1
|
Kania K, Wόjcik K, Czekajewska J, Grzesiak M, Klesiewicz K. Molecular Identification of Strains within the Mycobacterium abscessus Complex and Determination of Resistance to Macrolides and Aminoglycosides. Pol J Microbiol 2023; 72:491-506. [PMID: 38103008 PMCID: PMC10725167 DOI: 10.33073/pjm-2023-048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/11/2023] [Indexed: 12/17/2023] Open
Abstract
One of the most relevant and pathogenic groups among the rapidly growing mycobacteria (RGM) is Mycobacterium abscessus complex (MABC) that includes three subspecies: M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense. The aim of this study was the analysis of prevalence of MABC among other non-tuberculous mycobacteria isolated from patients in the Malopolska Region of Poland, between 2018 and 2021, as well as determination of their subspecies and molecular mechanisms of resistance to macrolides and aminoglycosides. The incidence of MABC was 5,4% (12/223). Eight strains were classified as M. abscessus subsp. abscessus, three as M. abscessus subsp. massiliense and one M. abscessus subsp. bolletii. Molecular analysis showed resistance to macrolides for eight strains of M. abscessus subsp. abscessus associated with erm(41)T28 gene mutations. One strain of M. abscessus subsp. abscessus showed resistance to macrolides (two mutations simultaneously: in erm(41)T28 and rrl genes) and aminoglycosides (point mutation in rrs gene). One strain of M. abscessus subs. bolletii was resistant to macrolides (erm(41)T28 mutation), whereas presented no mutations for aminoglycosides. M. abscessus subsp. massiliense reveal no mutations. High clarithromycin resistance of M. abscessus, determines the urgent need for susceptibility-based treatment. Molecular determination of resistance mechanisms to aminoglycosides and macrolides enables fast and accurate targeted treatment implementation.
Collapse
Affiliation(s)
- Katarzyna Kania
- Malopolska Central Laboratory of Tuberculosis Diagnostics, The St. John Paul II Specialist Hospital, Cracow, Poland
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Cracow, Poland
| | - Katarzyna Wόjcik
- Malopolska Central Laboratory of Tuberculosis Diagnostics, The St. John Paul II Specialist Hospital, Cracow, Poland
| | - Joanna Czekajewska
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Cracow, Poland
| | - Magdalena Grzesiak
- Laboratory of Microbiology, The St. John Paul II Specialist Hospital, Cracow, Poland
| | - Karolina Klesiewicz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Cracow, Poland
| |
Collapse
|
2
|
Whole-Genome Sequencing and Drug-Susceptibility Analysis of Serial Mycobacterium abscessus Isolates from Thai Patients. BIOLOGY 2022; 11:biology11091319. [PMID: 36138798 PMCID: PMC9495349 DOI: 10.3390/biology11091319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022]
Abstract
Mycobacterium abscessus is an important pathogen that can cause serious human diseases and is difficult to treat due to antibiotic resistance. In this study, we analyzed, using whole-genome sequence (WGS) data, M. abscessus strains serially isolated from patients at various time intervals. We undertook genetic diversity analysis between subspecies, mutation-rate estimation and identification of drug-resistant mutations with minimum inhibitory concentration (MIC) analysis. Clonal isolates of M. abscessus:—subsp. abscessus (MAB) and subsp. massiliense (MMAS)—causing persistent infection through time, differed by 0−7 and 0−14 SNPs, respectively, despite being isolated 1 to 659 days apart. Two cases caused by MMAS differed by ≥102 SNPs at 350 days apart and were regarded as examples of reinfection. Isolates collected ≤7 days apart exhibited a high mutation rate (133.83 ± 0.00 SNPs/genome (5 Mb)/year for MMAS and 127.75 SNPs/genome (5 Mb)/year for MAB). Mutation rates declined in a time-dependent manner in both subspecies. Based on isolates collected > 180 days apart, MMAS had a significantly higher average mutation rate than MAB (2.89 ± 1.02 versus 0.82 ± 0.83 SNPs/genome (5 Mb)/year, (p = 0.01), respectively). All well-known drug-resistance mutations were found to be strongly associated with high MIC levels for clarithromycin and ciprofloxacin. No known mutations were identified for strains resistant to linezolid and amikacin. MAB strains in the study were susceptible to amikacin, while most MMAS strains were susceptible to clarithromycin, amikacin and linezolid. No hetero-resistance was found in the strains analyzed. Our study reports the genetic diversity and mutation rate of M. abscessus between the two major subspecies and confirms the drug resistance-associated mutations. Information about drug-resistance and associated mutations can be applied in diagnosis and patient management.
Collapse
|
3
|
Sur S, Patra T, Karmakar M, Banerjee A. Mycobacterium abscessus: insights from a bioinformatic perspective. Crit Rev Microbiol 2022:1-16. [PMID: 35696783 DOI: 10.1080/1040841x.2022.2082268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycobacterium abscessus is a nontuberculous mycobacterium, associated with broncho-pulmonary infections in individuals suffering from cystic fibrosis, bronchiectasis, and pulmonary diseases. The risk factors for transmission include biofilms, contaminated water resources, fomites, and infected individuals. M. abscessus is extensively resistant to antibiotics. To date, there is no vaccine and combination antibiotic therapy is followed. However, drug toxicities, low cure rates, and high cost of treatment make it imperfect. Over the last 20 years, bioinformatic studies on M. abscessus have advanced our understanding of the pathogen. This review integrates knowledge from the analysis of genomes, microbiomes, genomic variations, phylogeny, proteome, transcriptome, secretome, antibiotic resistance, and vaccine design to further our understanding. The utility of genome-based studies in comprehending disease progression, surveillance, tracing transmission routes, and epidemiological outbreaks on a global scale has been highlighted. Furthermore, this review underlined the importance of using computational methodologies for pinpointing factors responsible for pathogen survival and resistance. We reiterate the significance of interdisciplinary research to fight M. abscessus. In a nutshell, the outcome of computational studies can go a long way in creating novel therapeutic avenues to control M. abscessus mediated pulmonary infections.
Collapse
Affiliation(s)
- Saubashya Sur
- Postgraduate Department of Botany, Ramananda College, Bishnupur, India
| | - Tanushree Patra
- Postgraduate Department of Botany, Ramananda College, Bishnupur, India
| | - Mistu Karmakar
- Postgraduate Department of Botany, Ramananda College, Bishnupur, India
| | - Anindita Banerjee
- Postgraduate Department of Botany, Ramananda College, Bishnupur, India
| |
Collapse
|
4
|
Three cases of otitis media caused by Mycobacterium abscessus subsp. abscessus: Importance of medical treatment and efficacy of surgery. J Infect Chemother 2021; 27:1251-1257. [PMID: 33934919 DOI: 10.1016/j.jiac.2021.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/11/2021] [Accepted: 04/12/2021] [Indexed: 11/20/2022]
Abstract
This study aimed to assess the clinical presentation, antibiotic therapy, surgery, and outcomes in patients with otitis media caused by Mycobacterium abscessus subsp. abscessus and discuss the efficacy of surgery. This is a retrospective case review of three patients diagnosed with otomastoiditis caused by M. abscessus subsp. abscessus. All patients had refractory otorrhea. One patient had granulation tissue in the tympanic membrane. They received medical treatment and underwent surgery. Otorrhea was resolved several months after the initiation of long-term multiantibiotic therapy in all cases. The timing of surgery varied among patients. Before initiating antibiotic therapy, mastoidectomy was performed to achieve definitive diagnosis in two patients, and wound dehiscence developed in these patients. Two patients underwent debridement after the initiation of multiantibiotic therapy. After antibiotic administration, tympanoplasty was performed to improve hearing in one patient. All patients achieved culture negativity after treatment, and no recurrences have been noted. From three cases, it is suggested that the mainstay of treatment for M. abscessus subsp. abscessus is long-term multiantibiotic therapy, and surgery itself may have little effect on achieving ear dryness. Thus, in most patients, drug therapy should be prioritized. Considering postoperative complications, surgery before achieving ear dryness should be avoided, except in emergency cases. In addition, if the diagnosis is not confirmed by repeated bacteriological tests, mastoidectomy should be performed to collect specimens. Tympanoplasty for hearing loss or eardrum perforation is recommended after discontinuation of medications.
Collapse
|
5
|
Victoria L, Gupta A, Gómez JL, Robledo J. Mycobacterium abscessus complex: A Review of Recent Developments in an Emerging Pathogen. Front Cell Infect Microbiol 2021; 11:659997. [PMID: 33981630 PMCID: PMC8108695 DOI: 10.3389/fcimb.2021.659997] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023] Open
Abstract
Mycobacterium abscessus complex (MABC) is one of the most clinically relevant species among nontuberculous mycobacteria. MABC's prevalence has increased over the last two decades. Although these changes can be explained by improvements in microbiological and molecular techniques for identifying species and subspecies, a higher prevalence of chronic lung diseases may contribute to higher rates of MABC. High rates of antimicrobial resistance are seen in MABC, and patients experience multiple relapses with low cure rates. This review aims to integrate existing knowledge about MABC epidemiology, microbiological identification and familiarize readers with molecular mechanisms of resistance and therapeutic options for pulmonary infections with MABC.
Collapse
Affiliation(s)
- Laura Victoria
- Laboratory of Bacteriology and Mycobacteria, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia.,Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Amolika Gupta
- Pulmonary, Critical Care and Sleep Medicine Section, Yale University School of Medicine, New Haven, CT, United States
| | - Jose Luis Gómez
- Pulmonary, Critical Care and Sleep Medicine Section, Yale University School of Medicine, New Haven, CT, United States
| | - Jaime Robledo
- Laboratory of Bacteriology and Mycobacteria, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia.,Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellín, Colombia
| |
Collapse
|
6
|
Systems Genetics Approaches in Mouse Models of Group A Streptococcal Necrotizing Soft-Tissue Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33079368 DOI: 10.1007/978-3-030-57616-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Mouse models are invaluable resources for studying the pathogenesis and preclinical evaluation of therapeutics and vaccines against many human pathogens. Infections caused by group A streptococcus (GAS, Streptococcus pyogenes) are heterogeneous ranging from mild pharyngitis to severe invasive necrotizing fasciitis, a subgroup of necrotizing soft-tissue infections (NSTIs). While several strains of mice including BALB/c, C3H/HeN, CBA/J, and C57BL/10 offered significant insights, the human specificity and the interindividual variations on susceptibility or resistance to GAS infections limit their ability to mirror responses as seen in humans. In this chapter, we discuss the advanced recombinant inbred (ARI) BXD mouse model that mimics the genetic diversity as seen in humans and underpins the feasibility to map multiple genes (genetic loci) modulating GAS NSTI. GAS produces a myriad of virulence factors, including superantigens (SAg). Superantigens are potent immune toxins that activate T cells by cross-linking T cell receptors with human leukocyte antigen class-II (HLA-II) molecules expressed on antigen-presenting cells. This leads to a pro-inflammatory cytokine storm and the subsequent multiple organ damage and shock. Inbred mice are innately refractive to SAg-mediated responses. In this chapter, we discuss the versatility of the HLA-II transgenic mouse model that allowed the biological validation of known genetic associations to GAS NSTI. The combined utility of ARI-BXD and HLA-II mice as complementary approaches that offer clinically translatable insights into pathomechanisms driven by complex traits and host genetic context and novel means to evaluate the in vivo efficiency of therapies to improve outcomes of GAS NSTI are also discussed.
Collapse
|
7
|
Cheng A, Sun HY, Tsai YT, Lu PL, Lee SSJ, Lee YT, Wang YC, Liu PY, Chien JY, Hsueh PR, Chang SY, Wu UI, Sheng WH, Chen YC, Chang SC. Longitudinal non-cystic fibrosis trends of pulmonary Mycobacterium abscessus disease from 2010 to 2017: spread of the "globally successful clone" in Asia. ERJ Open Res 2021; 7:00191-2020. [PMID: 33532483 PMCID: PMC7836708 DOI: 10.1183/23120541.00191-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/30/2020] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Mycobacterium abscessus (MAB) has emerged as the predominant pulmonary non-tuberculous mycobacterial pathogen in parts of Asia, including Taiwan. The reasons for the significant increase in MAB infections in the non-cystic fibrosis (CF) populations are poorly understood. The study aimed to elucidate whether this increase is related to the spread of the globally successful clone of MAB. METHODS We performed multilocus sequence typing of 371 nonduplicated MAB pulmonary isolates from 371 patients sampled between 2010-2017 at seven hospitals across Taiwan. RESULTS In total, 183 (49.3%) isolates were M. abscessus subsp. abscessus (MAB-a), 187 (50.4%) were M. abscessus subsp. massiliense (MAB-m), and 1 (0.3%) was M. abscessus subsp. bolletii (MAB-b). MAB-a sequence type (ST)1 (23.7%) and ST127 (3.8%), followed by MAB-m ST48 (16.2%), ST117 (15.1%), ST23 (8.6%) were most common overall. Of MAB-a strains, 50 (27.3%) belonged to novel STs and 38 (10.2%) were singleton strains, while of MAB-m strains, only 10 (5.3%) were novel and 8 (2.2%) were singletons. From 2010 to 2017, the frequency of the historically dominant ST1 declined from 28.6% to 22.5%, whereas the recently emerged globally successful clonal cluster 3, ST23 and ST48, increased from 14.3% to 40.0%. CONCLUSIONS The dominance of ST1 particularly in the last 2 years of this study appears to be declining, while ST23, reported in outbreaks among CF and post-surgical cohorts across the Americas and Europe, alongside the closely related ST48, is present among non-CF populations in Taiwan. These trends need to be confirmed with further ongoing studies to track the molecular epidemiology of clinical MAB isolates worldwide.
Collapse
Affiliation(s)
- Aristine Cheng
- Dept of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yun Sun
- Dept of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Tzu Tsai
- Dept of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Liang Lu
- Dept of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Susan Shin-Jung Lee
- Dept of Internal Medicine, Dept of Pathology and Laboratory, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yi-Tzu Lee
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Dept of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Chih Wang
- Dept of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Yu Liu
- Dept of Internal Medicine, Taichung, Veterans General Hospital, Taichung, Taiwan
| | - Jung-Yien Chien
- Dept of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Ren Hsueh
- Dept of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
- Dept of Laboratory Medicine, National Taiwan University Hospital, Taiwan
| | - Shu-Yuan Chang
- Dept of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Un-In Wu
- Dept of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wang-Huei Sheng
- Dept of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yee-Chun Chen
- Dept of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shan-Chwen Chang
- Dept of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Liu D, He W, Jiang M, Zhao B, Ou X, Liu C, Xia H, Zhou Y, Wang S, Song Y, Zheng Y, Chen Q, Fan J, He G, Zhao Y. Development of a loop-mediated isothermal amplification coupled lateral flow dipstick targeting erm(41) for detection of Mycobacterium abscessus and Mycobacterium massiliense. AMB Express 2019; 9:11. [PMID: 30673881 PMCID: PMC6344564 DOI: 10.1186/s13568-019-0734-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium abscessus (M. abscessus) and Mycobacterium massiliense (M. massiliense) are major pathogens that cause post-surgical wound infection and chronic pulmonary disease. Although they are closely related subspecies of M. abscessus complex, their infections are associated with different drug-resistance and cure rate. In the present study, a loop-mediated isothermal amplification (LAMP) coupled with lateral flow dipstick (LFD) method was developed to simultaneous detect M. abscessus and M. massiliense, via specific erm(41) gene. The amplification was carried out at 65 °C for only 60 min, and the results could be visualized on a lateral flow strip. Positive results only occurred in M. abscessus and M. massiliense, no cross-reaction with other mycobacterial species was observed. Therefore, the cost-effective MABC (M. abscessus complex)–LAMP–LFD method developed here was able to correct the diagnose of M. abscessus and M. massiliense infection in a short time. Thus, this method could be used to guide clinicians in treatment of M. abscessus group infections.
Collapse
|
9
|
Lamb GS, Starke JR. Mycobacterium abscessus Infections in Children: A Review of Current Literature. J Pediatric Infect Dis Soc 2018; 7:e131-e144. [PMID: 29897511 DOI: 10.1093/jpids/piy047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022]
Abstract
There is limited literature on Mycobacterium abscessus infections in children and limited data about its diagnosis and management. The incidence of infections due to M abscessus appears to be increasing in certain populations and can be a significant cause of morbidity and mortality.Management of these infections is challenging and relies on combination antimicrobial therapy and debridement of diseased tissue, depending on the site and extent of disease. Treatment regimens often are difficult to tolerate, and the antimicrobials used can cause significant adverse effects, particularly given the long duration of therapy needed.This review summarizes the literature and includes information from our own institution's experience on pediatric M abscessus infections including the epidemiology, transmission, clinical manifestations, and the management of these infections. Adult data have been used where there are limited pediatric data. Further studies regarding epidemiology and risk factors, clinical presentation, optimal treatment, and outcomes in children are necessary.
Collapse
|
10
|
Chew KL, Cheng JWS, Hudaa Osman N, Lin RTP, Teo JWP. Predominance of clarithromycin-susceptible Mycobacterium massiliense subspecies: Characterization of the Mycobacterium abscessus complex at a tertiary acute care hospital. J Med Microbiol 2017; 66:1443-1447. [PMID: 28874233 DOI: 10.1099/jmm.0.000576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To characterize members of the Mycobacterium abscessus complex, with an emphasis on the correlation between species identification and clarithromycin associated genetic polymorphisms that contribute to inducible and constitutive macrolide resistance. PCR and sequencing analysis was used to elucidate the subspecies, erm(41) genotypes and the presence of rrl mutations. M. abscessus subsp. massiliense was the dominant subspecies (70.2 %), followed by M. abscessus subsp. abscessus (23.8 %) and M. abscessus subsp. bolletii (5.9 %). The majority of M. abscessus and M. bolletii isolates possessed T28 erm(41) sequevar and were inducibly resistant to clarithromycin. All M. massiliense carried the truncated erm(41) and were largely clarithromycin-susceptible (98.3 %). Constitutive resistance involving rrl mutations was rare and seen in only 2 isolates (2.2 %). Subspecies identification was insufficient to predict clarithromycin susceptibility and required the genetic resistance to be determined via sequencing. In our context, rrl mutations were uncommon and may not be an essential test.
Collapse
Affiliation(s)
- Ka Lip Chew
- National University Hospital, Department of Laboratory Medicine, Division of Microbiology, Singapore 119074, Republic of Singapore
| | - Janet W S Cheng
- National University Hospital, Department of Laboratory Medicine, Division of Microbiology, Singapore 119074, Republic of Singapore
| | - Nurul Hudaa Osman
- National University Hospital, Department of Laboratory Medicine, Division of Microbiology, Singapore 119074, Republic of Singapore
| | - Raymond T P Lin
- National University Hospital, Department of Laboratory Medicine, Division of Microbiology, Singapore 119074, Republic of Singapore.,National Public Health Laboratory, Ministry of Health, 3 Biopolis Drive, Synapse #05-14/16, Singapore 138623, Republic of Singapore
| | - Jeanette W P Teo
- National University Hospital, Department of Laboratory Medicine, Division of Microbiology, Singapore 119074, Republic of Singapore
| |
Collapse
|
11
|
Adekambi T, Sassi M, van Ingen J, Drancourt M. Reinstating Mycobacterium massiliense and Mycobacterium bolletii as species of the Mycobacterium abscessus complex. Int J Syst Evol Microbiol 2017; 67:2726-2730. [PMID: 28820087 DOI: 10.1099/ijsem.0.002011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TheMycobacterium abscessus complex is a group of rapidly growing, multiresistant mycobacteria previously divided into three species. Proposal for the union of Mycobacterium bolletii and Mycobacterium massiliense into one subspecies, so-called M. abscessus subsp. massiliense, created much confusion about the routine identification and reporting of M. abscessus clinical isolates for clinicians. Results derived from multigene sequencing unambiguously supported the reinstatement of M. massiliense and M. bolletii as species, culminating in the presence of erm(41)-encoded macrolide resistance in M. bolletii. Present genome-based analysis unambiguously supports the reinstatement of M. massiliense and M. bolletii as species after the average nucleotide identity values of 96.7 % for M. abscessus versus M. bolletii, and 96.4 % for M. abscessus versus M. massiliense, and the 96.6 % identity between M. bolletii and M. massiliense was put into the perspective of a larger, 28-species analysis. Accordingly, DNA-DNA hybridization values predicted by the complete rpoB gene sequencing analysis were between 68.7 and 72.3 % in this complex. These genomic data as well as the phenotypic characteristics prompted us to propose to reinstate the previously known M. massiliense and M. bolletii into two distinct species among the M. abscessus complex.
Collapse
Affiliation(s)
- Toidi Adekambi
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Mohamed Sassi
- University of Rennes 1, Inserm U835 Biochimie Pharmaceutique, Rennes, France
| | - Jakko van Ingen
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, The Netherlands
| | - Michel Drancourt
- Aix Marseille Université, URMITE, UMR 63, CNRS 7278, IRD 198, Inserm 1095, Faculté de Médecine, Marseille 13005, France
| |
Collapse
|
12
|
Llorens-Fons M, Pérez-Trujillo M, Julián E, Brambilla C, Alcaide F, Byrd TF, Luquin M. Trehalose Polyphleates, External Cell Wall Lipids in Mycobacterium abscessus, Are Associated with the Formation of Clumps with Cording Morphology, Which Have Been Associated with Virulence. Front Microbiol 2017; 8:1402. [PMID: 28790995 PMCID: PMC5524727 DOI: 10.3389/fmicb.2017.01402] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/11/2017] [Indexed: 12/28/2022] Open
Abstract
Mycobacterium abscessus is a reemerging pathogen that causes pulmonary diseases similar to tuberculosis, which is caused by Mycobacterium tuberculosis. When grown in agar medium, M. abscessus strains generate rough (R) or smooth colonies (S). R morphotypes are more virulent than S morphotypes. In searching for the virulence factors responsible for this difference, R morphotypes have been found to form large aggregates (clumps) that, after being phagocytozed, result in macrophage death. Furthermore, the aggregates released to the extracellular space by damaged macrophages grow, forming unphagocytosable structures that resemble cords. In contrast, bacilli of the S morphotype, which do not form aggregates, do not damage macrophages after phagocytosis and do not form cords. Cording has also been related to the virulence of M. tuberculosis. In this species, the presence of mycolic acids and surface-exposed cell wall lipids has been correlated with the formation of cords. The objective of this work was to study the roles of the surface-exposed cell wall lipids and mycolic acids in the formation of cords in M. abscessus. A comparative study of the pattern and structure of mycolic acids was performed on R (cording) and S (non-cording) morphotypes derived from the same parent strains, and no differences were observed between morphotypes. Furthermore, cords formed by R morphotypes were disrupted with petroleum ether (PE), and the extracted lipids were analyzed by thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry. Substantial amounts of trehalose polyphleates (TPP) were recovered as major lipids from PE extracts, and images obtained by transmission electron microscopy suggested that these lipids are localized to the external surfaces of cords and R bacilli. The structure of M. abscessus TPP was revealed to be similar to those previously described in Mycobacterium smegmatis. Although the exact role of TPP is unknown, our results demonstrated that TPP are not toxic by themselves and have a function in the formation of clumps and cords in M. abscessus, thus playing an important role in the pathogenesis of this species.
Collapse
Affiliation(s)
- Marta Llorens-Fons
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Míriam Pérez-Trujillo
- Servei de Ressonància Magnètica Nuclear and Departament de Química, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Cecilia Brambilla
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Fernando Alcaide
- Servei de Microbiologia, Hospital Universitari de Bellvitge-IDIBELL, Universitat de BarcelonaBarcelona, Spain
| | - Thomas F. Byrd
- The University of New Mexico School of Medicine, AlbuquerqueNM, United States
| | - Marina Luquin
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| |
Collapse
|
13
|
Hatakeyama S, Ohama Y, Okazaki M, Nukui Y, Moriya K. Antimicrobial susceptibility testing of rapidly growing mycobacteria isolated in Japan. BMC Infect Dis 2017; 17:197. [PMID: 28270102 PMCID: PMC5341166 DOI: 10.1186/s12879-017-2298-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/01/2017] [Indexed: 11/10/2022] Open
Abstract
Background Difficult-to-treat infections caused by rapidly growing mycobacteria (RGM) are increasingly observed in clinical settings. However, studies on antimicrobial susceptibilities and effective treatments against RGM in Japan are limited. Methods We conducted susceptibility testing of potential antimicrobial agents, including tigecycline and tebipenem, against RGM. Clinical RGM isolates were collected from a university hospital in Japan between December 2010 and August 2013. They were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and the sequencing of 16S rRNA, rpoB, and hsp65 genes. The samples were utilized for susceptibility testing using 16 antimicrobials, with frozen broth microdilution panels. Results Forty-two isolates were obtained: 13, Mycobacterium abscessus complex; 12, Mycobacterium chelonae; 9, Mycobacterium fortuitum; and 8, M. fortuitum group species other than M. fortuitum. Different antimicrobial susceptibility patterns were observed between RGM species. Clarithromycin-susceptible strain rates were determined to be 0, 62, and 100% for M. fortuitum, M. abscessus complex, and M. chelonae, respectively. M. abscessus complex (100%) and >80% M. chelonae isolates were non-susceptible, while 100% M. fortuitum group isolates were susceptible to moxifloxacin. Linezolid showed good activity against 77% M. abscessus complex, 89% M. fortuitum, and 100% M. chelonae isolates. Regardless of species, all tested isolates were inhibited by tigecycline at very low minimal inhibitory concentrations (MICs) of ≤0.5 μg/mL. MICs of tebipenem, an oral carbapenem, were ≤4 μg/mL against all M. fortuitum group isolates. Conclusions Our study demonstrates the importance of correct identification and antimicrobial susceptibility testing, including the testing of potential new agents, in the management of RGM infections.
Collapse
Affiliation(s)
- Shuji Hatakeyama
- Division of General Internal Medicine, Jichi Medical University Hospital, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan. .,Division of Infectious Diseases, Jichi Medical University Hospital, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan. .,Department of Infectious Diseases, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Yuki Ohama
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mitsuhiro Okazaki
- Department of Medical Technology, School of Health Sciences, Tokyo University of Technology, Nishikamata, Ota-ku, Tokyo, 144-8535, Japan
| | - Yoko Nukui
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Department of Infection Control and Prevention, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kyoji Moriya
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
14
|
Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Mycobacterium abscessus Subspecies According to Whole-Genome Sequencing. J Clin Microbiol 2016; 54:2982-2989. [PMID: 27682129 DOI: 10.1128/jcm.01151-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/19/2016] [Indexed: 12/22/2022] Open
Abstract
This study was undertaken to evaluate the utility of matrix-assisted laser desorption ionization-time of flight mass spectrometry with the Vitek MS Plus system for identifying Mycobacterium abscessus subspecies in order to facilitate more rapid and appropriate therapy. A total of 175 clinical M. abscessus strains were identified by whole-genome sequencing analysis: 139 Mycobacterium abscessus subsp. abscessus and 36 Mycobacterium abscessus subsp. massiliense The research-use-only (RUO) Saramis Knowledge Base database v.4.12 was modified accordingly by adding 40 M. abscessus subsp. abscessus and 19 M. abscessus subsp. massiliense reference spectra to construct subspecies SuperSpectra. A blind test, used to validate the remaining 116 isolates, yielded 99.1% (n = 115) reliability and only 0.9% (n = 1) error for subspecies identification. Among the two subspecies SuperSpectra, two specific peaks were found for M. abscessus subsp. abscessus and four specific peaks were found for M. abscessus subsp. massiliense Our study is the first to report differential peaks 3,354.4 m/z and 6,711.1 m/z, which were specific for M. abscessus subsp. massiliense Our research demonstrates the capacity of the Vitek MS RUO Saramis Knowledge Base database to identify M. abscessus at the subspecies level. Moreover, it validates the potential ease and accuracy with which it can be incorporated into the IVD system for the identification of M. abscessus subspecies.
Collapse
|
15
|
Kim YS, Yang CS, Nguyen LT, Kim JK, Jin HS, Choe JH, Kim SY, Lee HM, Jung M, Kim JM, Kim MH, Jo EK, Jang JC. Mycobacterium abscessus ESX-3 plays an important role in host inflammatory and pathological responses during infection. Microbes Infect 2016; 19:5-17. [PMID: 27637463 DOI: 10.1016/j.micinf.2016.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/02/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022]
Abstract
Mycobacterial ESX systems are often related to pathogenesis during infection. However, little is known about the function of ESX systems of Mycobacterium abscessus (Mab). This study focuses on the Mab ESX-3 cluster, which contains major genes such as esxH (Rv0288, low molecular weight protein antigen 7; CFP-7) and esxG (Rv0287, ESAT-6 like protein). An esx-3 (MAB 2224c-2234c)-deletional mutant of Mab (Δesx) was constructed and used to infect murine and human macrophages. We then investigated whether Mab Δesx modulated innate host immune responses in macrophages. Mab Δesx infection resulted in less pathological and inflammatory responses. Additionally, Δesx resulted in significantly decreased activation of inflammatory signaling and cytokine production in macrophages compared to WT. Moreover, recombinant EsxG·EsxH (rEsxGH) proteins encoded by the ESX-3 region showed synergistic enhancement of inflammatory cytokine generation in macrophages infected with Δesx. Taken together, our data suggest that Mab ESX-3 plays an important role in inflammatory and pathological responses during Mab infection.
Collapse
Affiliation(s)
- Yi Sak Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan 426-791, South Korea
| | - Loi T Nguyen
- Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Hyo Sun Jin
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Jin Ho Choe
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Soo Yeon Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Hye-Mi Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Mingyu Jung
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Jin-Man Kim
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Myung Hee Kim
- Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Ji-Chan Jang
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Molecular Mechanism of Antibiotics, Division of Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju 660-701, South Korea.
| |
Collapse
|
16
|
Antibiotic susceptibility of diverse Mycobacterium abscessus complex strains in New South Wales, Australia. Pathology 2016; 47:678-82. [PMID: 26517625 DOI: 10.1097/pat.0000000000000327] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Members of the Mycobacterium abscessus complex are emerging pathogens of increasing importance, causing both respiratory and soft tissue infections, but precise speciation is problematic. This study was performed to examine the subspecies and antibiotic susceptibility of M. abscessus complex isolates collected during 2013 at the statewide New South Wales Mycobacterium Reference Laboratory (NSW MRL), Australia. Mycobacterium abscessus subsp. abscessus accounted for more than half of all M. abscessus isolates (n = 24, 57.1%), and M. abscessus subsp. massiliense comprised the remainder of the isolates (n = 18, 42.9%). There were no M. abscessus subsp. bolletii isolates. The prevalence of antibiotic resistance to all antibiotics, apart from amikacin was high, with 26.3% of isolates being reliably susceptible to only amikacin. Most M. abscessus subsp. abscessus isolates (80%) demonstrated inducible clarithromycin resistance whereas the majority of M. abscessus subsp. massiliense isolates (94.4%) remained susceptible to clarithromycin. There was a good correlation between the erm(41) genotype and clarithromycin susceptibility results after 14 days of incubation for most isolates with only three exceptions. Further studies correlating in vitro susceptibility profiles with clinical outcomes of M. abscessus infections treated with combination antimicrobial therapy are warranted.
Collapse
|
17
|
Koh WJ, Jeong BH, Jeon K, Kim SY, Park KU, Park HY, Huh HJ, Ki CS, Lee NY, Lee SH, Kim CK, Daley CL, Shin SJ, Kim H, Kwon OJ. Oral Macrolide Therapy Following Short-term Combination Antibiotic Treatment of Mycobacterium massiliense Lung Disease. Chest 2016; 150:1211-1221. [PMID: 27167209 DOI: 10.1016/j.chest.2016.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/29/2016] [Accepted: 05/02/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Although Mycobacterium massiliense lung disease is increasing in patients with cystic fibrosis and non-cystic fibrosis bronchiectasis, optimal treatment regimens remain largely unknown. This study aimed to evaluate the efficacy of oral macrolide therapy after an initial 2-week course of combination antibiotics for the treatment of M massiliense lung disease. METHODS Seventy-one patients received oral macrolides, along with an initial 4-week (n = 28) or 2-week (n = 43) IV amikacin and cefoxitin (or imipenem) treatment. These patients were treated for 24 months (4-week IV group) or for at least 12 months after negative sputum culture conversion (2-week IV group). RESULTS Total treatment duration was longer in the 4-week IV group (median, 23.9 months) than in the 2-week IV group (15.2 months; P < .001). The response rates after 12 months of treatment were 89% for symptoms, 79% for CT scanning, and 100% for negative sputum culture results in the 4-week IV group. In the 2-week IV group, these values were 100% (P = .057), 91% (P = .177), and 91% (P = .147), respectively. Acquired macrolide resistance developed in two patients in the 2-week IV group. Genotyping analyses of isolates from patients who did not achieve negative sputum culture conversion during treatment and from those with positive culture results after successful treatment completion revealed that most episodes were due to reinfection with different genotypes of M massiliense. CONCLUSIONS Oral macrolide therapy after an initial 2-week course of combination antibiotics might be effective in most patients with M massiliense lung disease. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT00970801; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Byeong-Ho Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyeongman Jeon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, and Seoul National University College of Medicine, Seoul, South Korea
| | - Hye Yun Park
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Nam Yong Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | - Chang Ki Kim
- Korean Institute of Tuberculosis, Cheongju, South Korea
| | - Charles L Daley
- Division of Mycobacterial and Respiratory Infections, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Sung Jae Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hojoong Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - O Jung Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
18
|
Abstract
Pulmonary infections are the most frequent diseases caused by nontuberculous mycobacteria (NTM). Common causative organisms of pulmonary infection are slowly growing mycobacteria including Mycobacterium avium complex and Mycobacterium kansasii, and rapidly growing mycobacteria including Mycobacterium abscessus complex. Clinical concern has been raised over the increasing incidence of NTM lung disease combined with the poor treatment outcomes of these chronic infectious diseases. Since treatment guidelines of the American Thoracic Society/Infectious Disease Society of America were published in 2007 there have been continuous efforts to improve the outcomes of NTM lung disease, albeit slowly and with limitations. Here, we focus on recent advances in the antibiotic treatment of NTM lung disease.
Collapse
Affiliation(s)
- Young Ae Kang
- a Division of Pulmonology, Department of Internal Medicine , Severance Hospital, Institute of Chest Diseases, Yonsei University College of Medicine , Seoul , South Korea
| | - Won-Jung Koh
- b Division of Pulmonary and Critical Care Medicine, Department of Medicine , Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , South Korea
| |
Collapse
|
19
|
Abstract
Steroids are ubiquitous in natural environments and are a significant growth substrate for microorganisms. Microbial steroid metabolism is also important for some pathogens and for biotechnical applications. This study delineated the distribution of aerobic steroid catabolism pathways among over 8,000 microorganisms whose genomes are available in the NCBI RefSeq database. Combined analysis of bacterial, archaeal, and fungal genomes with both hidden Markov models and reciprocal BLAST identified 265 putative steroid degraders within only Actinobacteria and Proteobacteria, which mainly originated from soil, eukaryotic host, and aquatic environments. These bacteria include members of 17 genera not previously known to contain steroid degraders. A pathway for cholesterol degradation was conserved in many actinobacterial genera, particularly in members of the Corynebacterineae, and a pathway for cholate degradation was conserved in members of the genus Rhodococcus. A pathway for testosterone and, sometimes, cholate degradation had a patchy distribution among Proteobacteria. The steroid degradation genes tended to occur within large gene clusters. Growth experiments confirmed bioinformatic predictions of steroid metabolism capacity in nine bacterial strains. The results indicate there was a single ancestral 9,10-seco-steroid degradation pathway. Gene duplication, likely in a progenitor of Rhodococcus, later gave rise to a cholate degradation pathway. Proteobacteria and additional Actinobacteria subsequently obtained a cholate degradation pathway via horizontal gene transfer, in some cases facilitated by plasmids. Catabolism of steroids appears to be an important component of the ecological niches of broad groups of Actinobacteria and individual species of Proteobacteria. Steroids are ubiquitous growth substrates for environmental and pathogenic bacteria, and bacterial steroid metabolism has important pharmaceutical and health applications. To date, the genetics and biochemistry of microbial steroid degradation have mainly been studied in a few model bacteria, and the diversity of this metabolism remains largely unexplored. Here, we provide a bioinformatically derived perspective of the taxonomic distribution of aerobic microbial steroid catabolism pathways. We identified several novel steroid-degrading bacterial groups, including ones from marine environments. In several cases, we confirmed bioinformatic predictions of metabolism in cultures. We found that cholesterol and cholate catabolism pathways are highly conserved among certain actinobacterial taxa. We found evidence for horizontal transfer of a pathway to several proteobacterial genera, conferring testosterone and, sometimes, cholate catabolism. The results of this study greatly expand our ecological and evolutionary understanding of microbial steroid metabolism and provide a basis for better exploiting this metabolism for biotechnology.
Collapse
|
20
|
Sapriel G, Konjek J, Orgeur M, Bouri L, Frézal L, Roux AL, Dumas E, Brosch R, Bouchier C, Brisse S, Vandenbogaert M, Thiberge JM, Caro V, Ngeow YF, Tan JL, Herrmann JL, Gaillard JL, Heym B, Wirth T. Genome-wide mosaicism within Mycobacterium abscessus: evolutionary and epidemiological implications. BMC Genomics 2016; 17:118. [PMID: 26884275 PMCID: PMC4756508 DOI: 10.1186/s12864-016-2448-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/08/2016] [Indexed: 11/16/2022] Open
Abstract
Background In mycobacteria, conjugation differs from the canonical Hfr model, but is still poorly understood. Here, we quantified this evolutionary processe in a natural mycobacterial population, taking advantage of a large clinical strain collection of the emerging pathogen Mycobacterium abscessus (MAB). Results Multilocus sequence typing confirmed the existence of three M. abscessus subspecies, and unravelled extensive allelic exchange between them. Furthermore, an asymmetrical gene flow occurring between these main lineages was detected, resulting in highly admixed strains. Intriguingly, these mosaic strains were significantly associated with cystic fibrosis patients with lung infections or chronic colonization. Genome sequencing of those hybrid strains confirmed that half of their genomic content was remodelled in large genomic blocks, leading to original tri-modal ‘patchwork’ architecture. One of these hybrid strains acquired a locus conferring inducible macrolide resistance, and a large genomic insertion from a slowly growing pathogenic mycobacteria, suggesting an adaptive gene transfer. This atypical genomic architecture of the highly recombinogenic strains is consistent with the distributive conjugal transfer (DCT) observed in M. smegmatis. Intriguingly, no known DCT function was found in M. abscessus chromosome, however, a p-RAW-like genetic element was detected in one of the highly admixed strains. Conclusion Taken together, our results strongly suggest that MAB evolution is sporadically punctuated by dramatic genome wide remodelling events. These findings might have far reaching epidemiological consequences for emerging mycobacterial pathogens survey in the context of increasing numbers of rapidly growing mycobacteria and M. tuberculosis co-infections. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2448-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guillaume Sapriel
- EA3647-EPIM, UFR des Sciences de La Santé, Université de Versailles St. Quentin, Montigny le Bretonneux, France. .,Laboratoire des Sciences du Climat et de l'Environnement, LSCE, UMR8212, Université de Versailles St. Quentin - CEA - CNRS, Saint-Aubin, France. .,Atelier de Bioinformatique, ISYEB, UMR 7205, Paris, France.
| | - Julie Konjek
- EA3647-EPIM, UFR des Sciences de La Santé, Université de Versailles St. Quentin, Montigny le Bretonneux, France. .,AP-HP, Hôpital Ambroise Paré, Service de Microbiologie et Hygiène, Boulogne-Billancourt, France.
| | - Mickael Orgeur
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France.
| | - Laurent Bouri
- EA3647-EPIM, UFR des Sciences de La Santé, Université de Versailles St. Quentin, Montigny le Bretonneux, France.
| | - Lise Frézal
- Institut of Biology of the Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris, Cedex 05, France.
| | | | - Emilie Dumas
- EA3647-EPIM, UFR des Sciences de La Santé, Université de Versailles St. Quentin, Montigny le Bretonneux, France.
| | - Roland Brosch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France.
| | | | - Sylvain Brisse
- Institut Pasteur, Genotyping of Pathogens and Public Health, Paris, France.
| | | | | | - Valérie Caro
- Institut Pasteur, Genotyping of Pathogens and Public Health, Paris, France.
| | - Yun Fong Ngeow
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Joon Liang Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Jean-Louis Herrmann
- EA3647-EPIM, UFR des Sciences de La Santé, Université de Versailles St. Quentin, Montigny le Bretonneux, France. .,AP-HP, Hôpital Raymond Poincaré, Service de Microbiologie et Hygiène, Garches, France.
| | - Jean-Louis Gaillard
- EA3647-EPIM, UFR des Sciences de La Santé, Université de Versailles St. Quentin, Montigny le Bretonneux, France. .,AP-HP, Hôpital Ambroise Paré, Service de Microbiologie et Hygiène, Boulogne-Billancourt, France.
| | - Beate Heym
- EA3647-EPIM, UFR des Sciences de La Santé, Université de Versailles St. Quentin, Montigny le Bretonneux, France. .,AP-HP, Hôpital Ambroise Paré, Service de Microbiologie et Hygiène, Boulogne-Billancourt, France.
| | - Thierry Wirth
- Laboratoire de Biologie intégrative des populations, Evolution moléculaire, Ecole Pratique des Hautes Etudes, Paris, France. .,Institut de Systématique, Evolution, Biodiversité, ISYEB, UMR 7205, CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, 16 rue Buffon, F-75231, Paris, Cedex 05, France.
| |
Collapse
|
21
|
Drug Susceptibility Testing of 31 Antimicrobial Agents on Rapidly Growing Mycobacteria Isolates from China. BIOMED RESEARCH INTERNATIONAL 2015; 2015:419392. [PMID: 26351633 PMCID: PMC4550772 DOI: 10.1155/2015/419392] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/29/2015] [Accepted: 07/05/2015] [Indexed: 11/24/2022]
Abstract
Objectives. Several species of rapidly growing mycobacteria (RGM) are now recognized as human pathogens. However, limited data on effective drug treatments against these organisms exists. Here, we describe the species distribution and drug susceptibility profiles of RGM clinical isolates collected from four southern Chinese provinces from January 2005 to December 2012. Methods. Clinical isolates (73) were subjected to in vitro testing with 31 antimicrobial agents using the cation-adjusted Mueller-Hinton broth microdilution method. The isolates included 55 M. abscessus, 11 M. fortuitum, 3 M. chelonae, 2 M. neoaurum, and 2 M. septicum isolates. Results. M. abscessus (75.34%) and M. fortuitum (15.07%), the most common species, exhibited greater antibiotic resistance than the other three species. The isolates had low resistance to amikacin, linezolid, and tigecycline, and high resistance to first-line antituberculous agents, amoxicillin-clavulanic acid, rifapentine, dapsone, thioacetazone, and pasiniazid. M. abscessus and M. fortuitum were highly resistant to ofloxacin and rifabutin, respectively. The isolates showed moderate resistance to the other antimicrobial agents. Conclusions. Our results suggest that tigecycline, linezolid, clofazimine, and cefmetazole are appropriate choices for M. abscessus infections. Capreomycin, sulfamethoxazole, tigecycline, clofazimine, and cefmetazole are potentially good choices for M. fortuitum infections. Our drug susceptibility data should be useful to clinicians.
Collapse
|
22
|
Molecular mechanisms of clarithromycin resistance in Mycobacterium abscessus complex clinical isolates from Venezuela. J Glob Antimicrob Resist 2015; 3:205-209. [PMID: 27873710 DOI: 10.1016/j.jgar.2015.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 04/29/2015] [Accepted: 05/26/2015] [Indexed: 11/20/2022] Open
Abstract
In this study, 26 clinical isolates of Mycobacterium abscessus complex strains were characterised using available identification algorithms for the three species (M. abscessus, M. massiliense and M. bolletii) and the genotypic characteristics of clarithromycin (CLR) resistance were determined. Strains were identified by PCR restriction fragment length polymorphism analysis of the hsp65 and erm(41) gene sequences. Susceptibility to CLR was determined by the broth microdilution method. The mechanism of resistance to this macrolide was evaluated by sequencing the erm(41) and rrl genes. Mutations and/or deletions associated with resistance to CLR as determined in this study were those that have been previously described. No constitutive resistance to CLR was found, however 35% (9/26) of the M. abscessus complex strains tested had a functional inducible erm(41) gene. Based on sequencing of this gene, the strains of M. abscessus were separated into six sequevars, of which only two are consistent with those previously reported. In conclusion, we demonstrated that the low percentage of strains with a resistant phenotype to CLR was due only to an inducible resistance mechanism conferred by the erm(41) gene and not to mutations in the rrl gene. CLR can still be useful for treatment in some Venezuelan patients infected with a member of the M. abscessus group, but drug resistance testing and/or molecular analysis must precede the prescription of this antibiotic.
Collapse
|
23
|
Kim SY, Kim CK, Bae IK, Jeong SH, Yim JJ, Jung JY, Park MS, Kim YS, Kim SK, Chang J, Kang YA. The drug susceptibility profile and inducible resistance to macrolides of Mycobacterium abscessus and Mycobacterium massiliense in Korea. Diagn Microbiol Infect Dis 2015; 81:107-11. [DOI: 10.1016/j.diagmicrobio.2014.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 11/30/2022]
|
24
|
Abstract
Rapidly growing mycobacteria (RGM) include a diverse group of species. We address the treatment of the most commonly isolated RGM-M abscessus complex, M fortuitum, and M chelonae. The M abscessus complex is composed of 3 closely related species: M abscessus senso stricto (hereafter M abscessus), M massiliense, and M bolletii. Most studies address treatment of M abscessus complex, which accounts for 80% of lung disease caused by RGM and is the second most common RGM to cause extrapulmonary disease (after M fortuitum). The M abscessus complex represent the most drug-resistant nontuberculous mycobacteria and are the most difficult to treat.
Collapse
Affiliation(s)
- Shannon H Kasperbauer
- Division of Mycobacterial and Respiratory Infections, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA; Division of Infectious Diseases, University of Colorado Health Sciences Center, 12700 East 19th Avenue, Research Complex 2, Campus Box B168, Aurora, CO 80045, USA.
| | - Mary Ann De Groote
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Box 1682, Fort Collins, CO 80523, USA
| |
Collapse
|
25
|
Kim SY, Koh WJ, Kim YH, Jeong BH, Park HY, Jeon K, Kim JS, Cho SN, Shin SJ. Importance of reciprocal balance of T cell immunity in Mycobacterium abscessus complex lung disease. PLoS One 2014; 9:e109941. [PMID: 25295870 PMCID: PMC4190320 DOI: 10.1371/journal.pone.0109941] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/05/2014] [Indexed: 11/18/2022] Open
Abstract
Background Little is known about the nature of the host immune response to Mycobacterium abscessus complex (MABC) infection. The aim of the present study was to investigate whether alterations in serum immunomolecule levels after treating MABC lung disease patients with antibiotics can reflect the disease-associated characteristics. Methods A total of 22 immunomolecules in 24 MABC lung disease patients before and after antibiotic therapy were quantitatively analyzed using a multiplex bead-based system. Results In general, the pre-treatment levels of T helper type 1 (Th1)-related cytokines, i.e., interferon (IFN)-γ and interleukin (IL)-12, and Th2-related cytokines, i.e., IL-4 and IL-13, were significantly decreased in patients compared with control subjects. In contrast, the pre-treatment levels of Th17-related cytokines, i.e., IL-17 and IL-23, were significantly increased in MABC patients. Interestingly, significantly higher levels of IFN-γ-induced protein (IP)-10 and monokine induced by IFN-γprotein (MIG) were detected in patients with failure of sputum conversion at post-treatment compared to patients with successful sputum conversion. Conclusion Reduced Th1 and Th2 responses and enhanced Th17 responses in patients may perpetuate MABC lung disease, and the immunomolecules IP-10 and MIG, induced through IFN-γ, may serve as key markers for indicating the treatment outcome.
Collapse
Affiliation(s)
- Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yee Hyung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byeong-Ho Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hye Yun Park
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyeongman Jeon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jong-Seok Kim
- Department of Microbiology, Institute of Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Nae Cho
- Department of Microbiology, Institute of Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute of Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|