1
|
Sharapova A, Ol'khovich M, Blokhina S, Zhirova E, Perlovich G. Solubility and partition behavior of moxifloxacin: Experimental results and thermodynamics properties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
2
|
Host bioenergetic parameters reveal cytotoxicity of anti-tuberculosis drugs undetected using conventional viability assays. Antimicrob Agents Chemother 2021; 65:e0093221. [PMID: 34339269 PMCID: PMC8448146 DOI: 10.1128/aac.00932-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
High attrition rates in tuberculosis (TB) drug development have been largely attributed to safety, which is likely due to the use of endpoint assays measuring cell viability to detect drug cytotoxicity. In drug development for cancer, metabolic, and neurological disorders and for antibiotics, cytotoxicity is increasingly being assessed using extracellular flux (XF) analysis, which measures cellular bioenergetic metabolism in real time. Here, we adopt the XF platform to investigate the cytotoxicity of drugs currently used in TB treatment on the bioenergetic metabolism of HepG2 cells, THP-1 macrophages, and human monocyte-derived macrophages (hMDMs). We found that the XF analysis reveals earlier drug-induced effects on the cells’ bioenergetic metabolism prior to cell death, measured by conventional viability assays. Furthermore, each cell type has a distinct response to drug treatment, suggesting that more than one cell type should be considered to examine cytotoxicity in TB drug development. Interestingly, chemically unrelated drugs with different modes of action on Mycobacterium tuberculosis have similar effects on the bioenergetic parameters of the cells, thus discouraging the prediction of potential cytotoxicity based on chemical structure and mode of action of new chemical entities. The clustering of the drug-induced effects on the hMDM bioenergetic parameters are reflected in the clustering of the effects of the drugs on cytokine production in hMDMs, demonstrating concurrence between the effects of the drugs on the metabolism and functioning of the macrophages. These findings can be used as a benchmark to establish XF analysis as a new tool to assay cytotoxicity in TB drug development.
Collapse
|
3
|
Tshweu LL, Shemis MA, Abdelghany A, Gouda A, Pilcher LA, Sibuyi NRS, Meyer M, Dube A, Balogun MO. Synthesis, physicochemical characterization, toxicity and efficacy of a PEG conjugate and a hybrid PEG conjugate nanoparticle formulation of the antibiotic moxifloxacin. RSC Adv 2020; 10:19770-19780. [PMID: 35520420 PMCID: PMC9054125 DOI: 10.1039/c9ra10872f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/16/2020] [Indexed: 11/21/2022] Open
Abstract
Moxifloxacin was conjugated to polyethylene glycol to segregate host cell toxicity from antimicrobial activity. The conjugate was then encapsulated into a polycaprolactone nanoparticle to assist the simultaneous delivery of multiple drugs to the site of microbial infection.
Collapse
Affiliation(s)
- Lesego L. Tshweu
- Biopolymer Modification & Therapeutics Lab
- Chemicals Cluster
- Council for Scientific and Industrial Research
- Pretoria 0001
- South Africa
| | - Mohamed A. Shemis
- Biochemistry & Molecular Biology Department
- Theodor Bilharz Research Institute
- 12411-Giza
- Egypt
| | - Aya Abdelghany
- Biochemistry & Molecular Biology Department
- Theodor Bilharz Research Institute
- 12411-Giza
- Egypt
| | - Abdullah Gouda
- Biochemistry & Molecular Biology Department
- Theodor Bilharz Research Institute
- 12411-Giza
- Egypt
| | - Lynne A. Pilcher
- Department of Chemistry
- University of Pretoria
- Pretoria
- South Africa
| | - Nicole R. S. Sibuyi
- DST/Mintek Nanotechnology Innovation Centre
- Biolabels Node
- Department of Biotechnology
- University of the Western Cape
- Cape Town
| | - Mervin Meyer
- DST/Mintek Nanotechnology Innovation Centre
- Biolabels Node
- Department of Biotechnology
- University of the Western Cape
- Cape Town
| | - Admire Dube
- Infectious Disease Nanomedicine Research Group
- School of Pharmacy
- University of the Western Cape
- Cape Town
- South Africa
| | - Mohammed O. Balogun
- Biopolymer Modification & Therapeutics Lab
- Chemicals Cluster
- Council for Scientific and Industrial Research
- Pretoria 0001
- South Africa
| |
Collapse
|
4
|
Pharmacokinetics and Drug-Drug Interactions of Lopinavir-Ritonavir Administered with First- and Second-Line Antituberculosis Drugs in HIV-Infected Children Treated for Multidrug-Resistant Tuberculosis. Antimicrob Agents Chemother 2018; 62:AAC.00420-17. [PMID: 29133558 DOI: 10.1128/aac.00420-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/13/2017] [Indexed: 11/20/2022] Open
Abstract
Lopinavir-ritonavir forms the backbone of current first-line antiretroviral regimens in young HIV-infected children. As multidrug-resistant (MDR) tuberculosis (TB) frequently occurs in young children in high-burden TB settings, it is important to identify potential interactions between MDR-TB treatment and lopinavir-ritonavir. We describe the pharmacokinetics of and potential drug-drug interactions between lopinavir-ritonavir and drugs routinely used for MDR-TB treatment in HIV-infected children. A combined population pharmacokinetic model was developed to jointly describe the pharmacokinetics of lopinavir and ritonavir in 32 HIV-infected children (16 with MDR-TB receiving treatment with combinations of high-dose isoniazid, pyrazinamide, ethambutol, ethionamide, terizidone, a fluoroquinolone, and amikacin and 16 without TB) who were established on a lopinavir-ritonavir-containing antiretroviral regimen. One-compartment models with first-order absorption and elimination for both lopinavir and ritonavir were combined into an integrated model. The dynamic inhibitory effect of the ritonavir concentration on lopinavir clearance was described using a maximum inhibition model. Even after adjustment for the effect of body weight with allometric scaling, a large variability in lopinavir and ritonavir exposure, together with strong correlations between the pharmacokinetic parameters of lopinavir and ritonavir, was detected. MDR-TB treatment did not have a significant effect on the bioavailability, clearance, or absorption rate constants of lopinavir or ritonavir. Most children (81% of children with MDR-TB, 88% of controls) achieved therapeutic lopinavir trough concentrations (>1 mg/liter). The coadministration of lopinavir-ritonavir with drugs routinely used for the treatment of MDR-TB was found to have no significant effect on the key pharmacokinetic parameters of lopinavir or ritonavir. These findings should be considered in the context of the large interpatient variability found in the present study and the study's modest sample size.
Collapse
|
5
|
Mirzaie Y, Lari J, Vahedi H, Hakimi M. Conventional and microwave-assisted synthesis of quinolone carboxylic acid derivatives. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363216120525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Lamprecht DA, Finin PM, Rahman MA, Cumming BM, Russell SL, Jonnala SR, Adamson JH, Steyn AJC. Turning the respiratory flexibility of Mycobacterium tuberculosis against itself. Nat Commun 2016; 7:12393. [PMID: 27506290 PMCID: PMC4987515 DOI: 10.1038/ncomms12393] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 06/28/2016] [Indexed: 11/21/2022] Open
Abstract
The Mycobacterium tuberculosis (Mtb) electron transport chain (ETC) has received significant attention as a drug target, however its vulnerability may be affected by its flexibility in response to disruption. Here we determine the effect of the ETC inhibitors bedaquiline, Q203 and clofazimine on the Mtb ETC, and the value of the ETC as a drug target, by measuring Mtb's respiration using extracellular flux technology. We find that Mtb's ETC rapidly reroutes around inhibition by these drugs and increases total respiration to maintain ATP levels. Rerouting is possible because Mtb rapidly switches between terminal oxidases, and, unlike eukaryotes, is not susceptible to back pressure. Increased ETC activity potentiates clofazimine's production of reactive oxygen species, causing rapid killing in vitro and in a macrophage model. Our results indicate that combination therapy targeting the ETC can be exploited to enhance killing of Mtb.
Collapse
Affiliation(s)
- Dirk A. Lamprecht
- KwaZulu Natal Research Institute for Tuberculosis and HIV (K-RITH), K-RITH Tower Building Level 3, 719 Umbilo Road, Durban 4001, South Africa
| | - Peter M. Finin
- KwaZulu Natal Research Institute for Tuberculosis and HIV (K-RITH), K-RITH Tower Building Level 3, 719 Umbilo Road, Durban 4001, South Africa
- Department of Internal Medicine, University of Pittsburgh, 1218 Scaife Hall 3550 Terrace Street, Pittsburgh, Pennsylvania 15261, USA
| | - Md. Aejazur Rahman
- KwaZulu Natal Research Institute for Tuberculosis and HIV (K-RITH), K-RITH Tower Building Level 3, 719 Umbilo Road, Durban 4001, South Africa
| | - Bridgette M. Cumming
- KwaZulu Natal Research Institute for Tuberculosis and HIV (K-RITH), K-RITH Tower Building Level 3, 719 Umbilo Road, Durban 4001, South Africa
| | - Shannon L. Russell
- KwaZulu Natal Research Institute for Tuberculosis and HIV (K-RITH), K-RITH Tower Building Level 3, 719 Umbilo Road, Durban 4001, South Africa
| | | | - John H. Adamson
- KwaZulu Natal Research Institute for Tuberculosis and HIV (K-RITH), K-RITH Tower Building Level 3, 719 Umbilo Road, Durban 4001, South Africa
| | - Adrie J. C. Steyn
- KwaZulu Natal Research Institute for Tuberculosis and HIV (K-RITH), K-RITH Tower Building Level 3, 719 Umbilo Road, Durban 4001, South Africa
- Department of Microbiology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, Alabama 35294-2170, USA
- Centres for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, Alabama 35294-2170, USA
| |
Collapse
|
7
|
Maitra A, Bates S, Kolvekar T, Devarajan PV, Guzman JD, Bhakta S. Repurposing-a ray of hope in tackling extensively drug resistance in tuberculosis. Int J Infect Dis 2016; 32:50-5. [PMID: 25809756 DOI: 10.1016/j.ijid.2014.12.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB) remains a serious concern more than two decades on from when the World Health Organization declared it a global health emergency. The alarming rise of antibiotic resistance in Mycobacterium tuberculosis, the etiological agent of TB, has made it exceedingly difficult to control the disease with the existing portfolio of anti-TB chemotherapy. The development of effective drugs with novel mechanism(s) of action is thus of paramount importance to tackle drug resistance. The development of novel chemical entities requires more than 10 years of research, requiring high-risk investment to become commercially available. Repurposing pre-existing drugs offers a solution to circumvent this mammoth investment in time and funds. In this context, several drugs with known safety and toxicity profiles have been evaluated against the TB pathogen and found to be efficacious against its different physiological states. As the endogenous targets of these drugs in the TB bacillus are most likely to be novel, there is minimal chance of cross-resistance with front-line anti-TB drugs. Also, reports that some of these drugs may potentially have multiple targets means that the possibility of the development of resistance against them is minimal. Thus repurposing existing molecules offers immense promise to tackle extensively drug-resistant TB infections.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Sadé Bates
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Trupti Kolvekar
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai, India
| | - Juan D Guzman
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Barranquilla, Colombia
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK.
| |
Collapse
|
8
|
Abstract
Tuberculosis (TB) remains a major public health problem, representing the second leading cause of death from infectious diseases globally, despite being nearly 100 % curable. Multidrug-resistant (MDR)-TB, a form of TB resistant to isoniazid and rifampicin (rifampin), two of the key first-line TB drugs, is becoming increasingly common. MDR-TB is treated with a combination of drugs that are less effective but more toxic than isoniazid and rifampicin. These drugs include fluoroquinolones, aminoglycosides, ethionamide, cycloserine, aminosalicyclic acid, linezolid and clofazimine among others. Minor adverse effects are quite common and they can be easily managed with symptomatic treatment. However, some adverse effects can be life-threatening, e.g. nephrotoxicity due to aminoglycosides, cardiotoxicity due to fluoroquinolones, gastrointestinal toxicity due to ethionamide or para-aminosalicylic acid, central nervous system toxicity due to cycloserine, etc. Baseline evaluation may help to identify patients who are at increased risk for adverse effects. Regular clinical and laboratory evaluation during treatment is very important to prevent adverse effects from becoming serious. Timely and intensive monitoring for, and management of adverse effects caused by, second-line drugs are essential components of drug-resistant TB control programmes; poor management of adverse effects increases the risk of non-adherence or irregular adherence to treatment, and may result in death or permanent morbidity. Treating physicians should have a thorough knowledge of the adverse effects associated with the use of second-line anti-TB drugs, and routinely monitor the occurrence of adverse drug reactions. In this review, we have compiled safety and tolerability information regarding second-line anti-TB drugs in both adults and children.
Collapse
|
9
|
Willby M, Sikes RD, Malik S, Metchock B, Posey JE. Correlation between GyrA substitutions and ofloxacin, levofloxacin, and moxifloxacin cross-resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2015; 59:5427-34. [PMID: 26100699 PMCID: PMC4538465 DOI: 10.1128/aac.00662-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/15/2015] [Indexed: 11/20/2022] Open
Abstract
The newer fluoroquinolones moxifloxacin (MXF) and levofloxacin (LVX) are becoming more common components of tuberculosis (TB) treatment regimens. However, the critical concentrations for testing susceptibility of Mycobacterium tuberculosis to MXF and LVX are not yet well established. Additionally, the degree of cross-resistance between ofloxacin (OFX) and these newer fluoroquinolones has not been thoroughly investigated. In this study, the MICs for MXF and LVX and susceptibility to the critical concentration of OFX were determined using the agar proportion method for 133 isolates of M. tuberculosis. Most isolates resistant to OFX had LVX MICs of >1 μg/ml and MXF MICs of >0.5 μg/ml. The presence of mutations within the gyrA quinolone resistance-determining regions (QRDR) correlated well with increased MICs, and the level of LVX and MXF resistance was dependent on the specific gyrA mutation present. Substitutions Ala90Val, Asp94Ala, and Asp94Tyr resulted in low-level MXF resistance (MICs were >0.5 but ≤2 μg/ml), while other mutations led to MXF MICs of >2 μg/ml. Based on these results, a critical concentration of 1 μg/ml is suggested for LVX and 0.5 μg/ml for MXF drug susceptibility testing by agar proportion with reflex testing for MXF at 2 μg/ml.
Collapse
Affiliation(s)
- Melisa Willby
- Laboratory Branch, Division of TB Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - R David Sikes
- Laboratory Branch, Division of TB Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Seidu Malik
- Laboratory Branch, Division of TB Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Beverly Metchock
- Laboratory Branch, Division of TB Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - James E Posey
- Laboratory Branch, Division of TB Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Pharmacokinetics of Second-Line Antituberculosis Drugs after Multiple Administrations in Healthy Volunteers. Antimicrob Agents Chemother 2015; 59:4429-35. [PMID: 25987620 DOI: 10.1128/aac.00354-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/07/2015] [Indexed: 11/20/2022] Open
Abstract
Therapeutic drug monitoring (TDM) of second-line antituberculosis drugs would allow for optimal individualized dosage adjustments and improve drug safety and therapeutic outcomes. To evaluate the pharmacokinetic (PK) characteristics of clinically relevant, multidrug treatment regimens and to improve the feasibility of TDM, we conducted an open-label, multiple-dosing study with 16 healthy subjects who were divided into two groups. Cycloserine (250 mg), p-aminosalicylic acid (PAS) (5.28 g), and prothionamide (250 mg) twice daily and pyrazinamide (1,500 mg) once daily were administered to both groups. Additionally, levofloxacin (750 mg) and streptomycin (1 g) once daily were administered to group 1 and moxifloxacin (400 mg) and kanamycin (1 g) once daily were administered to group 2. Blood samples for PK analysis were collected up to 24 h following the 5 days of drug administration. The PK parameters, including the maximum plasma concentration (Cmax) and the area under the plasma concentration-time curve during a dosing interval at steady state (AUCτ), were evaluated. The correlations between the PK parameters and the concentrations at each time point were analyzed. The mean Cmax and AUCτ, respectively, for each drug were as follows: cycloserine, 24.9 mg/liter and 242.3 mg · h/liter; PAS, 65.9 mg/liter and 326.5 mg · h/liter; prothionamide, 5.3 mg/liter and 22.1 mg · h/liter; levofloxacin, 6.6 mg/liter and 64.4 mg · h/liter; moxifloxacin, 4.7 mg/liter and 54.2 mg · h/liter; streptomycin, 42.0 mg/liter and 196.7 mg · h/liter; kanamycin, 34.5 mg/liter and 153.5 mg · h/liter. The results indicated that sampling at 1, 2.5, and 6 h postdosing is needed for TDM when all seven drugs are administered concomitantly. This study indicates that PK characteristics must be considered when prescribing optimal treatments for patients. (This study has been registered at ClinicalTrials.gov under registration no. NCT02128308.).
Collapse
|
11
|
Thee S, Garcia-Prats A, Donald P, Hesseling A, Schaaf H. Fluoroquinolones for the treatment of tuberculosis in children. Tuberculosis (Edinb) 2015; 95:229-45. [DOI: 10.1016/j.tube.2015.02.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/06/2015] [Indexed: 01/08/2023]
|
12
|
Zhu L, Yang J, Zhang Y, Wang Y, Zhang J, Zhao Y, Dong W. Prediction of Pharmacokinetics and Penetration of Moxifloxacin in Human with Intra-Abdominal Infection Based on Extrapolated PBPK Model. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:99-104. [PMID: 25729270 PMCID: PMC4342742 DOI: 10.4196/kjpp.2015.19.2.99] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/25/2014] [Accepted: 12/17/2014] [Indexed: 11/30/2022]
Abstract
The aim of this study is to develop a physiologically based pharmacokinetic (PBPK) model in intra-abdominal infected rats, and extrapolate it to human to predict moxifloxacin pharmacokinetics profiles in various tissues in intra-abdominal infected human. 12 male rats with intra-abdominal infections, induced by Escherichia coli, received a single dose of 40 mg/kg body weight of moxifloxacin. Blood plasma was collected at 5, 10, 20, 30, 60, 120, 240, 480, 1440 min after drug injection. A PBPK model was developed in rats and extrapolated to human using GastroPlus software. The predictions were assessed by comparing predictions and observations. In the plasma concentration versus time profile of moxifloxcinin rats, Cmax was 11.151 µg/mL at 5 min after the intravenous injection and t1/2 was 2.936 h. Plasma concentration and kinetics in human were predicted and compared with observed datas. Moxifloxacin penetrated and accumulated with high concentrations in redmarrow, lung, skin, heart, liver, kidney, spleen, muscle tissues in human with intra-abdominal infection. The predicted tissue to plasma concentration ratios in abdominal viscera were between 1.1 and 2.2. When rat plasma concentrations were known, extrapolation of a PBPK model was a method to predict drug pharmacokinetics and penetration in human. Moxifloxacin has a good penetration into liver, kidney, spleen, as well as other tissues in intra-abdominal infected human. Close monitoring are necessary when using moxifloxacin due to its high concentration distribution. This pathological model extrapolation may provide reference to the PK/PD study of antibacterial agents.
Collapse
Affiliation(s)
- LiQin Zhu
- Tianjin First Central Hospital, Tianjin 300192, China
| | - JianWei Yang
- Tianjin Medical University, Tianjin 300070, China
| | - Yuan Zhang
- Tianjin First Central Hospital, Tianjin 300192, China. ; Tianjin Medical University, Tianjin 300070, China
| | | | - JianLei Zhang
- Tianjin First Central Hospital, Tianjin 300192, China
| | - YuanYuan Zhao
- The 153 Central Hospital of the Chinese People's Liberation Army, Henan 450000, China
| | - WeiLin Dong
- Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
13
|
Thee S, Garcia-Prats AJ, Draper HR, McIlleron HM, Wiesner L, Castel S, Schaaf HS, Hesseling AC. Pharmacokinetics and safety of moxifloxacin in children with multidrug-resistant tuberculosis. Clin Infect Dis 2014; 60:549-56. [PMID: 25362206 DOI: 10.1093/cid/ciu868] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Moxifloxacin is currently recommended at a dose of 7.5-10 mg/kg for children with multidrug-resistant (MDR) tuberculosis, but pharmacokinetic and long-term safety data of moxifloxacin in children with tuberculosis are lacking. An area under the curve (AUC) of 40-60 µg × h/mL following an oral moxifloxacin dose of 400 mg has been reported in adults. METHODS In a prospective pharmacokinetic and safety study, children 7-15 years of age routinely receiving moxifloxacin 10 mg/kg daily as part of multidrug treatment for MDR tuberculosis in Cape Town, South Africa, for at least 2 weeks, underwent intensive pharmacokinetic sampling (predose and 1, 2, 4, 8, and either 6 or 11 hours) and were followed for safety. Assays were performed using liquid chromatography-tandem mass spectrometry, and pharmacokinetic measures calculated using noncompartmental analysis. RESULTS Twenty-three children were included (median age, 11.1 years; interquartile range [IQR], 9.2-12.0 years); 6 of 23 (26.1%) were human immunodeficiency virus (HIV)-infected. The median maximum serum concentration (Cmax), area under the curve from 0-8 hours (AUC0-8), time until Cmax (Tmax), and half-life for moxifloxacin were 3.08 (IQR, 2.85-3.82) µg/mL, 17.24 (IQR, 14.47-21.99) µg × h/mL, 2.0 (IQR, 1.0-8.0) h, and 4.14 (IQR, 3.45-6.11), respectively. Three children, all HIV-infected, were underweight for age. AUC0-8 was reduced by 6.85 µg × h/mL (95% confidence interval, -11.15 to -2.56) in HIV-infected children. Tmax was shorter with crushed vs whole tablets (P = .047). Except in 1 child with hepatotoxicity, all adverse effects were mild and nonpersistent. Mean corrected QT interval was 403 (standard deviation, 30) ms, and no prolongation >450 ms occurred. CONCLUSIONS Children 7-15 years of age receiving moxifloxacin 10 mg/kg/day as part of MDR tuberculosis treatment have low serum concentrations compared with adults receiving 400 mg moxifloxacin daily. Higher moxifloxacin dosages may be required in children. Moxifloxacin was well tolerated in children treated for MDR tuberculosis.
Collapse
Affiliation(s)
- Stephanie Thee
- Desmond Tutu Tuberculosis Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa Department of Paediatric Pneumology and Immunology, Universitätsmedizin Berlin, Charité, Germany
| | - Anthony J Garcia-Prats
- Desmond Tutu Tuberculosis Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Heather R Draper
- Desmond Tutu Tuberculosis Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Helen M McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Sandra Castel
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - H Simon Schaaf
- Desmond Tutu Tuberculosis Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Anneke C Hesseling
- Desmond Tutu Tuberculosis Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| |
Collapse
|
14
|
Moxifloxacin hydrochloride. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2014; 39:299-431. [PMID: 24794910 DOI: 10.1016/b978-0-12-800173-8.00007-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A comprehensive profile of moxifloxacin HCl with 198 references is reported. A full description including nomenclature, formulae, elemental analysis, and appearance is included. Methods of preparation for moxifloxacin HCl, its intermediates, and derivatives are fully described. In addition, the physical properties, analytical methods, stability, uses and applications, and pharmacology of moxifloxacin HCl are also discussed.
Collapse
|
15
|
Moser S, Johnsson K. Yeast Three-Hybrid Screening for Identifying Anti-Tuberculosis Drug Targets. Chembiochem 2013; 14:2239-42. [DOI: 10.1002/cbic.201300472] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Indexed: 01/03/2023]
|
16
|
Efficacy of topically delivered moxifloxacin against wound infection by Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2011; 55:2325-34. [PMID: 21343458 DOI: 10.1128/aac.01071-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wound infection is a common risk for patients with chronic nonhealing wounds, causing high morbidity and mortality. Currently, systemic antibiotic treatment is the therapy of choice, despite often leading to several side effects and the risk of an insufficient tissue penetration due to impaired blood supply. If systemically delivered, moxifloxacin penetrates well into inflammatory blister fluid, muscle, and subcutaneous adipose tissues and might therefore be a possible option for the topical treatment of skin and infected skin wounds. In this study, topical application of moxifloxacin was investigated in comparison to mupirocin, linezolid, and gentamicin using a porcine wound infection and a rat burn infection model. Both animal models were performed either by an inoculation with methicillin-resistant Staphylococcus aureus (MRSA) or Pseudomonas aeruginosa. Wound fluid, tissue, and blood samples were taken, and bacterial counts as well as the moxifloxacin concentration were determined for a 14-day follow-up. A histological comparison of the rat burn wound tissues was performed. Both strains were susceptible to moxifloxacin and gentamicin, whereas mupirocin and linezolid were effective only against MRSA. All antibiotics showed efficient reduction of bacterial counts, and except with MRSA, infected burn wounds reached bacterial counts below 10(5) CFU/g tissue. Additionally, moxifloxacin was observed to promote wound healing as determined by histologic analysis, while no induction of bacterial resistance was observed during the treatment period. The use of topical antibiotics for the treatment of infected wounds confers many benefits. Moxifloxacin is therefore an ideal candidate, due to its broad antibacterial spectrum, its high efficiency, and its potential to promote wound healing.
Collapse
|
17
|
Marriner GA, Nayyar A, Uh E, Wong SY, Mukherjee T, Via LE, Carroll M, Edwards RL, Gruber TD, Choi I, Lee J, Arora K, England KD, Boshoff HIM, Barry CE. The Medicinal Chemistry of Tuberculosis Chemotherapy. TOPICS IN MEDICINAL CHEMISTRY 2011. [DOI: 10.1007/7355_2011_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|