1
|
Adekunbi DA, Yang B, Huber HF, Riojas AM, Moody AJ, Li C, Olivier M, Nathanielsz PW, Clarke GD, Cox LA, Salmon AB. Perinatal maternal undernutrition in baboons modulates hepatic mitochondrial function but not metabolites in aging offspring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592246. [PMID: 38746316 PMCID: PMC11092655 DOI: 10.1101/2024.05.02.592246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We previously demonstrated in baboons that maternal undernutrition (MUN), achieved by 70 % of control nutrition, impairs fetal liver function, but long-term changes associated with aging in this model remain unexplored. Here, we assessed clinical phenotypes of liver function, mitochondrial bioenergetics, and protein abundance in adult male and female baboons exposed to MUN during pregnancy and lactation and their control counterparts. Plasma liver enzymes were assessed enzymatically. Liver glycogen, choline, and lipid concentrations were quantified by magnetic resonance spectroscopy. Mitochondrial respiration in primary hepatocytes under standard culture conditions and in response to metabolic (1 mM glucose) and oxidative (100 µM H2O2) stress were assessed with Seahorse XFe96. Hepatocyte mitochondrial membrane potential (MMP) and protein abundance were determined by tetramethylrhodamine ethyl ester staining and immunoblotting, respectively. Liver enzymes and metabolite concentrations were largely unaffected by MUN, except for higher aspartate aminotransferase levels in MUN offspring when male and female data were combined. Oxygen consumption rate, extracellular acidification rate, and MMP were significantly higher in male MUN offspring relative to control animals under standard culture. However, in females, cellular respiration was similar in control and MUN offspring. In response to low glucose challenge, only control male hepatocytes were resistant to low glucose-stimulated increase in basal and ATP-linked respiration. H2O2 did not affect hepatocyte mitochondrial respiration. Protein markers of mitochondrial respiratory chain subunits, biogenesis, dynamics, and antioxidant enzymes were unchanged. Male-specific increases in mitochondrial bioenergetics in MUN offspring may be associated with increased energy demand in these animals. The similarity in systemic liver parameters suggests that changes in hepatocyte bioenergetics capacity precede detectable circulatory hepatic defects in MUN offspring and that the mitochondria may be an orchestrator of liver programming outcome.
Collapse
Affiliation(s)
- Daniel A Adekunbi
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, Texas, USA
| | - Bowen Yang
- Research Imaging Institute, Long School of Medicine, The University of Texas Health Science Center at San Antonio, Ant Texas, USA
| | - Hillary F Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Angelica M Riojas
- Research Imaging Institute, Long School of Medicine, The University of Texas Health Science Center at San Antonio, Ant Texas, USA
| | - Alexander J Moody
- Research Imaging Institute, Long School of Medicine, The University of Texas Health Science Center at San Antonio, Ant Texas, USA
| | - Cun Li
- Texas Pregnancy and Life-course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Michael Olivier
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Peter W Nathanielsz
- Texas Pregnancy and Life-course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Geoffery D Clarke
- Research Imaging Institute, Long School of Medicine, The University of Texas Health Science Center at San Antonio, Ant Texas, USA
| | - Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Adam B Salmon
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, Texas, USA
- Geriatric Research Education and Clinical Center, Audie L. Murphy Hospital, Southwest Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
2
|
Pérez-Sánchez M, Pardiñas ML, Díez-Juan A, Quiñonero A, Domínguez F, Martin A, Vidal C, Beltrán D, Mifsud A, Mercader A, Pellicer A, Cobo A, de Los Santos MJ. The effect of vitrification on blastocyst mitochondrial DNA dynamics and gene expression profiles. J Assist Reprod Genet 2023; 40:2577-2589. [PMID: 37801195 PMCID: PMC10643482 DOI: 10.1007/s10815-023-02952-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
PURPOSE Does vitrification/warming affect the mitochondrial DNA (mtDNA) content and the gene expression profile of blastocysts? METHODS Prospective cohort study in which 89 blastocysts were obtained from 50 patients between July 2017 and August 2018. mtDNA was measured in a total of 71 aneuploid blastocysts by means of real-time polymerase chain reaction (RT-PCR). Transcriptomic analysis was performed by RNA sequencing (RNA-seq) in an additional 8 aneuploid blastocysts cultured for 0 h after warming, and 10 aneuploid blastocysts cultured for 4-5 h after warming. RESULTS A significant decrease in mtDNA content just during the first hour after the warming process in blastocysts was found (P < 0.05). However, mtDNA content experimented a significantly increased along the later culture hours achieving the original mtDNA levels before vitrification after 4-5 h of culture (P < 0.05). Gene expression analysis and functional enrichment analysis revealed that such recovery was accompanied by upregulation of pathways associated with embryo developmental capacity and uterine embryo development. Interestingly, the significant increase in mtDNA content observed in blastocysts just after warming also coincided with the differential expression of several cellular stress response-related pathways, such as apoptosis, DNA damage, humoral immune responses, and cancer. CONCLUSION To our knowledge, this is the first study demonstrating in humans, a modulation in blastocysts mtDNA content in response to vitrification and warming. These results will be useful in understanding which pathways and mechanisms may be activated in human blastocysts following vitrification and warming before a transfer.
Collapse
Affiliation(s)
- Marta Pérez-Sánchez
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106 - Torre A, Planta 1ª, 46026, Valencia, Spain
| | - Maria Luisa Pardiñas
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106 - Torre A, Planta 1ª, 46026, Valencia, Spain
| | - Antonio Díez-Juan
- Department of Research, Igenomix, Parque Tecnológico, Rda. de Narcís Monturiol, nº11, B, 46980, Paterna, Valencia, Spain
| | - Alicia Quiñonero
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106 - Torre A, Planta 1ª, 46026, Valencia, Spain
| | - Francisco Domínguez
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106 - Torre A, Planta 1ª, 46026, Valencia, Spain
| | - Angel Martin
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106 - Torre A, Planta 1ª, 46026, Valencia, Spain
| | - Carmina Vidal
- Department of Gynaecology, IVIRMA Global, Plaça de La Policía Local, 3, Valencia, 46015, Spain
| | - Diana Beltrán
- IVF Laboratory, IVIRMA Global, Plaça de La Policía Local, 3, 46015, Valencia, Spain
| | - Amparo Mifsud
- IVF Laboratory, IVIRMA Global, Plaça de La Policía Local, 3, 46015, Valencia, Spain
| | - Amparo Mercader
- IVF Laboratory, IVIRMA Global, Plaça de La Policía Local, 3, 46015, Valencia, Spain
| | - Antonio Pellicer
- Department of Gynaecology, IVIRMA Global, Largo Ildebrando Pizzetti, 1, Rome, 00197, Italy
| | - Ana Cobo
- IVF Laboratory, IVIRMA Global, Plaça de La Policía Local, 3, 46015, Valencia, Spain
| | | |
Collapse
|
3
|
St John JC, Okada T, Andreas E, Penn A. The role of mtDNA in oocyte quality and embryo development. Mol Reprod Dev 2023; 90:621-633. [PMID: 35986715 PMCID: PMC10952685 DOI: 10.1002/mrd.23640] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 09/02/2023]
Abstract
The mitochondrial genome resides in the mitochondria present in nearly all cell types. The porcine (Sus scrofa) mitochondrial genome is circa 16.7 kb in size and exists in the multimeric format in cells. Individual cell types have different numbers of mitochondrial DNA (mtDNA) copy number based on their requirements for ATP produced by oxidative phosphorylation. The oocyte has the largest number of mtDNA of any cell type. During oogenesis, the oocyte sets mtDNA copy number in order that sufficient copies are available to support subsequent developmental events. It also initiates a program of epigenetic patterning that regulates, for example, DNA methylation levels of the nuclear genome. Once fertilized, the nuclear and mitochondrial genomes establish synchrony to ensure that the embryo and fetus can complete each developmental milestone. However, altering the oocyte's mtDNA copy number by mitochondrial supplementation can affect the programming and gene expression profiles of the developing embryo and, in oocytes deficient of mtDNA, it appears to have a positive impact on the embryo development rates and gene expression profiles. Furthermore, mtDNA haplotypes, which define common maternal origins, appear to affect developmental outcomes and certain reproductive traits. Nevertheless, the manipulation of the mitochondrial content of an oocyte might have a developmental advantage.
Collapse
Affiliation(s)
- Justin C. St John
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Takashi Okada
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Eryk Andreas
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Alexander Penn
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
4
|
Zhang W, Wu F. Effects of adverse fertility-related factors on mitochondrial DNA in the oocyte: a comprehensive review. Reprod Biol Endocrinol 2023; 21:27. [PMID: 36932444 PMCID: PMC10021953 DOI: 10.1186/s12958-023-01078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
The decline of oocyte quality has profound impacts on fertilization, implantation, embryonic development, and the genetic quality of future generations. One factor that is often ignored but is involved in the decline of oocyte quality is mitochondrial DNA (mtDNA) abnormalities. Abnormalities in mtDNA affect the energy production of mitochondria, the dynamic balance of the mitochondrial network, and the pathogenesis of mtDNA diseases in offspring. In this review, we have detailed the characteristics of mtDNA in oocytes and the maternal inheritance of mtDNA. Next, we summarized the mtDNA abnormalities in oocytes derived from aging, diabetes, obesity, and assisted reproductive technology (ART) in an attempt to further elucidate the possible mechanisms underlying the decline in oocyte health. Because multiple infertility factors are often involved when an individual is infertile, a comprehensive understanding of the individual effects of each infertility-related factor on mtDNA is necessary. Herein, we consider the influence of infertility-related factors on the mtDNA of the oocyte as a collective perspective for the first time, providing a supplementary angle and reference for multi-directional improvement strategies of oocyte quality in the future. In addition, we highlight the importance of studying ART-derived mitochondrial abnormalities during every ART procedure.
Collapse
Affiliation(s)
- Wenying Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Fuju Wu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
5
|
Kirillova A, Mazunin I. Operation "mitochondrial wipeout" - clearing recipient mitochondria DNA during the cytoplasmic replacement therapy. J Assist Reprod Genet 2022; 39:2205-2207. [PMID: 35852730 PMCID: PMC9596630 DOI: 10.1007/s10815-022-02561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022] Open
Affiliation(s)
- Anastasia Kirillova
- Center of Life Sciences, Skolkovo Institute of Science and Technology (Skoltech), Skolkovo, Russia.
- Fomin Clinic, Moscow, Russia.
| | - Ilya Mazunin
- Center of Life Sciences, Skolkovo Institute of Science and Technology (Skoltech), Skolkovo, Russia.
- Fomin Clinic, Moscow, Russia.
- Medical Genomics LLC, Moscow, Russia.
| |
Collapse
|
6
|
Asami M, Lam BYH, Ma MK, Rainbow K, Braun S, VerMilyea MD, Yeo GSH, Perry ACF. Human embryonic genome activation initiates at the one-cell stage. Cell Stem Cell 2021; 29:209-216.e4. [PMID: 34936886 PMCID: PMC8826644 DOI: 10.1016/j.stem.2021.11.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/24/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022]
Abstract
In human embryos, the initiation of transcription (embryonic genome activation [EGA]) occurs by the eight-cell stage, but its exact timing and profile are unclear. To address this, we profiled gene expression at depth in human metaphase II oocytes and bipronuclear (2PN) one-cell embryos. High-resolution single-cell RNA sequencing revealed previously inaccessible oocyte-to-embryo gene expression changes. This confirmed transcript depletion following fertilization (maternal RNA degradation) but also uncovered low-magnitude upregulation of hundreds of spliced transcripts. Gene expression analysis predicted embryonic processes including cell-cycle progression and chromosome maintenance as well as transcriptional activators that included cancer-associated gene regulators. Transcription was disrupted in abnormal monopronuclear (1PN) and tripronuclear (3PN) one-cell embryos. These findings indicate that human embryonic transcription initiates at the one-cell stage, sooner than previously thought. The pattern of gene upregulation promises to illuminate processes involved at the onset of human development, with implications for epigenetic inheritance, stem-cell-derived embryos, and cancer. Gene expression initiates at the one-cell stage in human embryos Expression is of low magnitude but remains elevated until the eight-cell stage Upregulated transcripts are spliced and correspond to embryonic processes Upregulation is disrupted in morphologically abnormal one-cell embryos
Collapse
Affiliation(s)
- Maki Asami
- Laboratory of Mammalian Molecular Embryology, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, England
| | - Brian Y H Lam
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, England
| | - Marcella K Ma
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, England
| | - Kara Rainbow
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, England
| | - Stefanie Braun
- Ovation Fertility Austin, Embryology and Andrology Laboratories, Austin, TX 78731, USA
| | - Matthew D VerMilyea
- Ovation Fertility Austin, Embryology and Andrology Laboratories, Austin, TX 78731, USA.
| | - Giles S H Yeo
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, England.
| | - Anthony C F Perry
- Laboratory of Mammalian Molecular Embryology, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, England.
| |
Collapse
|
7
|
McKeegan PJ, Boardman SF, Wanless AA, Boyd G, Warwick LJ, Lu J, Gnanaprabha K, Picton HM. Intracellular oxygen metabolism during bovine oocyte and preimplantation embryo development. Sci Rep 2021; 11:21245. [PMID: 34711892 PMCID: PMC8553752 DOI: 10.1038/s41598-021-99512-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/24/2021] [Indexed: 11/11/2022] Open
Abstract
We report a novel method to profile intrcellular oxygen concentration (icO2) during in vitro mammalian oocyte and preimplantation embryo development using a commercially available multimodal phosphorescent nanosensor (MM2). Abattoir-derived bovine oocytes and embryos were incubated with MM2 in vitro. A series of inhibitors were applied during live-cell multiphoton imaging to record changes in icO2 associated with mitochondrial processes. The uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) uncouples mitochondrial oxygen consumption to its maximum, while antimycin inhibits complex III to ablate mitochondrial oxygen consumption. Increasing oxygen consumption was expected to reduce icO2 and decreasing oxygen consumption to increase icO2. Use of these inhibitors quantifies how much oxygen is consumed at basal in comparison to the upper and lower limits of mitochondrial function. icO2 measurements were compared to mitochondrial DNA copy number analysed by qPCR. Antimycin treatment increased icO2 for all stages tested, suggesting significant mitochondrial oxygen consumption at basal. icO2 of oocytes and preimplantation embryos were unaffected by FCCP treatment. Inner cell mass icO2 was lower than trophectoderm, perhaps reflecting limitations of diffusion. Mitochondrial DNA copy numbers were similar between stages in the range 0.9-4 × 106 copies and did not correlate with icO2. These results validate the MM2 probe as a sensitive, non-toxic probe of intracellular oxygen concentration in mammalian oocytes and preimplantation embryos.
Collapse
Affiliation(s)
- Paul J McKeegan
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK.
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
| | - Selina F Boardman
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- CARE Fertility, Manchester, England, UK
| | - Amy A Wanless
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- Assisted Conception Unit, Ninewells Hospital, Dundee, Scotland, UK
| | - Grace Boyd
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- Department of Biological Sciences, University of York, Wentworth Way, York, YO10 5DD, England, UK
| | - Laura J Warwick
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- St James's University Hospital, Beckett Street, Leeds, LS9 7TF, England, UK
| | - Jianping Lu
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| | - Keerthi Gnanaprabha
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- GCRM Fertility, 21 Fifty Pitches Way, Glasgow, G51 4FD, Scotland, UK
| | - Helen M Picton
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| |
Collapse
|
8
|
St John JC. Epigenetic Regulation of the Nuclear and Mitochondrial Genomes: Involvement in Metabolism, Development, and Disease. Annu Rev Anim Biosci 2021; 9:203-224. [PMID: 33592161 DOI: 10.1146/annurev-animal-080520-083353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our understanding of the interactions between the nuclear and mitochondrial genomes is becoming increasingly important as they are extensively involved in establishing early development and developmental progression. Evidence from various biological systems indicates the interdependency between the genomes, which requires a high degree of compatibility and synchrony to ensure effective cellular function throughout development and in the resultant offspring. During development, waves of DNA demethylation, de novo methylation, and maintenance methylation act on the nuclear genome and typify oogenesis and pre- and postimplantation development. At the same time, significant changes in mitochondrial DNA copy number influence the metabolic status of the developing organism in a typically cell-type-specific manner. Collectively, at any given stage in development, these actions establish genomic balance that ensures each developmental milestone is met and that the organism's program for life is established.
Collapse
Affiliation(s)
- Justin C St John
- Mitochondrial Genetics Group, Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia;
| |
Collapse
|
9
|
Bebbere D, Ulbrich SE, Giller K, Zakhartchenko V, Reichenbach HD, Reichenbach M, Verma PJ, Wolf E, Ledda S, Hiendleder S. Mitochondrial DNA Depletion in Granulosa Cell Derived Nuclear Transfer Tissues. Front Cell Dev Biol 2021; 9:664099. [PMID: 34124044 PMCID: PMC8194821 DOI: 10.3389/fcell.2021.664099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) is a key technology with broad applications that range from production of cloned farm animals to derivation of patient-matched stem cells or production of humanized animal organs for xenotransplantation. However, effects of aberrant epigenetic reprogramming on gene expression compromise cell and organ phenotype, resulting in low success rate of SCNT. Standard SCNT procedures include enucleation of recipient oocytes before the nuclear donor cell is introduced. Enucleation removes not only the spindle apparatus and chromosomes of the oocyte but also the perinuclear, mitochondria rich, ooplasm. Here, we use a Bos taurus SCNT model with in vitro fertilized (IVF) and in vivo conceived controls to demonstrate a ∼50% reduction in mitochondrial DNA (mtDNA) in the liver and skeletal muscle, but not the brain, of SCNT fetuses at day 80 of gestation. In the muscle, we also observed significantly reduced transcript abundances of mtDNA-encoded subunits of the respiratory chain. Importantly, mtDNA content and mtDNA transcript abundances correlate with hepatomegaly and muscle hypertrophy of SCNT fetuses. Expression of selected nuclear-encoded genes pivotal for mtDNA replication was similar to controls, arguing against an indirect epigenetic nuclear reprogramming effect on mtDNA amount. We conclude that mtDNA depletion is a major signature of perturbations after SCNT. We further propose that mitochondrial perturbation in interaction with incomplete nuclear reprogramming drives abnormal epigenetic features and correlated phenotypes, a concept supported by previously reported effects of mtDNA depletion on the epigenome and the pleiotropic phenotypic effects of mtDNA depletion in humans. This provides a novel perspective on the reprogramming process and opens new avenues to improve SCNT protocols for healthy embryo and tissue development.
Collapse
Affiliation(s)
- Daniela Bebbere
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy.,Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Science, LMU Munich, Munich, Germany
| | - Susanne E Ulbrich
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Katrin Giller
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Valeri Zakhartchenko
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Science, LMU Munich, Munich, Germany
| | - Horst-Dieter Reichenbach
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Science, LMU Munich, Munich, Germany.,Bavarian State Research Center for Agriculture, Institute of Animal Breeding, Grub, Germany
| | - Myriam Reichenbach
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Science, LMU Munich, Munich, Germany.,Bayern-Genetik GmbH, Grub, Germany
| | - Paul J Verma
- Livestock Sciences, South Australian Research and Development Institute, Roseworthy, SA, Australia.,School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Eckhard Wolf
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Science, LMU Munich, Munich, Germany
| | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Stefan Hiendleder
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Science, LMU Munich, Munich, Germany.,School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia.,Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
10
|
Oxygen tension modulates the mitochondrial genetic bottleneck and influences the segregation of a heteroplasmic mtDNA variant in vitro. Commun Biol 2021; 4:584. [PMID: 33990696 PMCID: PMC8121860 DOI: 10.1038/s42003-021-02069-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
Most humans carry a mixed population of mitochondrial DNA (mtDNA heteroplasmy) affecting ~1–2% of molecules, but rapid percentage shifts occur over one generation leading to severe mitochondrial diseases. A decrease in the amount of mtDNA within the developing female germ line appears to play a role, but other sub-cellular mechanisms have been implicated. Establishing an in vitro model of early mammalian germ cell development from embryonic stem cells, here we show that the reduction of mtDNA content is modulated by oxygen and reaches a nadir immediately before germ cell specification. The observed genetic bottleneck was accompanied by a decrease in mtDNA replicating foci and the segregation of heteroplasmy, which were both abolished at higher oxygen levels. Thus, differences in oxygen tension occurring during early development likely modulate the amount of mtDNA, facilitating mtDNA segregation and contributing to tissue-specific mutation loads. Using an in vitro culture system, Pezet et al. studied the influence of oxygen on the mitochondrial DNA (mtDNA) in primordial germ cell-like cells (PGCLCs) in vitro. Low oxygen levels resembling in vivo reduced the cell mtDNA content causing a genetic bottleneck and the segregation of different mtDNA genotypes.
Collapse
|
11
|
Abstract
The mitochondria, present in almost all eukaryotic cells, produce energy but also contribute to many other essential cellular functions. One of the unique characteristics of the mitochondria is that they have their own genome, which is only maternally transmitted via highly specific mechanisms that occur during gametogenesis and embryogenesis. The mature oocyte has the highest mitochondrial DNA copy number of any cell. This high mitochondrial mass is directly correlated to the capacity of the oocyte to support the early stages of embryo development in many species. Indeed, the subtle energetic and metabolic modifications that are necessary for each of the key steps of early embryonic development rely heavily on the oocyte’s mitochondrial load and activity. For example, epigenetic reprogramming depends on the metabolic cofactors produced by the mitochondrial metabolism, and the reactive oxygen species derived from the mitochondrial respiratory chain are essential for the regulation of cell signaling in the embryo. All these elements have also led scientists to consider the mitochondria as a potential biomarker of oocyte competence and embryo viability, as well as a key target for future potential therapies. However, more studies are needed to confirm these findings. This review article summarizes the past two decades of research that have led to the current understanding of mitochondrial functions in reproduction
Collapse
|
12
|
Gyllenhammer LE, Entringer S, Buss C, Wadhwa PD. Developmental programming of mitochondrial biology: a conceptual framework and review. Proc Biol Sci 2020; 287:20192713. [PMID: 32345161 PMCID: PMC7282904 DOI: 10.1098/rspb.2019.2713] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Research on mechanisms underlying the phenomenon of developmental programming of health and disease has focused primarily on processes that are specific to cell types, organs and phenotypes of interest. However, the observation that exposure to suboptimal or adverse developmental conditions concomitantly influences a broad range of phenotypes suggests that these exposures may additionally exert effects through cellular mechanisms that are common, or shared, across these different cell and tissue types. It is in this context that we focus on cellular bioenergetics and propose that mitochondria, bioenergetic and signalling organelles, may represent a key cellular target underlying developmental programming. In this review, we discuss empirical findings in animals and humans that suggest that key structural and functional features of mitochondrial biology exhibit developmental plasticity, and are influenced by the same physiological pathways that are implicated in susceptibility for complex, common age-related disorders, and that these targets of mitochondrial developmental programming exhibit long-term temporal stability. We conclude by articulating current knowledge gaps and propose future research directions to bridge these gaps.
Collapse
Affiliation(s)
- Lauren E Gyllenhammer
- Development, Health and Disease Research Program, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, School of Medicine, Irvine, CA, USA
| | - Sonja Entringer
- Development, Health and Disease Research Program, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, School of Medicine, Irvine, CA, USA.,Charité-Universitätsmedizin Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Claudia Buss
- Development, Health and Disease Research Program, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, School of Medicine, Irvine, CA, USA.,Charité-Universitätsmedizin Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Pathik D Wadhwa
- Development, Health and Disease Research Program, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, School of Medicine, Irvine, CA, USA.,Department of Psychiatry and Human Behaviour, School of Medicine, Irvine, CA, USA.,Department of Obstetrics and Gynecology, School of Medicine, Irvine, CA, USA.,Department of Epidemiology, University of California, School of Medicine, Irvine, CA, USA
| |
Collapse
|
13
|
Hendriks WK, Colleoni S, Galli C, Paris DBBP, Colenbrander B, Stout TAE. Mitochondrial DNA replication is initiated at blastocyst formation in equine embryos. Reprod Fertil Dev 2019; 31:570-578. [PMID: 30423285 DOI: 10.1071/rd17387] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 09/13/2018] [Indexed: 11/23/2022] Open
Abstract
Intracytoplasmic sperm injection is the technique of choice for equine IVF and, in a research setting, 18-36% of injected oocytes develop to blastocysts. However, blastocyst development in clinical programs is lower, presumably due to a combination of variable oocyte quality (e.g. from old mares), suboptimal culture conditions and marginal fertility of some stallions. Furthermore, mitochondrial constitution appears to be critical to developmental competence, and both maternal aging and invitro embryo production (IVEP) negatively affect mitochondrial number and function in murine and bovine embryos. The present study examined the onset of mitochondrial (mt) DNA replication in equine embryos and investigated whether IVEP affects the timing of this important event, or the expression of genes required for mtDNA replication (i.e. mitochondrial transcription factor (TFAM), mtDNA polymerase γ subunit B (mtPOLB) and single-stranded DNA binding protein (SSB)). We also investigated whether developmental arrest was associated with low mtDNA copy number. mtDNA copy number increased (P<0.01) between the early and expanded blastocyst stages both invivo and invitro, whereas the mtDNA:total DNA ratio was higher in invitro-produced embryos (P=0.041). Mitochondrial replication was preceded by an increase in TFAM but, unexpectedly, not mtPOLB or SSB expression. There was no association between embryonic arrest and lower mtDNA copy numbers.
Collapse
Affiliation(s)
- W Karin Hendriks
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, 3584CM Utrecht, Netherlands
| | - Silvia Colleoni
- Avantea, Laboratorio di Technologie della Riproduzione, Via Porcellasco 7f, 26100 Cremona, Italy
| | - Cesare Galli
- Avantea, Laboratorio di Technologie della Riproduzione, Via Porcellasco 7f, 26100 Cremona, Italy
| | - Damien B B P Paris
- Discipline of Biomedical Science, College of Public Health, Medical and Veterinary Sciences, James Cook University, Solander Drive, Townsville, Qld 4811, Australia
| | - Ben Colenbrander
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, 3584CM Utrecht, Netherlands
| | - Tom A E Stout
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, 3584CM Utrecht, Netherlands
| |
Collapse
|
14
|
May-Panloup P, Brochard V, Hamel JF, Desquiret-Dumas V, Chupin S, Reynier P, Duranthon V. Maternal ageing impairs mitochondrial DNA kinetics during early embryogenesis in mice. Hum Reprod 2019; 34:1313-1324. [DOI: 10.1093/humrep/dez054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/26/2019] [Indexed: 01/03/2023] Open
Abstract
Abstract
STUDY QUESTION
Does ageing affect the kinetics of the mitochondrial pool during oogenesis and early embryogenesis?
SUMMARY ANSWER
While we found no age-related change during oogenesis, the kinetics of mitochondrial DNA content and the expression of the factors involved in mitochondrial biogenesis appeared to be significantly altered during embryogenesis.
WHAT IS KNOWN ALREADY
Oocyte mitochondria are necessary for embryonic development. The morphological and functional alterations of mitochondria, as well as the qualitative and quantitative mtDNA anomalies, observed during ovarian ageing may be responsible for the alteration of oocyte competence and embryonic development.
STUDY DESIGN, SIZE, DURATION
The study, conducted from November 2016 to November 2017, used 40 mice aged 5–8 weeks and 45 mice aged 9–11 months (C57Bl6/CBA F(1)). A total of 488 immature oocytes, with a diameter ranging from 20 μm to more than 80 μm, were collected from ovaries, and 1088 mature oocytes or embryos at different developmental stages (two PN, one-cell, i.e. syngamy, two-cell, four-cell, eight-cell, morula and blastocyst) were obtained after ovarian stimulation and, for embryos, mating.
PARTICIPANTS/MATERIALS, SETTING, METHODS
Mitochondrial DNA was quantified by quantitative PCR. We used quantitative reverse transcriptase PCR (RT-PCR) (microfluidic method) to study the relative expression of three genes involved in the key steps of embryogenesis, i.e. embryonic genome activation (HSPA1) and differentiation (CDX2 and NANOG), two mtDNA genes (CYB and ND2) and five genes essential for mitochondrial biogenesis (PPARGC1A, NRF1, POLG, TFAM and PRKAA). The statistical analysis was based on mixed linear regression models applying a logistic link function (STATA v13.1 software), with values of P < 0.05 being considered significant.
MAIN RESULTS AND THE ROLE OF CHANCE
During oogenesis, there was a significant increase in oocyte mtDNA content (P < 0.0001) without any difference between the two groups of mice (P = 0.73). During the first phase of embryogenesis, i.e. up to the two-cell stage, embryonic mtDNA decreased significantly in the aged mice (P < 0.0001), whereas it was stable for young mice (young/old difference P = 0.015). The second phase of embryogenesis, i.e. between the two-cell and eight-cell stages, was characterized by a decrease in embryonic mtDNA for young mice (P = 0.013) only (young/old difference P = 0.038). During the third phase, i.e. between the eight-cell and blastocyst stage, there was a significant increase in embryonic mtDNA content in young mice (P < 0.0001) but not found in aged mice (young/old difference P = 0.002). We also noted a faster expression of CDX2 and NANOG in the aged mice than in the young mice during the second (P = 0.007 and P = 0.02, respectively) and the third phase (P = 0.01 and P = 0.008, respectively) of embryogenesis. The expression of mitochondrial genes CYB and ND2 followed similar kinetics and was equivalent for both groups of mice, with a significant increase during the third phase (P < 0.01). Of the five genes involved in mitochondrial biogenesis, i.e. PPARGC1A, NRF1, POLG, TFAM and PRKAA, the expression of three genes decreased significantly during the first phase only in young mice (NRF1, P = 0.018; POLGA, P = 0.002; PRKAA, P = 0.010), with no subsequent difference compared to old mice. In conclusion, during early embryogenesis in the old mice, we suspect that the lack of a replicatory burst before the two-cell stage, associated with the early arrival at the minimum threshold value of mtDNA, together with the absence of an increase of mtDNA during the last phase, might potentially deregulate the key stages of early embryogenesis.
LARGE SCALE DATA
N/A.
LIMITATIONS, REASONS FOR CAUTION
Because of the ethical impossibility of working on a human, this study was conducted only on a murine model. As superovulation was used, we cannot totally exclude that the differences observed were, at least partially, influenced by differences in ovarian response between young and old mice.
WIDER IMPLICATIONS OF THE FINDINGS
Our findings suggest a pathophysiological explanation for the link observed between mitochondria and the deterioration of oocyte quality and early embryonic development with age.
STUDY FUNDING/COMPETING INTEREST(S)
This work was supported by the University of Angers, France, by the French national research centres INSERM and the CNRS and, in part, by PHASE Division, INRA. There are no competing interests.
Collapse
Affiliation(s)
- P May-Panloup
- MITOLAB, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d’Angers, Angers, France
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d’Angers, Angers, France
| | - V Brochard
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy-en-Josas, France
| | - J F Hamel
- SFR ICAT, Université Angers, Angers, France; DRCI, Cellule Data Management, CHU Angers, Angers, France
| | - V Desquiret-Dumas
- MITOLAB, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d’Angers, Angers, France
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d’Angers, Angers, France
| | - S Chupin
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d’Angers, Angers, France
| | - P Reynier
- MITOLAB, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d’Angers, Angers, France
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d’Angers, Angers, France
| | - V Duranthon
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy-en-Josas, France
| |
Collapse
|
15
|
Zhang X, Sun Y, Dong X, Zhou J, Sun F, Han T, Lei P, Mao R, Guo X, Wang Q, Li P, Qu T, Huang J, Li L, Huang T, Zhong Y, Gu J. Mitochondrial DNA and genomic DNA ratio in embryo culture medium is not a reliable predictor for in vitro fertilization outcome. Sci Rep 2019; 9:5378. [PMID: 30926852 PMCID: PMC6441050 DOI: 10.1038/s41598-019-41801-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/13/2019] [Indexed: 02/05/2023] Open
Abstract
To investigate the ratio of mitochondrial DNA to genomic DNA (mt/gDNA) in embryo culture medium as a possible predictor for embryonic development and pregnancy outcome, we collected a total of 93 embryo biopsy specimens from 52 women at the corresponding Day 3 (D3) and Day 5 (D5) embryo culture medium of in vitro fertilization. With the multiple annealing and looping-based amplification cycles method of next-generation sequencing for whole genome amplification, we examined the karyotype of the biopsy samples and the mt/gDNA ratio in the culture medium. Results showed that the ratio of mt/gDNA had an upward trend with decreasing trophectoderm levels with no significant difference. At the same time, from D3 to D5, the mt/gDNA ratio in the medium of embryos that failed to become blastocysts showed an upward trend, and the mt/gDNA ratio of medium from embryos that reached blastulation with successful pregnancy showed a decreasing trend, but the differences were not statistically significant. We conclude that there is a certain correlation between mt/gDNA ratio and early embryonic development, but it does not reach a level that can be used as a clinical predictor.
Collapse
Affiliation(s)
- Xinyue Zhang
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Yue Sun
- Department of Clinical Research, Yikon Genomics Co. Ltd., Building 26, 1698 Wangyuan Road, Fengxian District, Shanghai, 201499, China
| | - Xin Dong
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Jianming Zhou
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Fubo Sun
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Tingting Han
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Ping Lei
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Rurong Mao
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Xuzhou Guo
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Qi Wang
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Ting Qu
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Jihua Huang
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Lingxiao Li
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Tianhua Huang
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Ying Zhong
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China.
| | - Jiang Gu
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China.
- Laboratory of Molecular Pathology, Center of Molecular Diagnosis and Personalized Medicine, Provincial Key Laboratory of Infectious Diseases and Molecular Pathology, Shantou University Medical College, Shantou, China.
- Department of Pathology, Beijing University Health Science Center, Beijing, China.
| |
Collapse
|
16
|
Palozzi JM, Jeedigunta SP, Hurd TR. Mitochondrial DNA Purifying Selection in Mammals and Invertebrates. J Mol Biol 2018; 430:4834-4848. [DOI: 10.1016/j.jmb.2018.10.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/20/2018] [Accepted: 10/25/2018] [Indexed: 01/19/2023]
|
17
|
Tsai TS, St John JC. The effects of mitochondrial DNA supplementation at the time of fertilization on the gene expression profiles of porcine preimplantation embryos. Mol Reprod Dev 2018; 85:490-504. [PMID: 29663563 DOI: 10.1002/mrd.22985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/10/2018] [Indexed: 01/20/2023]
Abstract
Mitochondrial DNA (mtDNA) deficient metaphase II porcine oocytes are less likely to fertilize and more likely to arrest during preimplantation development. However, they can be supplemented with autologous populations of mitochondria at the time of fertilization, which significantly increases mtDNA copy number by the 2-cell stage due to the modulation of DNA methylation at a CpG island of the gene encoding the mtDNA-specific polymerase, POLG, and promotes preimplantation development. Although mitochondrial supplementation does not increase development rates or mtDNA copy number in oocytes with normal levels of mtDNA copy number, we tested whether this approach would also impact on chromosomal gene expression patterns in these oocytes at each stage of preimplantation development. Here, we have compared the gene expression profiles of embryos produced by mitochondrial supplementation at the time of fertilization with embryos produced by in vitro fertilization (IVF) using a panel of genes associated with different stages of preimplantation development. When compared to IVF-derived embryos, 27 (34%) genes were differentially expressed in supplemented embryos but this was restricted to one or two developmental stages. However, 53 (66%) genes were comparably expressed across all six stages and by the blastocyst stage 4 (5%) genes were differentially expressed. We conclude that additional copies of mtDNA can induce changes in gene expression at various stages of preimplantation development with the first changes occurring prior to maternal-to-zygotic transition (MZT). However, these changes appear to be transitory suggesting that some genomic resetting is taking place.
Collapse
Affiliation(s)
- Te-Sha Tsai
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Centre for Genetic Diseases, Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Justin C St John
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Centre for Genetic Diseases, Department of Molecular and Translational Science, Monash University, Clayton, Australia
| |
Collapse
|
18
|
Lima A, Burgstaller J, Sanchez-Nieto JM, Rodríguez TA. The Mitochondria and the Regulation of Cell Fitness During Early Mammalian Development. Curr Top Dev Biol 2017; 128:339-363. [PMID: 29477168 DOI: 10.1016/bs.ctdb.2017.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
From fertilization until the onset of gastrulation the early mammalian embryo undergoes a dramatic series of changes that converts a single fertilized cell into a remarkably complex organism. Much attention has been given to the molecular changes occurring during this process, but here we will review what is known about the changes affecting the mitochondria and how they impact on the energy metabolism and apoptotic response of the embryo. We will also focus on understanding what quality control mechanisms ensure optimal mitochondrial activity in the embryo, and in this way provide an overview of the importance of the mitochondria in determining cell fitness during early mammalian development.
Collapse
Affiliation(s)
- Ana Lima
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom; Cell Stress Group, MRC London Institute of Medical Sciences (LMS), London, United Kingdom
| | - Jörg Burgstaller
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom; Biotechnology in Animal Production, Department for Agrobiotechnology, IFA Tulln, Tulln, Austria
| | - Juan M Sanchez-Nieto
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
| | - Tristan A Rodríguez
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
19
|
Modulating mitochondrial quality in disease transmission: towards enabling mitochondrial DNA disease carriers to have healthy children. Biochem Soc Trans 2017; 44:1091-100. [PMID: 27528757 PMCID: PMC4984448 DOI: 10.1042/bst20160095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 12/19/2022]
Abstract
One in 400 people has a maternally inherited mutation in mtDNA potentially causing incurable disease. In so-called heteroplasmic disease, mutant and normal mtDNA co-exist in the cells of carrier women. Disease severity depends on the proportion of inherited abnormal mtDNA molecules. Families who have had a child die of severe, maternally inherited mtDNA disease need reliable information on the risk of recurrence in future pregnancies. However, prenatal diagnosis and even estimates of risk are fraught with uncertainty because of the complex and stochastic dynamics of heteroplasmy. These complications include an mtDNA bottleneck, whereby hard-to-predict fluctuations in the proportions of mutant and normal mtDNA may arise between generations. In ‘mitochondrial replacement therapy’ (MRT), damaged mitochondria are replaced with healthy ones in early human development, using nuclear transfer. We are developing non-invasive alternatives, notably activating autophagy, a cellular quality control mechanism, in which damaged cellular components are engulfed by autophagosomes. This approach could be used in combination with MRT or with the regular management, pre-implantation genetic diagnosis (PGD). Mathematical theory, supported by recent experiments, suggests that this strategy may be fruitful in controlling heteroplasmy. Using mice that are transgenic for fluorescent LC3 (the hallmark of autophagy) we quantified autophagosomes in cleavage stage embryos. We confirmed that the autophagosome count peaks in four-cell embryos and this correlates with a drop in the mtDNA content of the whole embryo. This suggests removal by mitophagy (mitochondria-specific autophagy). We suggest that modulating heteroplasmy by activating mitophagy may be a useful complement to mitochondrial replacement therapy.
Collapse
|
20
|
The role of the mtDNA set point in differentiation, development and tumorigenesis. Biochem J 2017; 473:2955-71. [PMID: 27679856 DOI: 10.1042/bcj20160008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/06/2016] [Indexed: 01/06/2023]
Abstract
Mitochondrial DNA replication is critical for maintaining mtDNA copy number to generate sufficient cellular energy that is required for development and for functional cells. In early development, mtDNA copy number is strictly regulated at different stages, and, as a result, the establishment of the mtDNA set point is required for sequential cell lineage commitment. The failure to establish the mtDNA set point results in incomplete differentiation or embryonic arrest. The regulation of mtDNA copy number during differentiation is closely associated with cellular gene expression, especially with the pluripotency network, and DNA methylation profiles. The findings from cancer research highlight the relationship between mitochondrial function, mtDNA copy number and DNA methylation in regulating differentiation. DNA methylation at exon 2 of DNA polymerase gamma subunit A (POLGA) has been shown to be a key factor, which can be modulated to change the mtDNA copy number and cell fate of differentiating and tumour cells. The present review combines multi-disciplinary data from mitochondria, development, epigenetics and tumorigenesis, which could provide novel insights for further research, especially for developmental disorders and cancers.
Collapse
|
21
|
Otasevic V, Surlan L, Vucetic M, Tulic I, Buzadzic B, Stancic A, Jankovic A, Velickovic K, Golic I, Markelic M, Korac A, Korac B. Expression patterns of mitochondrial OXPHOS components, mitofusin 1 and dynamin-related protein 1 are associated with human embryo fragmentation. Reprod Fertil Dev 2017; 28:319-27. [PMID: 25033890 DOI: 10.1071/rd13415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/23/2014] [Indexed: 12/11/2022] Open
Abstract
Developmental dysfunction in embryos, such as a lethal level of fragmentation, is assumed to be mitochondrial in origin. This study investigated the molecular basis of mitochondrial impairment in embryo fragmentation. Transcription patterns of factors that determine mitochondrial functionality: (i) components of the oxidative phosphorylation (OXPHOS) - complex I, cytochrome b, complex IV and ATP synthase; (ii) mitochondrial membrane potential (MMP); (iii) mitochondrial DNA (mtDNA) content and (iv) proteins involved in mitochondrial dynamics, mitofusin 1 (Mfn1) and dynamin related protein 1 (Drp1) were examined in six-cells Day 3 non-fragmented (control), low-fragmented (LF) and high-fragmented (HF) human embryos. Gene expression of mitochondria-encoded components of complex I and IV, cytochrome b and mtDNA were increased in HF embryos compared with control and LF embryos. In LF embryos, expression of these molecules was decreased compared with control and HF embryos. Both classes of fragmented embryos had decreased MMP compared with control. LF embryos had increased gene expression of Mfn1 accompanied by decreased expression of Drp1, while HF embryos had decreased Mfn1 expression but increased Drp1 expression. The study revealed that each improper transcriptional (in)activation of mitochondria-encoded components of the OXPHOS during early in vitro embryo development is associated with a decrease in MMP and with embryo fragmentation. The results also showed the importance of mitochondrial dynamics in fragmentation, at least in the extent of this process.
Collapse
Affiliation(s)
- Vesna Otasevic
- University of Belgrade, Department of Physiology, Institute for Biological Research 'Sinisa Stankovic', Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Lela Surlan
- The Clinic of Gynaecology and Obstetrics, Clinical Centre of Serbia, Koste Todorovica 26, 11000 Belgrade, Serbia
| | - Milica Vucetic
- University of Belgrade, Department of Physiology, Institute for Biological Research 'Sinisa Stankovic', Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Ivan Tulic
- The Clinic of Gynaecology and Obstetrics, Clinical Centre of Serbia, Koste Todorovica 26, 11000 Belgrade, Serbia
| | - Biljana Buzadzic
- University of Belgrade, Department of Physiology, Institute for Biological Research 'Sinisa Stankovic', Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Ana Stancic
- University of Belgrade, Department of Physiology, Institute for Biological Research 'Sinisa Stankovic', Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Aleksandra Jankovic
- University of Belgrade, Department of Physiology, Institute for Biological Research 'Sinisa Stankovic', Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Ksenija Velickovic
- University of Belgrade, Faculty of Biology and Centre for Electron Microscopy, Studentski trg 16, 11000 Belgrade, Serbia
| | - Igor Golic
- University of Belgrade, Faculty of Biology and Centre for Electron Microscopy, Studentski trg 16, 11000 Belgrade, Serbia
| | - Milica Markelic
- University of Belgrade, Faculty of Biology and Centre for Electron Microscopy, Studentski trg 16, 11000 Belgrade, Serbia
| | - Aleksandra Korac
- University of Belgrade, Faculty of Biology and Centre for Electron Microscopy, Studentski trg 16, 11000 Belgrade, Serbia
| | - Bato Korac
- University of Belgrade, Department of Physiology, Institute for Biological Research 'Sinisa Stankovic', Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
22
|
Campos-Chillon F, Farmerie TA, Bouma GJ, Clay CM, Carnevale EM. Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells. Reprod Fertil Dev 2017; 27:925-33. [PMID: 25786490 DOI: 10.1071/rd14472] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/18/2015] [Indexed: 11/23/2022] Open
Abstract
We hypothesised that advanced mare age is associated with follicle and oocyte gene alterations. The aims of the study were to examine quantitative and temporal differences in mRNA for LH receptor (LHR), amphiregulin (AREG) and epiregulin (EREG) in granulosa cells, phosphodiesterase (PDE) 4D in cumulus cells and PDE3A, G-protein-coupled receptor 3 (GPR3), growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15) and mitochondrial (mt) DNA in oocytes. Samples were collected from dominant follicles of Young (3-12 years) and Old (≥20 years) mares at 0, 6, 9 and 12h after administration of equine recombinant LH. LHR mRNA declined after 0h in Young mares, with no time effect in Old mares. For both ages, gene expression of AREG was elevated at 6 and 9h and EREG was expression was elevated at 9h, with higher expression in Old than Young mares. Cumulus cell PDE4D expression increased by 6h (Old) and 12h (Young). Oocyte GPR3 expression peaked at 9 and 12h in Young and Old mares, respectively. Expression of PDE3A increased at 6h, with the increase greater in oocytes from Old than Young mares at 6 and 9h. Mean GDF9 and BMP15 transcripts were higher in Young than Old, with a peak at 6h. Copy numbers of mtDNA did not vary over time in oocytes from Young mares, but a temporal decrease was observed in oocytes from Old mares. The results support an age-associated asynchrony in the expression of genes that are essential for follicular and oocyte maturation before ovulation.
Collapse
Affiliation(s)
| | - Todd A Farmerie
- Washington State University, PO Box 647520, Pullman, WA 99164, USA
| | - Gerrit J Bouma
- Colorado State University, 1693 Campus Delivery, Fort Collins, CO 80523, USA
| | - Colin M Clay
- Colorado State University, 1693 Campus Delivery, Fort Collins, CO 80523, USA
| | - Elaine M Carnevale
- Colorado State University, 1693 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
23
|
May-Panloup P, Boucret L, Chao de la Barca JM, Desquiret-Dumas V, Ferré-L'Hotellier V, Morinière C, Descamps P, Procaccio V, Reynier P. Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum Reprod Update 2016; 22:725-743. [PMID: 27562289 DOI: 10.1093/humupd/dmw028] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/15/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND There is a great inter-individual variability of ovarian ageing, and almost 20% of patients consulting for infertility show signs of premature ovarian ageing. This feature, taken together with delayed childbearing in modern society, leads to the emergence of age-related ovarian dysfunction concomitantly with the desire for pregnancy. Assisted reproductive technology is frequently inefficacious in cases of ovarian ageing, thus raising the economic, medical and societal costs of the procedures. OBJECTIVE AND RATIONAL Ovarian ageing is characterized by quantitative and qualitative alteration of the ovarian oocyte reserve. Mitochondria play a central role in follicular atresia and could be the main target of the ooplasmic factors determining oocyte quality adversely affected by ageing. Indeed, the oocyte is the richest cell of the body in mitochondria and depends largely on these organelles to acquire competence for fertilization and early embryonic development. Moreover, the oocyte ensures the uniparental transmission and stability of the mitochondrial genome across the generations. This review focuses on the role played by mitochondria in ovarian ageing and on the possible consequences over the generations. SEARCH METHODS PubMed was used to search the MEDLINE database for peer-reviewed original articles and reviews concerning mitochondria and ovarian ageing, in animal and human species. Searches were performed using keywords belonging to three groups: 'mitochondria' or 'mitochondrial DNA'; 'ovarian reserve', 'oocyte', 'ovary' or 'cumulus cells'; and 'ageing' or 'ovarian ageing'. These keywords were combined with other search phrases relevant to the topic. References from these articles were used to obtain additional articles. OUTCOMES There is a close relationship, in mammalian models and humans, between mitochondria and the decline of oocyte quality with ageing. Qualitatively, ageing-related mitochondrial (mt) DNA instability, which leads to the accumulation of mtDNA mutations in the oocyte, plays a key role in the deterioration of oocyte quality in terms of competence and of the risk of transmitting mitochondrial abnormalities to the offspring. In contrast, some mtDNA haplogroups are protective against the decline of ovarian reserve. Quantitatively, mitochondrial biogenesis is crucial during oogenesis for constituting a mitochondrial pool sufficiently large to allow normal early embryonic development and to avoid the untimely activation of mitochondrial biogenesis. Ovarian ageing also seriously affects the dynamic nature of mitochondrial biogenesis in the surrounding granulosa cells that may provide interesting alternative biomarkers of oocyte quality. WIDER IMPLICATIONS A fuller understanding of the involvement of mitochondria in cases of infertility linked to ovarian ageing would contribute to a better management of the disorder in the future.
Collapse
Affiliation(s)
- Pascale May-Panloup
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France .,PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Lisa Boucret
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France.,PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Juan-Manuel Chao de la Barca
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Valérie Desquiret-Dumas
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Véronique Ferré-L'Hotellier
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Catherine Morinière
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Philippe Descamps
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Vincent Procaccio
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Pascal Reynier
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| |
Collapse
|
24
|
Yamada M, Emmanuele V, Sanchez-Quintero MJ, Sun B, Lallos G, Paull D, Zimmer M, Pagett S, Prosser RW, Sauer MV, Hirano M, Egli D. Genetic Drift Can Compromise Mitochondrial Replacement by Nuclear Transfer in Human Oocytes. Cell Stem Cell 2016; 18:749-754. [PMID: 27212703 DOI: 10.1016/j.stem.2016.04.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/04/2016] [Accepted: 04/12/2016] [Indexed: 12/14/2022]
Abstract
Replacement of mitochondria through nuclear transfer between oocytes of two different women has emerged recently as a strategy for preventing inheritance of mtDNA diseases. Although experiments in human oocytes have shown effective replacement, the consequences of small amounts of mtDNA carryover have not been studied sufficiently. Using human mitochondrial replacement stem cell lines, we show that, even though the low levels of heteroplasmy introduced into human oocytes by mitochondrial carryover during nuclear transfer often vanish, they can sometimes instead result in mtDNA genotypic drift and reversion to the original genotype. Comparison of cells with identical oocyte-derived nuclear DNA but different mtDNA shows that either mtDNA genotype is compatible with the nucleus and that drift is independent of mitochondrial function. Thus, although functional replacement of the mitochondrial genome is possible, even low levels of heteroplasmy can affect the stability of the mtDNA genotype and compromise the efficacy of mitochondrial replacement.
Collapse
Affiliation(s)
- Mitsutoshi Yamada
- The New York Stem Cell Foundation Research Institute, New York, NY 10032, USA
| | - Valentina Emmanuele
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Bruce Sun
- The New York Stem Cell Foundation Research Institute, New York, NY 10032, USA
| | - Gregory Lallos
- The New York Stem Cell Foundation Research Institute, New York, NY 10032, USA
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, New York, NY 10032, USA
| | - Matthew Zimmer
- The New York Stem Cell Foundation Research Institute, New York, NY 10032, USA
| | - Shardonay Pagett
- The New York Stem Cell Foundation Research Institute, New York, NY 10032, USA
| | - Robert W Prosser
- Center for Women's Reproductive Care, College of Physicians and Surgeons, Columbia University, New York, NY 10019, USA; Department of Obstetrics and Gynecology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Mark V Sauer
- Center for Women's Reproductive Care, College of Physicians and Surgeons, Columbia University, New York, NY 10019, USA; Department of Obstetrics and Gynecology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA.
| | - Dieter Egli
- The New York Stem Cell Foundation Research Institute, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, Department of Pediatrics, New York, NY 10032, USA.
| |
Collapse
|
25
|
Restoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency. Sci Rep 2016; 6:23229. [PMID: 26987907 PMCID: PMC4796791 DOI: 10.1038/srep23229] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/03/2016] [Indexed: 11/08/2022] Open
Abstract
An increasing number of women fail to achieve pregnancy due to either failed fertilization or embryo arrest during preimplantation development. This often results from decreased oocyte quality. Indeed, reduced mitochondrial DNA copy number (mitochondrial DNA deficiency) may disrupt oocyte quality in some women. To overcome mitochondrial DNA deficiency, whilst maintaining genetic identity, we supplemented pig oocytes selected for mitochondrial DNA deficiency, reduced cytoplasmic maturation and lower developmental competence, with autologous populations of mitochondrial isolate at fertilization. Supplementation increased development to blastocyst, the final stage of preimplantation development, and promoted mitochondrial DNA replication prior to embryonic genome activation in mitochondrial DNA deficient oocytes but not in oocytes with normal levels of mitochondrial DNA. Blastocysts exhibited transcriptome profiles more closely resembling those of blastocysts from developmentally competent oocytes. Furthermore, mitochondrial supplementation reduced gene expression patterns associated with metabolic disorders that were identified in blastocysts from mitochondrial DNA deficient oocytes. These results demonstrate the importance of the oocyte’s mitochondrial DNA investment in fertilization outcome and subsequent embryo development to mitochondrial DNA deficient oocytes.
Collapse
|
26
|
St John JC. Mitochondrial DNA copy number and replication in reprogramming and differentiation. Semin Cell Dev Biol 2016; 52:93-101. [PMID: 26827792 DOI: 10.1016/j.semcdb.2016.01.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/11/2016] [Accepted: 01/21/2016] [Indexed: 11/26/2022]
Abstract
Until recently, it was thought that the role of the mitochondrial genome was confined to encoding key proteins that generate ATP through the process of oxidative phosphorylation in the electron transfer chain. However, with increasing new evidence, it is apparent that the mitochondrial genome has a major role to play in a number of diseases and phenotypes. For example, mitochondrial variants and copy number have been implicated in the processes of fertilisation outcome and development and the onset of tumorigenesis. On the other hand, mitochondrial DNA (mtDNA) haplotypes have been implicated in a variety of diseases and most likely account for the adaptation that our ancestors achieved in order that they were fit for their environments. The mechanisms, which enable the mitochondrial genome to either protect or promote the disease phenotype, require further elucidation. However, there appears to be significant 'crosstalk' between the chromosomal and mitochondrial genomes that enable this to take place. One such mechanism is the regulation of DNA methylation by mitochondrial DNA, which is often perturbed in reprogrammed cells that have undergone dedifferentiation and affects mitochondrial DNA copy number. Furthermore, it appears that the mitochondrial genome interacts with the chromosomal genome to regulate the transcription of key genes at certain stages during development. Additionally, the mitochondrial genome can accumulate a series of mtDNA variants, which can lead to diseases such as cancer. It is likely that a combination of certain mitochondrial variants and aberrant patterns of mtDNA copy number could indeed account for many diseases that have previously been unaccounted for. This review focuses on the role that the mitochondrial genome plays especially during early stages of development and in cancer.
Collapse
Affiliation(s)
- Justin C St John
- Centre for Genetic Diseases, Hudson Institute of Medical Research, and the Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, VIC 3168, Australia.
| |
Collapse
|
27
|
Lee WTY, St John J. The control of mitochondrial DNA replication during development and tumorigenesis. Ann N Y Acad Sci 2015; 1350:95-106. [PMID: 26335356 DOI: 10.1111/nyas.12873] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial DNA (mtDNA) copy number is strictly regulated during development and tumorigenesis. Pluripotent stem cells and cancer stem-like cells use glycolysis for energy metabolism, as they possess low mtDNA copy number, which promotes cell proliferation. As pluripotent stem cells can differentiate into all cell types of the body, they establish the mtDNA set point during early development, maintaining mtDNA copy number at low levels but enabling differentiating cells to acquire the appropriate numbers of mtDNA copy to meet their specific demands for OXPHOS-derived ATP, as they become specialized cells. This process is mediated by changes to DNA methylation at exon 2 of the catalytic subunit of the mitochondrial-specific polymerase, POLGA. Cancer stem-like cells, however, are hypermethylated and maintain low mtDNA copy number, resulting in their dependence on aerobic glycolysis. Their hypermethylation at exon 2 of POLGA also promotes their multipotent state. As a result, cancer cells are unable to increase their mtDNA content and differentiate into specific lineages unless they are treated with DNA demethylation agents or partially depleted of their mtDNA. This review describes these processes in depth and argues that DNA methylation of POLGA is instrumental in the fate of pluripotent stem cells and cancer cells.
Collapse
Affiliation(s)
- William T Y Lee
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Victoria, Australia
| | - Justin St John
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Victoria, Australia
| |
Collapse
|
28
|
Lopez-Jaramillo P, Gomez-Arbelaez D, Sotomayor-Rubio A, Mantilla-Garcia D, Lopez-Lopez J. Maternal undernutrition and cardiometabolic disease: a Latin American perspective. BMC Med 2015; 13:41. [PMID: 25858591 PMCID: PMC4346113 DOI: 10.1186/s12916-015-0293-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/12/2015] [Indexed: 02/07/2023] Open
Abstract
The current epidemic of obesity and cardiometabolic diseases in developing countries is described as being driven by socioeconomic inequalities. These populations have a greater vulnerability to cardiometabolic diseases due to the discrepancy between the maternal undernutrition and its consequence, low-birth weight progeny, and the subsequent modern lifestyles which are associated with socioeconomic and environmental changes that modify dietary habits, discourage physical activity and encourage sedentary behaviors. Maternal undernutrition can generate epigenetic modifications, with potential long-term consequences. Throughout life, people are faced with the challenge of adapting to changes in their environment, such as excessive intake of high energy density foods and sedentary behavior. However, a mismatch between conditions experienced during fetal programming and current environmental conditions will make adaptation difficult for them, and will increase their susceptibility to obesity and cardiovascular diseases. It is important to conduct research in the Latin American context, in order to define the best strategies to prevent the epidemic of cardiometabolic diseases in the region.
Collapse
|
29
|
Steffann J, Monnot S, Bonnefont JP. mtDNA mutations variously impact mtDNA maintenance throughout the human embryofetal development. Clin Genet 2015; 88:416-24. [PMID: 25523230 DOI: 10.1111/cge.12557] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/08/2014] [Accepted: 12/16/2014] [Indexed: 12/31/2022]
Abstract
Mitochondria are the largest generator of ATP in the cell. It is therefore expected that energy-requiring processes such as oocyte maturation, early embryonic or fetal development, would be adversely impacted in case of mitochondrial deficiency. Human mitochondrial DNA (mtDNA) mutations constitute a spontaneous model of mitochondrial failure and offer the opportunity to study the consequences of energetic defects over fertility and embryofetal development. This review provides an update on the mtDNA metabolism in the early preimplantation embryo, and compiles data showing the impact of mtDNA mutations over mtDNA segregation. Despite convincing evidences about the essential role of mitochondria in oogenesis and preimplantation development, no correlation between the presence of a mtDNA mutation and fertilization failure, impaired oocyte quality, or embryofetal development arrest was found. In some cases, mutant cells might upregulate their mitochondrial content to overcome the bioenergetic defects induced by mtDNA mutations, and might escape negative selection. Finally we discuss some of the clinical consequences of these observations.
Collapse
Affiliation(s)
- J Steffann
- Université Paris-Descartes, Sorbonne Paris Cité, Institut Imagine and INSERM U1163, Hôpital Necker-Enfants Malades, Paris, France
| | - S Monnot
- Université Paris-Descartes, Sorbonne Paris Cité, Institut Imagine and INSERM U1163, Hôpital Necker-Enfants Malades, Paris, France
| | - J-P Bonnefont
- Université Paris-Descartes, Sorbonne Paris Cité, Institut Imagine and INSERM U1163, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
30
|
Karaa A, Goldstein A. The spectrum of clinical presentation, diagnosis, and management of mitochondrial forms of diabetes. Pediatr Diabetes 2015; 16:1-9. [PMID: 25330715 DOI: 10.1111/pedi.12223] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 01/21/2023] Open
Abstract
Primary mitochondrial diseases refer to a group of heterogeneous and complex genetic disorders affecting 1:5000 people. The true prevalence is anticipated to be even higher because of the complexity of achieving a diagnosis in many patients who present with multisystemic complaints ranging from infancy to adulthood. Diabetes is a prominent feature of several of these disorders which might be overlooked by the endocrinologist. We here review mitochondrial disorders and describe the phenotypic and pathogenetic differences between mitochondrial diabetes mellitus (mDM) and other more common forms of diabetes mellitus.
Collapse
Affiliation(s)
- Amel Karaa
- Neurogenetics Clinic, Neurology and Clinical Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
31
|
Downregulation of gene expression and activity of GRIM-19 affects mouse oocyte viability, maturation, embryo development and implantation. J Assist Reprod Genet 2015; 32:461-70. [PMID: 25561158 DOI: 10.1007/s10815-014-0413-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022] Open
Abstract
PURPOSE To investigate the expression of GRIM-19 (Gene associated with retinoid-interferon-induced mortality 19) in mouse oocytes and preimplantation embryos, and to study the effect of GRIM-19 on the developmental competence of mouse oocytes and embryos. METHODS GRIM-19 was evaluated at both mRNA and protein levels. The expression of GRIM-19 gene was downregulated in mouse oocytes cultured in vitro by specific small interfering RNA (siRNA) injection, while the activity of GRIM-19 was decreased by microinjection of a GRIM-19 antibody into the cytoplasm of germinal vesicle (GV) oocytes. Oocytes matured in vitro were then fertilized by intracytoplasmic sperm injection (ICSI), followed by observation and evaluation of fertilization rate, cleavage rate, blastocyst formation rate and implantation rate. RESULTS GRIM-19 is expressed throughout oocyte maturation and preimplantation embryo development stages. GRIM-19 was localized primarily in the cytoplasm of all cells examined. Downregulation of gene expression and activity of GRIM-19 resulted in decreased oocyte viability, potency of oocyte maturation, embryo development and implantation. CONCLUSIONS GRIM-19 may play important roles in mouse oogenesis and early embryonic development and implantation.
Collapse
|
32
|
Stigliani S, Persico L, Lagazio C, Anserini P, Venturini PL, Scaruffi P. Mitochondrial DNA in Day 3 embryo culture medium is a novel, non-invasive biomarker of blastocyst potential and implantation outcome. Mol Hum Reprod 2014; 20:1238-46. [PMID: 25232043 DOI: 10.1093/molehr/gau086] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In assisted reproduction technology, embryo competence is routinely evaluated on morphological criteria. Over the last decade, efforts in improving non-invasive embryo assessment have looked into the secretome of embryos. Human embryos release genomic DNA (gDNA) and mitochondrial DNA (mtDNA) into the culture medium, and the mtDNA/gDNA ratio is significantly correlated with embryo fragmentation. Here, we investigate whether mtDNA/gDNA ratio in embryo spent medium is correlated with blastulation potential and implantation. The mtDNA/gDNA ratio was assessed in 699 Day 3 culture media by quantitative polymerase chain reaction (qPCR) to investigate its correlation with embryo morphology, blastocyst development and implantation. A logistic regression model evaluated whether mtDNA/gDNA ratio in the secretome may improve the prediction of blastulation. We found that embryos that successfully developed into blastocysts exhibited a significantly higher mtDNA/gDNA ratio in the culture medium compared with those that arrest (P = 0.0251), and mtDNA/gDNA, combined with morphological grading, has the potential to predict blastulation better than morphology alone (P = 0.02). Moreover, mtDNA/gDNA ratio was higher in the media from good-quality embryos that reached the full blastocyst stage on Day 5 compared with those that developed more slowly (P < 0.0001). With respect to blastocyst morphology, higher trophectoderm quality was associated with a higher mtDNA/gDNA ratio in the culture medium. Finally, a high mtDNA/gDNA ratio in spent medium was associated with successful implantation outcome (P = 0.0452) of good-quality embryos. In summary, the mtDNA/gDNA ratio in the Day 3 embryo secretome, in combination with morphological grading, may be a novel, non-invasive, early biomarker to improve identification of viable embryos with high developmental potential.
Collapse
Affiliation(s)
- S Stigliani
- UOS Physiopathology of Human Reproduction, IRCCS AOU San Martino-IST, Largo R. Benzi, 10, 16132 Genoa, Italy
| | - L Persico
- Department of Economics and Business Studies, University of Genoa, Genoa, Italy
| | - C Lagazio
- Department of Economics and Business Studies, University of Genoa, Genoa, Italy
| | - P Anserini
- UOS Physiopathology of Human Reproduction, IRCCS AOU San Martino-IST, Largo R. Benzi, 10, 16132 Genoa, Italy
| | - P L Venturini
- UOS Physiopathology of Human Reproduction, IRCCS AOU San Martino-IST, Largo R. Benzi, 10, 16132 Genoa, Italy University of Genoa, Genoa, Italy
| | - P Scaruffi
- UOS Physiopathology of Human Reproduction, IRCCS AOU San Martino-IST, Largo R. Benzi, 10, 16132 Genoa, Italy
| |
Collapse
|
33
|
Bromfield JJ. Seminal fluid and reproduction: much more than previously thought. J Assist Reprod Genet 2014; 31:627-36. [PMID: 24830788 DOI: 10.1007/s10815-014-0243-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/22/2014] [Indexed: 11/26/2022] Open
Abstract
The influence of seminal plasma on the cytokine and immune uterine environment is well characterised in mice and humans, while the effects of disruption to uterine seminal plasma exposure on pregnancy and offspring health is becoming more clearly understood. The cellular and molecular environment of the uterus during the pre- and peri-implantation period of early pregnancy is critical for implantation success and optimal foetal and placental development. Perturbations to this environment not only have consequences for the success of pregnancy and neonatal health and viability, but can also drive adverse health outcomes in the offspring after birth, particularly the development of metabolic disorders such as obesity, hypertension and insulin resistance. It is now reported that an absence of seminal plasma at conception in mice promotes increased fat accumulation, altered metabolism and hypertension in offspring. The evidence reviewed here demonstrates that seminal plasma is not simply a transport medium for sperm, but acts also as a key regulator of the female tract environment providing optimal support for the developing embryo and benefiting future health of offspring.
Collapse
Affiliation(s)
- John J Bromfield
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA,
| |
Collapse
|
34
|
Rapid mitochondrial DNA segregation in primate preimplantation embryos precedes somatic and germline bottleneck. Cell Rep 2013; 1:506-15. [PMID: 22701816 DOI: 10.1016/j.celrep.2012.03.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timing and mechanisms of mitochondrial DNA (mtDNA) segregation and transmission in mammals are poorly understood. Genetic bottleneck in female germ cells has been proposed as the main phenomenon responsible for rapid intergenerational segregation of heteroplasmic mtDNA. We demonstrate here that mtDNA segregation occurs during primate preimplantation embryogenesis resulting in partitioning of mtDNA variants between daughter blastomeres. A substantial shift toward homoplasmy occurred in fetuses and embryonic stem cells (ESCs) derived from these heteroplasmic embryos. We also observed a wide range of heteroplasmic mtDNA variants distributed in individual oocytes recovered from these fetuses. Thus, we present here evidence for a previously unknown mtDNA segregation and bottleneck during preimplantation embryo development, suggesting that return to the homoplasmic condition can occur during development of an individual organism from the zygote to birth, without a passage through the germline.
Collapse
|
35
|
Monnot S, Samuels DC, Hesters L, Frydman N, Gigarel N, Burlet P, Kerbrat V, Lamazou F, Frydman R, Benachi A, Feingold J, Rotig A, Munnich A, Bonnefont JP, Steffann J. Mutation dependance of the mitochondrial DNA copy number in the first stages of human embryogenesis. Hum Mol Genet 2013; 22:1867-72. [DOI: 10.1093/hmg/ddt040] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
36
|
Takeo S, Goto H, Kuwayama T, Monji Y, Iwata H. Effect of maternal age on the ratio of cleavage and mitochondrial DNA copy number in early developmental stage bovine embryos. J Reprod Dev 2012; 59:174-9. [PMID: 23269452 PMCID: PMC3934204 DOI: 10.1262/jrd.2012-148] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Age-associated deterioration in both the quality and quantity of mitochondria occurs in older women. The main aim of this study was to examine the effect of age on mitochondrial DNA copy number (mtDNA number) in early developmental stage bovine embryos as well as the dynamics of mtDNA number during early embryo development. Real-time PCR was used to determine mtDNA number. In vitro-produced embryos 48 h after insemination derived from Japanese black cows, ranging in age from 25 to 209 months were categorized based on their cleavage status. There was an overall negative relationship between the age of the cow and cleavage status, to the extent that the ratio of embryos cleaved over the 4-cell stage was greater in younger cows. The mtDNA number did not differ among the cleaved status of embryos. In the next experiment, oocytes collected from each donor cow were divided into 2 groups containing 10 oocytes each, in order to compare the mtDNA number of mature oocytes and early developmental stage embryos within individuals. Upon comparing the mtDNA number between oocytes at the M2 stage and early developmental stage 48 h post insemination, mtDNA number was found to decrease in most cows, but was found to increase in some cows. In conclusion, age affects the cleaving ability of oocytes, and very old cows (> 180 months) tend to have lower mtDNA numbers in their oocytes. The change in mtDNA number during early development varied among individual cows, although overall, it showed a tendency to decrease.
Collapse
Affiliation(s)
- Shun Takeo
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | | | | | | | | |
Collapse
|
37
|
Kujjo LL, Perez GI. Ceramide and mitochondrial function in aging oocytes: joggling a new hypothesis and old players. Reproduction 2012; 143:1-10. [DOI: 10.1530/rep-11-0350] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Maternal aging adversely affects oocyte quality (function and developmental potential) and consequently lowers pregnancy rates while increasing spontaneous abortions. Substantial evidence, especially from egg donation studies, implicates the decreased quality of an aging oocyte as a major factor in the etiology of female infertility. Nevertheless, the cellular and molecular mechanisms responsible for the decreased oocyte quality with advanced maternal aging are not fully characterized. Herein we present information in the published literature and our own data to support the hypothesis that during aging induced decreases in mitochondrial ceramide levels and associated alterations in mitochondrial structure and function are prominent elements contributing to reduced oocyte quality. Hence, by examining the molecular determinants that underlie impairments in oocyte mitochondria, we expect to sieve to a better understanding of the mechanistic anatomy of oocyte aging.
Collapse
|
38
|
Yabuuchi A, Beyhan Z, Kagawa N, Mori C, Ezoe K, Kato K, Aono F, Takehara Y, Kato O. Prevention of mitochondrial disease inheritance by assisted reproductive technologies: prospects and challenges. Biochim Biophys Acta Gen Subj 2011; 1820:637-42. [PMID: 22085724 DOI: 10.1016/j.bbagen.2011.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 10/22/2011] [Accepted: 10/29/2011] [Indexed: 02/04/2023]
Abstract
BACKGROUND Mitochondrial diseases are caused by the mutations in both nuclear and mitochondrial DNA (mtDNA) and the treatment options for patients who have mitochondrial disease are rather limited. Mitochondrial DNA is transmitted maternally and does not follow a Mendelian pattern of inheritance. Since reliable and predictable detection of mitochondrial disorders in embryos and oocytes is unattainable at present, an alternative approach to this problem has emerged as partial or complete replacement of mutated mtDNA with the wild-type mtDNA through embryo manipulations. Currently available methods to achieve this goal are germinal vesicle transfer (GVT), metaphase chromosome transfer (CT), pronuclear transfer (PNT) and ooplasmic transfer (OT). SCOPE OF REVIEW We summarize the state of the art regarding these technologies and discuss the implications of recent advances in the field for clinical practice. MAJOR CONCLUSIONS CT, PNT and GVT techniques hold promise to prevent transmission of mutant mtDNA through ARTs. However, it is clear that mtDNA heteroplasmy in oocytes, embryos and offspring produced by these methods remains as a legitimate concern. GENERAL SIGNIFICANCE New approaches to eliminate transmission of mutant mtDNA certainly need to be explored in order to bring the promise of clinical application for the treatment of mitochondrial disorders. This article is part of a Special Issue entitled Biochemistry of Mitochondria, Life and Intervention 2010.
Collapse
Affiliation(s)
- Akiko Yabuuchi
- Advanced medical research institute of Fertility, Kato Ladies Clinic, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chiaratti MR, Meirelles FV, Wells D, Poulton J. Therapeutic treatments of mtDNA diseases at the earliest stages of human development. Mitochondrion 2011; 11:820-8. [DOI: 10.1016/j.mito.2010.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 11/29/2010] [Indexed: 11/25/2022]
|
40
|
Jiang Y, Kelly R, Peters A, Fulka H, Dickinson A, Mitchell DA, St. John JC. Interspecies somatic cell nuclear transfer is dependent on compatible mitochondrial DNA and reprogramming factors. PLoS One 2011; 6:e14805. [PMID: 21556135 PMCID: PMC3083390 DOI: 10.1371/journal.pone.0014805] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 03/16/2011] [Indexed: 12/04/2022] Open
Abstract
Interspecies somatic cell nuclear transfer (iSCNT) involves the transfer of a nucleus or cell from one species into the cytoplasm of an enucleated oocyte from another. Once activated, reconstructed oocytes can be cultured in vitro to blastocyst, the final stage of preimplantation development. However, they often arrest during the early stages of preimplantation development; fail to reprogramme the somatic nucleus; and eliminate the accompanying donor cell's mitochondrial DNA (mtDNA) in favour of the recipient oocyte's genetically more divergent population. This last point has consequences for the production of ATP by the electron transfer chain, which is encoded by nuclear and mtDNA. Using a murine-porcine interspecies model, we investigated the importance of nuclear-cytoplasmic compatibility on successful development. Initially, we transferred murine fetal fibroblasts into enucleated porcine oocytes, which resulted in extremely low blastocyst rates (0.48%); and failure to replicate nuclear DNA and express Oct-4, the key marker of reprogramming. Using allele specific-PCR, we detected peak levels of murine mtDNA at 0.14±0.055% of total mtDNA at the 2-cell embryo stage and then at ever-decreasing levels to the blastocyst stage (<0.001%). Furthermore, these embryos had an overall mtDNA profile similar to porcine embryos. We then depleted porcine oocytes of their mtDNA using 10 µM 2′,3′-dideoxycytidine and transferred murine somatic cells along with murine embryonic stem cell extract, which expressed key pluripotent genes associated with reprogramming and contained mitochondria, into these oocytes. Blastocyst rates increased significantly (3.38%) compared to embryos generated from non-supplemented oocytes (P<0.01). They also had significantly more murine mtDNA at the 2-cell stage than the non-supplemented embryos, which was maintained throughout early preimplantation development. At later stages, these embryos possessed 49.99±2.97% murine mtDNA. They also exhibited an mtDNA profile similar to murine preimplantation embryos. Overall, these data demonstrate that the addition of species compatible mtDNA and reprogramming factors improves developmental outcomes for iSCNT embryos.
Collapse
Affiliation(s)
- Yan Jiang
- Mitochondrial and Reproductive Genetics Group, Clinical Sciences Research Institute, Warwick Medical School, Coventry, United Kingdom
- Mitochondrial and Reproductive Genetics Group, The Medical School, The University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Richard Kelly
- Mitochondrial and Reproductive Genetics Group, Clinical Sciences Research Institute, Warwick Medical School, Coventry, United Kingdom
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Victoria, Australia
| | - Amy Peters
- Mitochondrial and Reproductive Genetics Group, Clinical Sciences Research Institute, Warwick Medical School, Coventry, United Kingdom
- Mitochondrial and Reproductive Genetics Group, The Medical School, The University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Helena Fulka
- Mitochondrial and Reproductive Genetics Group, Clinical Sciences Research Institute, Warwick Medical School, Coventry, United Kingdom
- Department of Biology of Reproduction, Institute of Animal Science, Prague, Czech Republic
| | - Adam Dickinson
- Mitochondrial and Reproductive Genetics Group, Clinical Sciences Research Institute, Warwick Medical School, Coventry, United Kingdom
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Victoria, Australia
| | - Daniel A. Mitchell
- Mitochondrial and Reproductive Genetics Group, Clinical Sciences Research Institute, Warwick Medical School, Coventry, United Kingdom
| | - Justin C. St. John
- Mitochondrial and Reproductive Genetics Group, Clinical Sciences Research Institute, Warwick Medical School, Coventry, United Kingdom
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Victoria, Australia
- Mitochondrial and Reproductive Genetics Group, The Medical School, The University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Gigarel N, Hesters L, Samuels DC, Monnot S, Burlet P, Kerbrat V, Lamazou F, Benachi A, Frydman R, Feingold J, Rotig A, Munnich A, Bonnefont JP, Frydman N, Steffann J. Poor correlations in the levels of pathogenic mitochondrial DNA mutations in polar bodies versus oocytes and blastomeres in humans. Am J Hum Genet 2011; 88:494-8. [PMID: 21473984 DOI: 10.1016/j.ajhg.2011.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/11/2011] [Accepted: 03/15/2011] [Indexed: 12/11/2022] Open
Abstract
Because the mtDNA amount remains stable in the early embryo until uterine implantation, early human development is completely dependent on the mtDNA pool of the mature oocyte. Both quantitative and qualitative mtDNA defects therefore may negatively impact oocyte competence or early embryonic development. However, nothing is known about segregation of mutant and wild-type mtDNA molecules during human meiosis. To investigate this point, we compared the mutant levels in 51 first polar bodies (PBs) and their counterpart (oocytes, blastomeres, or whole embryos), at risk of having (1) the "MELAS" m.3243A>G mutation in MT-TL1 (n = 30), (2) the "MERRF" m.8344A>G mutation in MT-TK (n = 15), and (3) the m.9185T>G mutation located in MT-ATP6 (n = 6). Seven out of 51 of the PBs were mutation free and had homoplasmic wild-type counterparts. In the heteroplasmic PBs, measurement of the mutant load was a rough estimate of the counterpart mutation level (R(2) = 0.52), and high mutant-load differentials between the two populations were occasionally observed (ranging from -34% to +34%). The mutant-load differentials between the PB and its counterpart were higher in highly mutated PBs, suggestive of a selection process acting against highly mutated cells during gametogenesis or early embryonic development. Finally, individual discrepancies in mutant loads between PBs and their counterparts make PB-based preconception diagnosis unreliable for the prevention of mtDNA disorder transmission. Such differences were not observed in animal models, and they emphasize the need to conduct thorough studies on mtDNA segregation in humans.
Collapse
Affiliation(s)
- Nadine Gigarel
- Université Paris-Descartes, Faculté de Médecine, Unité INSERM U781, Service de Génétique Médicale, Hôpital Necker-Enfants Malades (Assistance Publique-Hôpitaux de Paris), 149 rue de Sèvres, 75743 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wakefield SL, Lane M, Mitchell M. Impaired Mitochondrial Function in the Preimplantation Embryo Perturbs Fetal and Placental Development in the Mouse1. Biol Reprod 2011; 84:572-80. [DOI: 10.1095/biolreprod.110.087262] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
43
|
Eckert JJ, Fleming TP. The effect of nutrition and environment on the preimplantation embryo. ACTA ACUST UNITED AC 2011. [DOI: 10.1576/toag.13.1.43.27640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Harvey A, Gibson T, Lonergan T, Brenner C. Dynamic regulation of mitochondrial function in preimplantation embryos and embryonic stem cells. Mitochondrion 2010; 11:829-38. [PMID: 21168533 DOI: 10.1016/j.mito.2010.12.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 12/06/2010] [Accepted: 12/09/2010] [Indexed: 01/14/2023]
Abstract
Mitochondrial function is dependent upon regulation of biogenesis and dynamics. A number of studies have documented the importance of these organelles in both preimplantation embryos and embryonic stem cells (ESCs), however it remains unclear how mitochondria respond to their immediate microenvironment through modulation of morphology and movement, or whether perturbations in these processes will have a significant impact following differentiation/implantation. Here we review existing literature on two key aspects of nuclear-mitochondrial cross-talk and the dynamic processes involved in mediating mitochondrial function through regulation of mitochondrial biogenesis, morphology and movement, with particular emphasis on embryos and ESCs.
Collapse
Affiliation(s)
- Alexandra Harvey
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
45
|
Kameyama Y, Ohnishi H, Shimoi G, Hashizume R, Ito M, Smith LC. Asymmetrical allocation of mitochondrial DNA to blastomeres during the first two cleavages in mouse embryos. Reprod Fertil Dev 2010; 22:1247-53. [PMID: 20883650 DOI: 10.1071/rd10076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 06/21/2010] [Indexed: 12/14/2022] Open
Abstract
A recent report showed higher oxygen consumption, adenosine triphosphate (ATP) production and mitochondrial localisation in trophectoderm cells than in the inner cell mass of mouse blastocysts. We hypothesised that this phenomenon was due to the asymmetrical distribution of mitochondria in the blastomeres during the earlier stages. Oocytes, 2-cell embryos and 4-cell embryos were analysed to determine the volume, ATP content and mitochondrial DNA (mtDNA) copy number in the whole egg and individual blastomeres. Significant differences were detected in the volumes of cytoplasm and ATP contents between blastomeres from the 2-cell and 4-cell embryos. Moreover, whilst remaining stable in whole embryos, mtDNA copy number differed between blastomeres, indicating that mitochondria in oocytes are unevenly delivered into the daughter blastomeres during the first two cleavages. Although their volume and ATP content were not correlated, there was a significant correlation between volume and mtDNA copy number in 2- and 4-cell blastomeres. These results indicate that the number of mitochondria delivered to blastomeres during early cleavage is not precisely equal, suggesting that the allocation of mitochondria into daughter blastomeres is affected by uneven cytoplasmic distribution during cytokinesis in the oocyte and mother blastomeres.
Collapse
Affiliation(s)
- Yuichi Kameyama
- Tokyo University of Agriculture, Abashiri, Hokkaido 099-2493, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Chiaratti MR, Ferreira CR, Meirelles FV, Méo SC, Perecin F, Smith LC, Ferraz ML, de Sá Filho MF, Gimenes LU, Baruselli PS, Gasparrini B, Garcia JM. Xenooplasmic transfer between buffalo and bovine enables development of homoplasmic offspring. Cell Reprogram 2010; 12:231-6. [PMID: 20698765 DOI: 10.1089/cell.2009.0076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Nuclear-mitochondrial incompatibilities may be responsible for the development failure reported in embryos and fetuses produced by interspecies somatic cell nuclear transfer (iSCNT). Herein we performed xenooplasmic transfer (XOT) by introducing 10 to 15% of buffalo ooplasm into bovine zygotes to assess its effect on the persistence of buffalo mitochondrial DNA (mtDNA). Blastocyst rates were not compromised by XOT in comparison to both in vitro fertilized embryos and embryos produced by transfer of bovine ooplasm into bovine zygotes. Moreover, offspring were born after transfer of XOT embryos to recipient cows. Buffalo mtDNA introduced in zygotes was still present at the blastocyst stage (8.3 vs. 9.3%, p = 0.11), indicating unaltered heteroplasmy during early development. Nonetheless, no vestige of buffalo mtDNA was found in offspring, indicating a drift to homoplasmy during later stages of development. In conclusion, we show that the buffalo mtDNA introduced by XOT into a bovine zygote do not compromise embryo development. On the other hand, buffalo mtDNA was not inherited by offspring indicating a possible failure in the process of interspecies mtDNA replication.
Collapse
|
47
|
Abstract
Recent reports of strong selection of mitochondrial DNA (mtDNA) during transmission in animal models of mtDNA disease, and of nuclear transfer in both animal models and humans, have important scientific implications. These are directly applicable to the genetic management of mtDNA disease. The risk that a mitochondrial disorder will be transmitted is difficult to estimate due to heteroplasmy—the existence of normal and mutant mtDNA in the same individual, tissue, or cell. In addition, the mtDNA bottleneck during oogenesis frequently results in dramatic and unpredictable inter-generational fluctuations in the proportions of mutant and wild-type mtDNA. Pre-implantation genetic diagnosis (PGD) for mtDNA disease enables embryos produced by in vitro fertilization (IVF) to be screened for mtDNA mutations. Embryos determined to be at low risk (i.e., those having low mutant mtDNA load) can be preferentially transferred to the uterus with the aim of initiating unaffected pregnancies. New evidence that some types of deleterious mtDNA mutations are eliminated within a few generations suggests that women undergoing PGD have a reasonable chance of generating embryos with a lower mutant load than their own. While nuclear transfer may become an alternative approach in future, there might be more difficulties, ethical as well as technical. This Review outlines the implications of recent advances for genetic management of these potentially devastating disorders.
Collapse
|
48
|
Sha HY, Chen JQ, Chen J, Zhang PY, Wang P, Chen LP, Cheng GX, Zhu JH. Fates of donor and recipient mitochondrial DNA during generation of interspecies SCNT-derived human ES-like cells. CLONING AND STEM CELLS 2010; 11:497-507. [PMID: 19780695 DOI: 10.1089/clo.2009.0021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To investigate nuclear donor and cytoplast recipient mitochondria fate and their effects on generation of interspecies somatic cell nuclear transfer (iSCNT)-derived human embryonic stem (ES)-like cells, iSCNT embryos were reconstructed between enucleated goat oocytes and human neural stem cells (hNSCs). A total of 10.74% cleaved embryos (13/121) developed to blastocyst stage. One typical primary ES-like (tpES-like) colony and two nontypical primary ES-like (non-tpES-like) colonies designated as non-tpES-like cell-1 and non-tpES-like cell-2, respectively, were obtained from the inner cell masses of iSCNT blastocysts. The tpES-like cells expressed ESC markers. Both human and goat mtDNA could be detected in the embryos at 2-8-, 16-32-cell, and blastocyst stages, and in tpES-like colony and two non-tpES-like colonies. Human mtDNA copies per cell from embryos at two- to eight-cell stage to the three colonies maintain almost its original level, whereas 2.88 x 10(5) goat mtDNA copies per oocyte decreased to 10.8 copies per tpES-like cell, 493 copies per non-tpES-like cell-1, and 77.6 copies per non-tpES-like cell-2, resulting in 43.75% (8.4/19.2), 1.24% (6.2/499), and 14.63% (13.3/90.9) mtDNA content in tpES-like cell, non-tpES-like cell-1, and non-tpES-like cell-2 was that of nuclear donor, respectively. Human-specific Tfam and Polg mRNA could be detected in cells of the three colonies. However, tpES-like colony failed to be passaged. The mRNA level of CoxIV encoded by nuclear donor in tpES-like cell was higher than that in non-tpES-like cell, but significantly lower than that of human ESC, suggesting proper nuclear-cytoplasmic communication would not be established in tpES-like cells. Thus, the data suggest that (1) goat oocytes could reprogram human neural stem cells (hNSCs) into embryonic state and further support the inner cell mass (ICM) of iSCNT blastocyst to form tpES-like colony; (2) nuclear donor mtDNA could be replicated and maintain its original level during the reduction of recipient mitochondrial DNA copies, (3) nuclear-cytoplasmic communication and recipient mtDNA copies might affect the derivation of iSCNT-derived ES-like cells.
Collapse
Affiliation(s)
- Hong-ying Sha
- Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory for Medical Neurobiology, Fudan University, Shanghai, People's Republic of China, 200040
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Heerwagen MJR, Miller MR, Barbour LA, Friedman JE. Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol 2010; 299:R711-22. [PMID: 20631295 DOI: 10.1152/ajpregu.00310.2010] [Citation(s) in RCA: 351] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence of obesity and overweight has reached epidemic levels in the United States and developed countries worldwide. Even more alarming is the increasing prevalence of metabolic diseases in younger children and adolescents. Infants born to obese, overweight, and diabetic mothers (even when normal weight) have increased adiposity and are at increased risk of later metabolic disease. In addition to maternal glucose, hyperlipidemia and inflammation may contribute to the childhood obesity epidemic through fetal metabolic programming, the mechanisms of which are not well understood. Pregravid obesity, when combined with normal changes in maternal metabolism, may magnify increases in inflammation and blood lipids, which can have profound effects on the developing embryo and the fetus in utero. Fetal exposure to excess blood lipids, particularly saturated fatty acids, can activate proinflammatory pathways, which could impact substrate metabolism and mitochondrial function, as well as stem cell fate, all of which affect organ development and the response to the postnatal environment. Fetal and neonatal life are characterized by tremendous plasticity and the ability to respond to environmental factors (nutrients, oxygen, hormones) by altering gene expression levels via epigenetic modifications. Given that lipids act as both transcriptional activators and signaling molecules, excess fetal lipid exposure may regulate genes involved in lipid sensing and metabolism through epigenetic mechanisms. Epigenetic regulation of gene expression is characterized by covalent modifications to DNA and chromatin that alter gene expression independent of gene sequence. Epigenetic modifications can be maintained through positive and negative feedback loops, thereby creating stable changes in the expression of metabolic genes and their main transcriptional regulators. The purpose of this article is to review current literature on maternal-fetal lipid metabolism and maternal obesity outcomes and to suggest some potential mechanisms for fetal metabolic programming in key organ systems that regulate postnatal energy balance, with an emphasis on epigenetics and the intrauterine environment.
Collapse
Affiliation(s)
- Margaret J R Heerwagen
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
50
|
Igosheva N, Abramov AY, Poston L, Eckert JJ, Fleming TP, Duchen MR, McConnell J. Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PLoS One 2010; 5:e10074. [PMID: 20404917 PMCID: PMC2852405 DOI: 10.1371/journal.pone.0010074] [Citation(s) in RCA: 353] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 03/17/2010] [Indexed: 11/23/2022] Open
Abstract
The negative impact of obesity on reproductive success is well documented but the stages at which development of the conceptus is compromised and the mechanisms responsible for the developmental failure still remain unclear. Recent findings suggest that mitochondria may be a contributing factor. However to date no studies have directly addressed the consequences of maternal obesity on mitochondria in early embryogenesis. Using an established murine model of maternal diet induced obesity and a live cell dynamic fluorescence imaging techniques coupled with molecular biology we have investigated the underlying mechanisms of obesity-induced reduced fertility. Our study is the first to show that maternal obesity prior to conception is associated with altered mitochondria in mouse oocytes and zygotes. Specifically, maternal diet-induced obesity in mice led to an increase in mitochondrial potential, mitochondrial DNA content and biogenesis. Generation of reactive oxygen species (ROS) was raised while glutathione was depleted and the redox state became more oxidised, suggestive of oxidative stress. These altered mitochondrial properties were associated with significant developmental impairment as shown by the increased number of obese mothers who failed to support blastocyst formation compared to lean dams. We propose that compromised oocyte and early embryo mitochondrial metabolism, resulting from excessive nutrient exposure prior to and during conception, may underlie poor reproductive outcomes frequently reported in obese women.
Collapse
Affiliation(s)
- Natalia Igosheva
- Division of Reproduction and Endocrinology, King's College London, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|