI: 10.2174/0929867327666200121122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/09/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
The prevalence of obesity has tripled in recent decades and is now considered an alarming public health problem. In recent years, a group of endocrine disruptors, known as obesogens, have been directly linked to the obesity epidemic. Its etiology is generally associated with a sedentary lifestyle, a high-fat diet and genetic predisposition, but environmental factors, such as obesogens, have also been reported as contributors for this pathology. In brief, obesogens are exogenous chemical compounds that alter metabolic processes and/or energy balance and appetite, thus predisposing to weight gain. Although this theory is still recent, the number of compounds with suspected obesogenic activity has steadily increased over the years, though many of them remain a matter of debate. Technical-grade chlordane is an organochlorine pesticide widely present in the environment, albeit at low concentrations. Highly lipophilic compounds can be metabolized by humans and animals into more toxic and stable compounds that are stored in fat tissue and consequently pose a danger to the human body, including the physiology of adipose tissue, which plays an important role in weight regulation. In addition, technical-grade chlordane is classified as a persistent organic pollutant, a group of chemicals whose epidemiological studies are associated with metabolic disorders, including obesity. Herein, we discuss the emerging roles of obesogens as threats to public health. We particularly discuss the relevance of chlordane persistence in the environment and how its effects on human and animal health provide evidence for its role as an endocrine disruptor with possible obesogenic activity.
Collapse
Affiliation(s)
- Juliana F Silva
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, P.O. Box 4050-313, Porto, Portugal
| | - Bruno P Moreira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, P.O. Box 4050-313, Porto, Portugal
| | - Luís Rato
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilha, Portugal
| | - Maria de Lourdes Pereira
- Department of Medical Sciences & CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, P.O. Box 4050-313, Porto, Portugal
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, P.O. Box 4050-313, Porto, Portugal
| |
Collapse
|
11
|
Rodprasert W, Toppari J, Virtanen HE. Endocrine Disrupting Chemicals and Reproductive Health in Boys and Men. Front Endocrinol (Lausanne) 2021; 12:706532. [PMID: 34690925 PMCID: PMC8530230 DOI: 10.3389/fendo.2021.706532] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Male reproductive health has declined as indicated by increasing rates of cryptorchidism, i.e., undescended testis, poor semen quality, low serum testosterone level, and testicular cancer. Exposure to endocrine disrupting chemicals (EDCs) has been proposed to have a role in this finding. In utero exposure to antiandrogenic EDCs, particularly at a sensitive period of fetal testicular development, the so-called 'masculinization programming window (MPW)', can disturb testicular development and function. Low androgen effect during the MPW can cause both short- and long-term reproductive disorders. A concurrent exposure to EDCs may also affect testicular function or damage testicular cells. Evidence from animal studies supports the role of endocrine disrupting chemicals in development of male reproductive disorders. However, evidence from epidemiological studies is relatively mixed. In this article, we review the current literature that evaluated relationship between prenatal EDC exposures and anogenital distance, cryptorchidism, and congenital penile abnormality called hypospadias. We review also studies on the association between early life and postnatal EDC exposure and semen quality, hypothalamic-pituitary-gonadal axis hormone levels and testicular cancer.
Collapse
Affiliation(s)
- Wiwat Rodprasert
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Helena E. Virtanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- *Correspondence: Helena E. Virtanen,
| |
Collapse
|
12
|
Rahban R, Nef S. Regional difference in semen quality of young men: a review on the implication of environmental and lifestyle factors during fetal life and adulthood. Basic Clin Androl 2020; 30:16. [PMID: 33072332 PMCID: PMC7559360 DOI: 10.1186/s12610-020-00114-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023] Open
Abstract
The prevalence of low semen quality and the incidence of testicular cancer have been steadily increasing over the past decades in different parts of the World. Although these conditions may have a genetic or epigenetic origin, there is growing evidence that multiple environmental and lifestyle factors can act alone or in combination to induce adverse effects. Exposure to these factors may occur as early as during fetal life, via the mother, and directly throughout adulthood after full spermatogenic capacity is reached. This review aims at providing an overview of past and current trends in semen quality and its relevance to fertility as well as a barometer of men’s general health. The focus will be on recent epidemiological studies of young men from the general population highlighting geographic variations in Europe. The impact of some lifestyle and environmental factors will be discussed with their role in both fetal life and adulthood. These factors include smoking, alcohol consumption, psychological stress, exposure to electromagnetic radiation, and Endocrine Disrupting Chemicals (EDCs). Finally, the challenges in investigating the influence of environmental factors on semen quality in a fast changing world are presented.
Collapse
Affiliation(s)
- Rita Rahban
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland and Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Serge Nef
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland and Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| |
Collapse
|
13
|
Independent and combined effects of diethylhexyl phthalate and polychlorinated biphenyl 153 on sperm quality in the human and dog. Sci Rep 2019; 9:3409. [PMID: 30833626 PMCID: PMC6399337 DOI: 10.1038/s41598-019-39913-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/04/2019] [Indexed: 01/19/2023] Open
Abstract
A temporal decline in human and dog sperm quality is thought to reflect a common environmental aetiology. This may reflect direct effects of seminal chemicals on sperm function and quality. Here we report the effects of diethylhexyl phthalate (DEHP) and polychlorinated biphenyl 153 (PCB153) on DNA fragmentation and motility in human and dog sperm. Human and dog semen was collected from registered donors (n = 9) and from stud dogs (n = 11) and incubated with PCB153 and DEHP, independently and combined, at 0x, 2x, 10x and 100x dog testis concentrations. A total of 16 treatments reflected a 4 × 4 factorial experimental design. Although exposure to DEHP and/or PCB153 alone increased DNA fragmentation and decreased motility, the scale of dose-related effects varied with the presence and relative concentrations of each chemical (DEHP.PCB interaction for: DNA fragmentation; human p < 0.001, dog p < 0.001; Motility; human p < 0.001, dog p < 0.05). In both human and dog sperm, progressive motility negatively correlated with DNA fragmentation regardless of chemical presence (Human: P < 0.0001, r = −0.36; dog P < 0.0001, r = −0.29). We conclude that DEHP and PCB153, at known tissue concentrations, induce similar effects on human and dog sperm supporting the contention of the dog as a sentinel species for human exposure.
Collapse
|
14
|
Lymperi S, Giwercman A. Endocrine disruptors and testicular function. Metabolism 2018; 86:79-90. [PMID: 29605435 DOI: 10.1016/j.metabol.2018.03.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
Abstract
Despite concerns of the scientific community regarding the adverse effects of human exposure to exogenous man-made chemical substances or mixtures that interfere with normal hormonal balance, the so called "endocrine disruptors (EDs)", their production has been increased during the last few decades. EDs' extensive use has been implicated in the increasing incidence of male reproductive disorders including poor semen quality, testicular malignancies and congenital developmental defects such as hypospadias and cryptorchidism. Several animal studies have demonstrated that exposure to EDs during fetal, neonatal and adult life has deleterious consequences on male reproductive system; however, the evidence on humans remains ambiguous. The complexity of their mode of action, the differential effect according to the developmental stage that exposure occurs, the latency from exposure and the influence of the genetic background in the manifestation of their toxic effects are all responsible factors for the contradictory outcomes. Furthermore, the heterogeneity in the published human studies has hampered agreement in the field. Interventional studies to establish causality would be desirable, but unfortunately the nature of the field excludes this possibility. Therefore, future studies based on standardized guidelines are necessary, in order to estimate human health risks and implement policies to limit public exposure.
Collapse
Affiliation(s)
- Stefania Lymperi
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | |
Collapse
|
15
|
Bliatka D, Lymperi S, Mastorakos G, Goulis DG. Effect of endocrine disruptors on male reproduction in humans: why the evidence is still lacking? Andrology 2017; 5:404-407. [DOI: 10.1111/andr.12339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 11/28/2022]
Affiliation(s)
- D. Bliatka
- Unit of Reproductive Endocrinology; First Department of Obstetrics and Gynecology; Aristotle University of Thessaloniki; Thessaloniki Greece
- Second Department of Obstetrics and Gynecology; Athens University Medical School; Athens Greece
| | - S. Lymperi
- Unit of Reproductive Endocrinology; First Department of Obstetrics and Gynecology; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - G. Mastorakos
- Second Department of Obstetrics and Gynecology; Athens University Medical School; Athens Greece
| | - D. G. Goulis
- Unit of Reproductive Endocrinology; First Department of Obstetrics and Gynecology; Aristotle University of Thessaloniki; Thessaloniki Greece
| |
Collapse
|
16
|
Wang C, Yang L, Wang S, Zhang Z, Yu Y, Wang M, Cromie M, Gao W, Wang SL. The classic EDCs, phthalate esters and organochlorines, in relation to abnormal sperm quality: a systematic review with meta-analysis. Sci Rep 2016; 6:19982. [PMID: 26804707 PMCID: PMC4726156 DOI: 10.1038/srep19982] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/18/2015] [Indexed: 01/23/2023] Open
Abstract
The association between endocrine disrupting chemicals (EDCs) and human sperm quality is controversial due to the inconsistent literature findings, therefore, a systematic review with meta-analysis was performed. Through the literature search and selection based on inclusion criteria, a total of 9 studies (7 cross-sectional, 1 case-control, and 1 pilot study) were analyzed for classic EDCs (5 studies for phthalate esters and 4 studies for organochlorines). Funnel plots revealed a symmetrical distribution with no evidence of publication bias (Begg’s test: intercept = 0.40; p = 0.692). The summary odds ratios (OR) of human sperm quality associated with the classic EDCs was 1.67 (95% CI: 1.31–2.02). After stratification by specific chemical class, consistent increases in the risk of abnormal sperm quality were found in phthalate ester group (OR = 1.52; 95% CI: 1.09–1.95) and organochlorine group (OR = 1.98; 95% CI: 1.34–2.62). Additionally, identification of official data, and a comprehensive review of the mechanisms were performed, and better elucidated the increased risk of these classic EDCs on abnormal sperm quality. The present systematic review and meta-analysis helps to identify the impact of classic EDCs on human sperm quality. However, it still highlights the need for additional epidemiological studies in a larger variety of geographic locations.
Collapse
Affiliation(s)
- Chao Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P.R.China
| | - Lu Yang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P.R.China
| | - Shu Wang
- Kangda Medical College, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P.R. China
| | - Zhan Zhang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P.R.China
| | - Yongquan Yu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P.R.China
| | - Meilin Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P.R.China
| | - Meghan Cromie
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 Gilbert Drive, Lubbock, TX 79416, USA
| | - Weimin Gao
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 Gilbert Drive, Lubbock, TX 79416, USA
| | - Shou-Lin Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing 210029, P. R. China.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P.R.China
| |
Collapse
|
17
|
Komarowska MD, Hermanowicz A, Czyzewska U, Milewski R, Matuszczak E, Miltyk W, Debek W. Serum Bisphenol A Level in Boys with Cryptorchidism: A Step to Male Infertility? Int J Endocrinol 2015; 2015:973154. [PMID: 26491444 PMCID: PMC4600910 DOI: 10.1155/2015/973154] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/26/2015] [Accepted: 09/06/2015] [Indexed: 01/03/2023] Open
Abstract
Cryptorchidism is the most common congenital birth defect in boys and affects about 2-4% full-term male neonates. Its etiology is multifactorial. Purpose. To evaluate the serum bisphenol A (BPA) levels in boys with cryptorchidism and healthy boys and to assess the risk of environmental exposure to BPA using the authors' questionnaire. The data were acquired from a study on boys with cryptorchidism (n = 98) and a control group (n = 57). Prior to surgery, all patients had BPA serum levels evaluated. The size, position, rigidity of the testis, and abnormality of the epididymis of the undescended testis were assessed. Parents also completed a questionnaire on the risks of exposure to BPA in everyday life. Results. The testes in both groups were similar in size. The turgor of the undescended testis in the group of boys with cryptorchidism was decreased. Free serum BPA level in cryptorchid boys and in the control group was not statistically significant (p > 0.05). The conjugated serum BPA level in cryptorchid boys and in the control group was statistically significant (p ≤ 0.05). Total serum BPA level in cryptorchid boys and in the control group was statistically significant (p < 0.05). Serum total BPA level was related with a positive answer about problems with conception (p < 0.02). Conclusion. Our study indicated that high serum BPA was associated with cryptorchidism.
Collapse
Affiliation(s)
- Marta Diana Komarowska
- Department of Pediatric Surgery, Medical University of Bialystok, Ulica Waszyngtona 17, 15-274 Bialystok, Poland
| | - Adam Hermanowicz
- Department of Pediatric Surgery, Medical University of Bialystok, Ulica Waszyngtona 17, 15-274 Bialystok, Poland
- *Adam Hermanowicz:
| | - Urszula Czyzewska
- Department of Pharmaceutical Analysis, Medical University of Bialystok, Ulica Adama Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Robert Milewski
- Department of Statistics and Medical Informatics, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| | - Ewa Matuszczak
- Department of Pediatric Surgery, Medical University of Bialystok, Ulica Waszyngtona 17, 15-274 Bialystok, Poland
| | - Wojciech Miltyk
- Department of Pharmaceutical Analysis, Medical University of Bialystok, Ulica Adama Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Wojciech Debek
- Department of Pediatric Surgery, Medical University of Bialystok, Ulica Waszyngtona 17, 15-274 Bialystok, Poland
| |
Collapse
|
18
|
Changes in expression levels of oxidative stress-related genes in mouse epididymides by neonatal exposure to low-dose decabromodiphenyl ether. Reprod Med Biol 2013; 13:127-134. [PMID: 29699156 DOI: 10.1007/s12522-013-0173-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/07/2013] [Indexed: 10/25/2022] Open
Abstract
Decabromodiphenyl ether (decaBDE), one of the polybrominated diphenyl ethers (PBDEs), is the most well-known flame retardant and is used worldwide. In a previous study, we identified adverse effects of neonatal decaBDE exposure on mouse epididymides, such as decreased epididymal weight. On the other hand, neonatal exposure to diethylstilbestrol (DES), an artificial estrogenic compound, also causes several adverse effects on epididymides. DES exposure results in decreased epididymal weight, morphological abnormalities, and permanent alterations in the expression levels of several genes. The molecular mechanisms underlying the harmful effects of decaBDE exposure remain unclear. Many studies have reported that PBDEs have estrogenic activity, which may contribute to the induction of the adverse effects of decaBDE exposure. We aimed to examine the effects of neonatal decaBDE exposure on epididymides. Our data showed that (1) no histological change was observed on epididymal tissues from neonatal decaBDE exposure, unlike the effect of DES, (2) decaBDE exposure did not induce the alterations in gene expression observed with DES exposure; instead alterations in gene expression of certain oxidative stress-related genes were observed, and (3) the expression of ubiquitin C increased in decaBDE-exposed mouse epididymides. Our present data suggest the possibility that increased oxidative stress plays a role in the harmful effects observed in mouse epididymides after decaBDE-exposure.
Collapse
|
19
|
Dokhanchi M, Jashni HK, Tanideh N, Azarpira N. Effects of heart of palm (Palmito) extract on reproductive system of adult male rats. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2013. [DOI: 10.1016/s2305-0500(13)60161-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
20
|
Harper JC, Geraedts J, Borry P, Cornel MC, Dondorp W, Gianaroli L, Harton G, Milachich T, Kääriäinen H, Liebaers I, Morris M, Sequeiros J, Sermon K, Shenfield F, Skirton H, Soini S, Spits C, Veiga A, Vermeesch JR, Viville S, de Wert G, Macek M. Current issues in medically assisted reproduction and genetics in Europe: research, clinical practice, ethics, legal issues and policy. European Society of Human Genetics and European Society of Human Reproduction and Embryology. Eur J Hum Genet 2013; 21 Suppl 2:S1-21. [PMID: 24225486 PMCID: PMC3831061 DOI: 10.1038/ejhg.2013.219] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In March 2005, a group of experts from the European Society of Human Genetics and European Society of Human Reproduction and Embryology met to discuss the interface between genetics and assisted reproductive technology (ART), and published an extended background paper, recommendations and two Editorials. Seven years later, in March 2012, a follow-up interdisciplinary workshop was held, involving representatives of both professional societies, including experts from the European Union Eurogentest2 Coordination Action Project. The main goal of this meeting was to discuss developments at the interface between clinical genetics and ARTs. As more genetic causes of reproductive failure are now recognised and an increasing number of patients undergo testing of their genome before conception, either in regular health care or in the context of direct-to-consumer testing, the need for genetic counselling and preimplantation genetic diagnosis (PGD) may increase. Preimplantation genetic screening (PGS) thus far does not have evidence from randomised clinical trials to substantiate that the technique is both effective and efficient. Whole-genome sequencing may create greater challenges both in the technological and interpretational domains, and requires further reflection about the ethics of genetic testing in ART and PGD/PGS. Diagnostic laboratories should be reporting their results according to internationally accepted accreditation standards (International Standards Organisation - ISO 15189). Further studies are needed in order to address issues related to the impact of ART on epigenetic reprogramming of the early embryo. The legal landscape regarding assisted reproduction is evolving but still remains very heterogeneous and often contradictory. The lack of legal harmonisation and uneven access to infertility treatment and PGD/PGS fosters considerable cross-border reproductive care in Europe and beyond. The aim of this paper is to complement previous publications and provide an update of selected topics that have evolved since 2005.
Collapse
Affiliation(s)
- Joyce C Harper
- UCL Centre for PG&D, Institute for Womens Health, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Environmentally induced epigenetic transgenerational inheritance of altered Sertoli cell transcriptome and epigenome: molecular etiology of male infertility. PLoS One 2013; 8:e59922. [PMID: 23555832 PMCID: PMC3610698 DOI: 10.1371/journal.pone.0059922] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/19/2013] [Indexed: 11/19/2022] Open
Abstract
Environmental toxicants have been shown to induce the epigenetic transgenerational inheritance of adult onset disease, including testis disease and male infertility. The current study was designed to determine the impact of an altered sperm epigenome on the subsequent development of an adult somatic cell (Sertoli cell) that influences the onset of a specific disease (male infertility). A gestating female rat (F0 generation) was exposed to the agriculture fungicide vinclozolin during gonadal sex determination and then the subsequent F3 generation progeny used for the isolation of Sertoli cells and assessment of testis disease. As previously observed, enhanced spermatogenic cell apoptosis was observed. The Sertoli cells provide the physical and nutritional support for the spermatogenic cells. Over 400 genes were differentially expressed in the F3 generation control versus vinclozolin lineage Sertoli cells. A number of specific cellular pathways were identified to be transgenerationally altered. One of the key metabolic processes affected was pyruvate/lactate production that is directly linked to spermatogenic cell viability. The Sertoli cell epigenome was also altered with over 100 promoter differential DNA methylation regions (DMR) modified. The genomic features and overlap with the sperm DMR were investigated. Observations demonstrate that the transgenerational sperm epigenetic alterations subsequently alters the development of a specific somatic cell (Sertoli cell) epigenome and transcriptome that correlates with adult onset disease (male infertility). The environmentally induced epigenetic transgenerational inheritance of testis disease appears to be a component of the molecular etiology of male infertility.
Collapse
|
22
|
A comparison of two human cell lines and two rat gonadal cell primary cultures as in vitro screening tools for aromatase modulation. Toxicol In Vitro 2012; 26:107-18. [DOI: 10.1016/j.tiv.2011.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 10/25/2011] [Accepted: 11/09/2011] [Indexed: 11/20/2022]
|
23
|
Anjum S, Rahman S, Kaur M, Ahmad F, Rashid H, Ansari RA, Raisuddin S. Melatonin ameliorates bisphenol A-induced biochemical toxicity in testicular mitochondria of mouse. Food Chem Toxicol 2011; 49:2849-54. [DOI: 10.1016/j.fct.2011.07.062] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 07/25/2011] [Accepted: 07/30/2011] [Indexed: 11/24/2022]
|
24
|
Sharpe RM. Environmental/lifestyle effects on spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1697-712. [PMID: 20403879 DOI: 10.1098/rstb.2009.0206] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The high incidence of low sperm counts in young (European) men and evidence for declining sperm counts in recent decades mean that the environmental/lifestyle impact on spermatogenesis is an important health issue. This review assesses potential causes involving adverse effects on testis development in perinatal life (primarily effects on Sertoli cell number), which are probably irreversible, or effects on the process of spermatogenesis in adulthood, which are probably mainly reversible. Several lifestyle-related (obesity, smoking) and environmental (exposure to traffic exhaust fumes, dioxins, combustion products) factors appear to negatively affect both the perinatal and adult testes, emphasizing the importance of environmental/lifestyle impacts throughout the life course. Apart from this, public concern about adverse effects of environmental chemicals (ECs) (pesticides, food additives, persistent pollutants such as DDT, polychlorinated biphenyls) on spermatogenesis in adult men are, in general, not supported by the available data for humans. Where adverse effects of ECs have been shown, they are usually in an occupational setting rather than applying to the general population. In contrast, a modern Western lifestyle (sedentary work/lifestyle, obesity) is potentially damaging to sperm production. Spermatogenesis in normal men is poorly organized and inefficient so that men are poorly placed to cope with environmental/lifestyle insults.
Collapse
Affiliation(s)
- Richard M Sharpe
- MRC Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
25
|
van Gelder MMHJ, van Rooij IALM, Miller RK, Zielhuis GA, de Jong-van den Berg LTW, Roeleveld N. Teratogenic mechanisms of medical drugs. Hum Reprod Update 2010; 16:378-94. [DOI: 10.1093/humupd/dmp052] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
26
|
Baldi E, Luconi M, Muratori M, Marchiani S, Tamburrino L, Forti G. Nongenomic activation of spermatozoa by steroid hormones: facts and fictions. Mol Cell Endocrinol 2009; 308:39-46. [PMID: 19549590 DOI: 10.1016/j.mce.2009.02.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 01/30/2009] [Accepted: 02/17/2009] [Indexed: 12/26/2022]
Abstract
The rapid effects of steroids on spermatozoa have been demonstrated for the first time two decades ago. Progesterone (P), which is present throughout the female genital tract with peaks of levels in the cumulus matrix surrounding the oocyte, stimulates several sperm functions, including hyperactivation and acrosome reaction. These effects are mediated by an extranuclear pathway, as P stimulates an influx of calcium, the tyrosine phosphorylation of sperm proteins and other signalling cascades in a rapid manner. Whether these effects are receptor mediated and which receptors mediate these effects are still a matter of discussion despite all the efforts of the scientific community aimed at identifying them during the last 20 years. Although responsiveness to P is related to sperm fertilizing ability, the physiological role of P during the process of fertilization is discussed, and recent evidence points for a role of the steroid as a chemotactic agent for sperm. A similar situation applies for estrogens (E), which have been shown to induce direct effects on sperm by an extranuclear pathway. In particular, E appear to decrease acrosome reaction in response to P, exerting a role in ensuring an appropriate timing for sperm exocytosis during the process of fertilization.
Collapse
Affiliation(s)
- Elisabetta Baldi
- Dept. of Clinical Physiopathology, Andrology Unit, Center of Excellence for Research, Transfer and High Education DeNothe, University of Florence, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
Peng X, Zeng X, Peng S, Deng D, Zhang J. The association risk of male subfertility and testicular cancer: a systematic review. PLoS One 2009; 4:e5591. [PMID: 19440348 PMCID: PMC2680046 DOI: 10.1371/journal.pone.0005591] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 04/24/2009] [Indexed: 01/13/2023] Open
Abstract
Background An association between male subfertility and an increased risk of testicular cancer has been proposed, but conflicting results of research on this topic have rendered this theory equivocal. To more precisely assess the association between subfertility and the risk of testicular cancer, we performed a systematic review of international epidemiologic evidence. Principal Findings We searched the Medline database for records from January 1966 to March 2008 complemented with manual searches of the literature and then identified studies that met our inclusion criteria. Study design, sample size, exposure to subfertility and risk estimates of testicular cancer incidence were abstracted. Summary relative risks (RRs) with 95% confidence intervals (CIs) were calculated using the DerSimonian and Laird model. All statistical tests were two-sided. We identified seven case-control studies and two cohort studies published between 1987 and 2005. Analysis of the seven case-control studies that included 4,954 participants revealed an overall statistically significant association between subfertility and increased risk of testicular cancer (summary RR = 1.68, 95% CI: 1.22 to 2.31), without heterogeneity between studies (Q = 8.46, P heterogeneity = 0.21, I2 statistics = 0.29). The association between subfertility and testicular cancer was somewhat stronger in the United States (summary RR = 1.75, 95% CI: 1.01 to 3.02) than it was in Europe (summary RR = 1.53, 95% CI: 1.22 to 1.92). The source of the control subjects had a statistically significant effect on the magnitude of the association (population-based summary—RR = 2.15, 95% CI: 1.11 to 4.17; hospital-based summary—RR = 1.56, 95% CI: 0.93 to 2.61). After excluding possible cryptorchidism, an important confounding factor, we also found a positive association between subfertility and increased risk of testicular cancer (summary RR = 1.59, 95% CI: 1.28 to 1.98). These results were consistent between studies conducted in the United States and in Europe (Q = 0.20, P heterogeneity = 0.66). Of the two cohort studies that reported standardized incidence ratios, both reported a statistically significant positive association between subfertility and increased risk of testicular cancer. Conclusions Our findings support a relationship between subfertility and increased risk of testicular cancer and apply to the management of men with subfertility, and prevention and diagnosis of testicular cancer.
Collapse
Affiliation(s)
- Xiaoning Peng
- Department of Internal Medicine, College of Medicine, Hunan Normal University, Changsha, People's Republic of China
- * E-mail: (XP); (JZ)
| | - Xiaomin Zeng
- Department of Health Statistics and Epidemiology, School of Public Heath, Central South University, Changsha, People's Republic of China
| | - Sihua Peng
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Defeng Deng
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, Hunan Normal University, Changsha, People's Republic of China
- * E-mail: (XP); (JZ)
| |
Collapse
|
28
|
Recabarren SE, Rojas-García PP, Recabarren MP, Alfaro VH, Smith R, Padmanabhan V, Sir-Petermann T. Prenatal testosterone excess reduces sperm count and motility. Endocrinology 2008; 149:6444-8. [PMID: 18669598 DOI: 10.1210/en.2008-0785] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The reproductive system is extremely susceptible to insults from exposure to exogenous steroids during development. Excess prenatal testosterone exposure programs neuroendocrine, ovarian, and metabolic deficits in the female, features seen in women with polycystic ovary disease. The objective of this study was to determine whether prenatal testosterone excess also disrupts the male reproductive system, using sheep as a model system. The extent of reproductive disruption was tested by assessing sperm quantity and quality as well as Leydig cell responsiveness to human chorionic gonadotropin. Males born to mothers treated with 30 mg testosterone propionate twice weekly from d 30 to 90 and with 40 mg testosterone propionate from d 90 to 120 of pregnancy (T-males) showed a significant reduction (P < 0.05) in body weight, scrotal circumference, and sperm count compared with control males. Mean straight line velocity of sperms was also lower in T-males (P < 0.05). Circulating testosterone levels in response to the human chorionic gonadotropin did not differ between groups. These findings demonstrate that exposure to excess testosterone during fetal development has a negative impact on reproductive health of the male offspring, raising concerns relative to unintended human exposure to steroidal mimics in the environment.
Collapse
Affiliation(s)
- Sergio E Recabarren
- Laboratory of Animal Physiology and Endocrinology, Faculty of Veterinary Sciences, University of Concepcion, Casilla 537, Chillan, Chile.
| | | | | | | | | | | | | |
Collapse
|
29
|
Foresta C, Zuccarello D, Garolla A, Ferlin A. Role of hormones, genes, and environment in human cryptorchidism. Endocr Rev 2008; 29:560-80. [PMID: 18436703 DOI: 10.1210/er.2007-0042] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cryptorchidism is the most frequent congenital birth defect in male children (2-4% in full-term male births), and it has the potential to impact the health of the human male. In fact, although it is often considered a mild malformation, it represents the best-characterized risk factor for reduced fertility and testicular cancer. Furthermore, some reports have highlighted a significant increase in the prevalence of cryptorchidism over the last few decades. Etiology of cryptorchidism remains for the most part unknown, and cryptorchidism itself might be considered a complex disease. Major regulators of testicular descent from intraabdominal location into the bottom of the scrotum are the Leydig-cell-derived hormones testosterone and insulin-like factor 3. Research on possible genetic causes of cryptorchidism has increased recently. Abundant animal evidence supports a genetic cause, whereas the genetic contribution to human cryptorchidism is being elucidated only recently. Mutations in the gene for insulin-like factor 3 and its receptor and in the androgen receptor gene have been recognized as causes of cryptorchidism in some cases, but some chromosomal alterations, above all the Klinefelter syndrome, are also frequently involved. Environmental factors acting as endocrine disruptors of testicular descent might also contribute to the etiology of cryptorchidism and its increased incidence in recent years. Furthermore, polymorphisms in different genes have recently been investigated as contributing risk factors for cryptorchidism, alone or by influencing susceptibility to endocrine disruptors. Obviously, the interaction of environmental and genetic factors is fundamental, and many aspects have been clarified only recently.
Collapse
Affiliation(s)
- Carlo Foresta
- University of Padova, Department of Histology, Microbiology and Medical Biotechnologies, Section of Clinical Pathology and Centre for Male Gamete Cryopreservation, Via Gabelli 63, 35121 Padova, Italy.
| | | | | | | |
Collapse
|
30
|
Liu X, He DW, Zhang DY, Lin T, Wei GH. Di(2-ethylhexyl) phthalate (DEHP) increases transforming growth factor-beta1 expression in fetal mouse genital tubercles. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2008; 71:1289-94. [PMID: 18686198 DOI: 10.1080/15287390802114915] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phthalates are known to elicit marked effects on the developing male reproductive tract as evidenced by hypospadias. Recently, transforming growth factor-beta1 (TGF-beta1) was postulated to play an essential role in the development of genital tubercles (GT), and TGF- beta1 was found to act as a phthalates-responsive gene. In this study, the effects of di(2-ethylhexyl) phthalate (DEHP) were examined on the expression of TGF-beta1 in fetal mice, as GT development is dependent upon this factor. Pregnant C57BL/6 mice were exposed to corn oil or DEHP (100, 200, or 500 mg/kg/d orally) from embryonic day 12 (ED12) to ED17. Data showed a significant inhibition of male fetal GT development following DEHP treatment. Hypospadic-like urethral orifice and abnormal urethra were evaluated macroscopically and by histology at ED19. By using reverse-transcription polymerase chain reaction (RT-PCR) and Western blot, the expression of TGF-beta1 was upregulated in DEHP-treated mice. These results suggest that hypospadias may be induced by DEHP exposure involving modification of TGF-beta1 levels.
Collapse
Affiliation(s)
- Xing Liu
- Department of Urology, Chongqing Children's Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|