1
|
Ren X, Huang S, Xu J, Xue Q, Xu T, Shi D, Ma S, Li X. BRG1 improves reprogramming efficiency by enhancing glycolytic metabolism. Cell Mol Life Sci 2024; 81:482. [PMID: 39643758 PMCID: PMC11624181 DOI: 10.1007/s00018-024-05527-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/11/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
BRG1 has been found to promote the generation of induced pluripotent stem cells (iPSCs) by regulating epigenetic modifications or binding to transcription factors, however, the role of BRG1 on the cellular metabolism during reprogramming has not been reported. In this study, we found that BRG1 improved the efficiency of porcine iPSC generation, and upregulated the expression of pluripotency-related factors. Further analysis revealed that BRG1 promoted cellular glycolysis, and increased levels of glycolysis-related metabolites. It enhanced the transcriptional activity of glycolysis-related gene HK2, PKM2, and PFK-1 promoters, and decreased the enrichment of H3K9me3 in glycolysis- and pluripotency-related gene promoters. BRG1 also increased the phosphorylation level at the Ser473 site of AKT protein. The specific PI3K/AKT signaling pathway inhibitor, LY294002, impaired the generation of porcine iPSCs, downregulated the expression of pluripotency-related factors, and inhibited cellular glycolysis, overexpressing BRG1 rescued those changes caused by LY294002 treatment. In addition, the glycolysis inhibitor 2-DG and BRG1 inhibitor PFI-3 had similar effects to LY294002. The above results suggest that overexpression of BRG1 promotes the generation of porcine iPSCs by facilitating glycolytic reprogramming through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xuan Ren
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Shihai Huang
- College of Life Science and Technology, Guangxi University, Nanning, 530005, China
| | - Jianchun Xu
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Qingsong Xue
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Tairan Xu
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Shinan Ma
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Tai-He Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Xiangping Li
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
2
|
Pan Z, Lu X, Xu T, Chen J, Bao L, Li Y, Gong Y, Che Y, Zou X, Tan Z, Huang P, Ge M. Epigenetic inhibition of CTCF by HN1 promotes dedifferentiation and stemness of anaplastic thyroid cancer. Cancer Lett 2024; 580:216496. [PMID: 37993084 DOI: 10.1016/j.canlet.2023.216496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Anaplastic thyroid cancer (ATC) is one of the deadliest cancers, whose important malignant feature is dedifferentiation. Chromatin remodeling is critical for tumorigenesis and progression, while its roles and regulator in facilitating dedifferentiation of ATC had been poorly understood. In our study, an emerging function of hematological and neurological expressed 1 (HN1) in promoting dedifferentiation of ATC cells was uncovered. HN1 expression was negatively correlated with the thyroid differentiation markers both at mRNA and protein level. Knockdown of HN1 in ATC cells effectively upregulated the thyroid differentiation markers and impeded the sphere formation capacity, accompanying with the loss of cancer stemness. In contrast, overexpression of HN1 drove the gain of stemness and the loss of thyroid differentiation markers. Nude mouse and zebrafish xenograft models showed that inhibition of HN1 in ATC cells effectively hindered tumor growth due to the loss of cancer stemness. Further study showed that HN1 was negatively correlated with CTCF in an independent thyroid-cancer cohort, and inhibition of HN1 enhanced the expression of CTCF in ATC cells. Overexpression of CTCF significantly reversed the dedifferentiation phenotypes of ATC cells, whereas simultaneously inhibiting HN1 and CTCF was unable to recover the level of thyroid differentiation markers. The combination of ATAC-seq and ChIP-seq analysis confirmed that CTCF regulated genes relating with thyroid gland development through influencing their chromatin accessibility. HN1 inhibited the acetylation of H3K27 at the promoter of CTCF by recruiting HDAC2, thereby inhibiting the transcriptional activation of CTCF. These findings demonstrated an essential role of HN1 in regulating the chromatin accessibility of thyroid differentiation genes during ATC dedifferentiation.
Collapse
Affiliation(s)
- Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China; Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, China
| | - Xixuan Lu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Jinming Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Lisha Bao
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Ying Li
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Yingying Gong
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Yulu Che
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xiaozhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China; Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, China
| | - Zhuo Tan
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China; Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China; Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, China.
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China; Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
3
|
Tkemaladze J. Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells? Mol Biol Rep 2023; 50:2751-2761. [PMID: 36583780 DOI: 10.1007/s11033-022-08203-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND All molecules, structures, cells in organisms are subjected to destruction during the process of vital activities. In the organisms of most multicellular animals and humans, the regeneration process always takes place: destruction of old cells and their replacement with the new. The replacement of cells happens even if the cells are in perfect condition. The sooner the organism destroys the cells that emerged a certain time ago and replaces them with the new (i.e., the higher is the regeneration tempo), the younger the organism is. DISCUSSION Stem cells are progenitor cells of the substituting young cells. Asymmetric division of a mother stem cell gives rise to one, analogous to the mother, daughter cell, and to a second daughter cell that takes the path of further differentiation. Despite such asymmetric divisions, the pool of stem cells diminishes in its quantity over time. Moreover, intervals between stem cell divisions increase. The combination of these two processes causes the decline of regeneration tempo and aging of the organism. CONCLUSION During asymmetric stem cell divisions daughter cells, with preserved potency of the stem cell, selectively conserve mother (old) centrioles. In contrast with molecules of nuclear DNA, reparations do not take place in centrioles. Hypothetically, old centrioles are more subjected to destruction than other structures of a cell-which makes centrioles potentially the main structure of aging.
Collapse
Affiliation(s)
- Jaba Tkemaladze
- Free University of Tbilisi, 240 David Aghmashenebeli Alley, 0159, Tbilisi, Georgia.
| |
Collapse
|
4
|
The effect of Xenopus laevis egg extracts with/without BRG1 on the development of preimplantation cloned mouse embryos. ZYGOTE 2019; 27:143-152. [PMID: 31182178 DOI: 10.1017/s0967199419000091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryMuch effort has been devoted to improving the efficiency of animal cloning. The aim of this study was to investigate the effect of BRG1 contained in Xenopus egg extracts on the development of cloned mouse embryos. The results showed that mouse NIH/3T3 cells were able to express pluripotent genes after treatment with egg extracts, indicating that the egg extracts contained reprogramming factors. After co-injection of Xenopus egg extracts and single mouse cumulus cells into enucleated mouse oocytes, statistically higher pronucleus formation and development rates were observed in the egg Extract- co-injected group compared with those in the no egg extract-injected (NT) group (38-66% vs 18-34%, P<0.001). Removal of BRG1 protein from Xenopus egg extracts was conducted, and the BRG1-depleted extracts were co-injected with single donor cells into recipient oocytes. The results showed that the percentages of pronucleus formation were significantly higher in both BRG1-depleted and BRG1-intact groups than that in the nuclear transfer (NT) group (94, 64% vs 50%, P<0.05). Furthermore, percentages in the BRG1-depleted group were even higher than in the BRG1-intact group (94% vs 64%). More confined expression of Oct4 in the inner cell mass (ICM) was observed in the blastocyst derived from the egg extract-injected groups. However, Nanog expression was more contracted in the ICM of cloned blastocysts in the BRG1-depleted group than in the BGR1-intact group. Based on the present study, BRG1 might not play an essential role in reprogramming, but the factors enhancing pronucleus formation and development of cloned mouse embryos are contained in Xenopus egg extracts.
Collapse
|
5
|
De Paepe C, Krivega M, Cauffman G, Geens M, Van de Velde H. Totipotency and lineage segregation in the human embryo. ACTA ACUST UNITED AC 2014; 20:599-618. [DOI: 10.1093/molehr/gau027] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Stefanova VT, Grifo JA, Hansis C. Derivation of novel genetically diverse human embryonic stem cell lines. Stem Cells Dev 2012; 21:1559-70. [PMID: 22204497 DOI: 10.1089/scd.2011.0642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human embryonic stem cells (hESCs) have the potential to revolutionize many biomedical fields ranging from basic research to disease modeling, regenerative medicine, drug discovery, and toxicity testing. A multitude of hESC lines have been derived worldwide since the first 5 lines by Thomson et al. 13 years ago, but many of these are poorly characterized, unavailable, or do not represent desired traits, thus making them unsuitable for application purposes. In order to provide the scientific community with better options, we have derived 12 new hESC lines at New York University from discarded genetically normal and abnormal embryos using the latest techniques. We examined the genetic status of the NYUES lines in detail as well as their molecular and cellular features and DNA fingerprinting profile. Furthermore, we differentiated our hESCs into the tissues most affected by a specific condition or into clinically desired cell types. To our knowledge, a number of characteristics of our hESCs have not been previously reported, for example, mutation for alpha thalassemia X-linked mental retardation syndrome, linkage to conditions with a genetic component such as asthma or poor sperm morphology, and novel combinations of ethnic backgrounds. Importantly, all of our undifferentiated euploid female lines tested to date did not show X chromosome inactivation, believed to result in superior potency. We continue to derive new hESC lines and add them to the NIH registry and other registries. This should facilitate the use of our hESCs and lead to advancements for patient-benefitting applications.
Collapse
Affiliation(s)
- Valentina T Stefanova
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, New York, USA
| | | | | |
Collapse
|
7
|
Iacobas I, Vats A, Hirschi KK. Vascular potential of human pluripotent stem cells. Arterioscler Thromb Vasc Biol 2010; 30:1110-7. [PMID: 20453170 DOI: 10.1161/atvbaha.109.191601] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is the number one cause of death and disability in the US. Understanding the biological activity of stem and progenitor cells, and their ability to contribute to the repair, regeneration and remodeling of the heart and blood vessels affected by pathological processes is an essential part of the paradigm in enabling us to achieve a reduction in related deaths. Both human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are promising sources of cells for clinical cardiovascular therapies. Additional in vitro studies are needed, however, to understand their relative phenotypes and molecular regulation toward cardiovascular cell fates. Further studies in translational animal models are also needed to gain insights into the potential and function of both human ES- and iPS-derived cardiovascular cells, and enable translation from experimental and preclinical studies to human trials.
Collapse
Affiliation(s)
- Ionela Iacobas
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
8
|
Affiliation(s)
- Geraldine Hartshorne
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick
- Centre for Reproductive Medicine, University Hospital, Coventry, UK
| |
Collapse
|
9
|
Piotrowska-Nitsche K, Yang SH, Banta H, Chan AWS. Assisted fertilization and embryonic axis formation in higher primates. Reprod Biomed Online 2009; 18:382-90. [PMID: 19298738 DOI: 10.1016/s1472-6483(10)60097-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In naturally fertilized embryos of various organisms, the spermatozoon provides a localized cue to initiate early embryonic patterning. In mice, the sperm entry point (SEP) may reorient the first cleavage division, which separates the zygote into two halves that follow distinct fates. However, it is unknown whether the mechanical injection of spermatozoa into an oocyte by intracytoplasmic sperm injection (ICSI), a technique commonly used in human assisted reproduction, possesses such a role. Rhesus macaque embryos fertilized by ICSI were examined in order to determine the consequences of placing the spermatozoon at specific positions in the ooplasm and whether this can provide new information about patterning in mammalian eggs. The SEP specified by the injected spermatozoa was most often localized near the first cleavage plane and was mainly distributed along the boundary zone that separates the embryonic and abembryonic parts of the monkey blastocyst. Moreover, the ICSI data, when compared with naturally fertilized mouse embryos, showed a similar outcome in terms of cleavage axes and first embryonic axis specification. As there are no studies to date regarding sperm entry in human oocytes and its influence on embryonic development, this investigation using the rhesus macaque as a clinical model is noteworthy.
Collapse
|
10
|
Abstract
New scientific knowledge offers fresh opportunities for regenerative medicine and tissue repair. Among various clinical options, multipotent embryonic stem cells (ESC) prepared from inner cell masses of rabbit blastocysts have been tested over many years. More recently, stem cells have been isolated from individual tissues and from umbilical cord blood. These methods seemingly offer similar rates of repair and avoid ethical complexities arising from the need for human embryos to prepare ESC. Different methods of regenerating tissues have now emerged, based on the well-known forms of organ regeneration in urodeles such as salamanders. These methods depend on the formation of a blastema, and recent studies on MRL mice have revealed that they possess similar methods of repair as in salamanders. There is also some evidence showing that this form of repair is also active in human fetuses but not in adults. Detailed knowledge of these various forms of tissue repair is now urgently needed in order to assess the benefits of each form of treatment. These matters are discussed at the end of this review where various investigations clarify the benefits and drawbacks of these varied approaches to tissue repair.
Collapse
Affiliation(s)
- R G Edwards
- Reproductive BioMedicine Online, Park Lane, Dry Drayton, Cambridge CB3 8DB, UK.
| |
Collapse
|
11
|
Laursen SB, Møllgård K, Olesen C, Oliveri RS, Brøchner CB, Byskov AG, Andersen AN, Høyer PE, Tommerup N, Yding Andersen C. Regional differences in expression of specific markers for human embryonic stem cells. Reprod Biomed Online 2007; 15:89-98. [PMID: 17623545 DOI: 10.1016/s1472-6483(10)60697-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Characterization of human embryonic stem cell (hESC) lines derived from the inner cell masses of blastocysts generally includes expression analysis of markers such as OCT4, NANOG, SSEA3, SSEA4, TRA-1-60 and TRA-1-81. Expression is usually detected by immunocytochemical staining of entire colonies of hESC, using one colony for each individual marker. Four newly established hESC lines showed the expected expression pattern and were capable of differentiating into the three germ layers in vitro. Neighbouring sections of entire colonies grown for 4, 11, 21 and 28 days respectively were stained with different markers to study the regional distribution and cellular co-expression. TRA-1-60 staining defined the hESC territory at all time points analysed. This territory comprised a characteristic OCT4 and NANOG staining often in overlapping subregions. Staining intensity of nuclei varied from strong OCT4 staining to weak or absent NANOG staining, and vice versa. SSEA4 staining was only observed in small clusters or single cells and not confined to the TRA territory. Co-expression of all markers was only detected in small areas. SSEA1 expression was found exclusively outside the TRA territory. In conclusion, pronounced regional differences in the expression of markers considered specific for undifferentiated hESC may suggest the existence of different cell populations.
Collapse
Affiliation(s)
- Steen B Laursen
- Laboratory for Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|