1
|
Burke Ó, Zeden MS, O'Gara JP. The pathogenicity and virulence of the opportunistic pathogen Staphylococcus epidermidis. Virulence 2024; 15:2359483. [PMID: 38868991 DOI: 10.1080/21505594.2024.2359483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
The pervasive presence of Staphylococcus epidermidis and other coagulase-negative staphylococci on the skin and mucous membranes has long underpinned a casual disregard for the infection risk that these organisms pose to vulnerable patients in healthcare settings. Prior to the recognition of biofilm as an important virulence determinant in S. epidermidis, isolation of this microorganism in diagnostic specimens was often overlooked as clinically insignificant with potential delays in diagnosis and onset of appropriate treatment, contributing to the establishment of chronic infection and increased morbidity or mortality. While impressive progress has been made in our understanding of biofilm mechanisms in this important opportunistic pathogen, research into other virulence determinants has lagged S. aureus. In this review, the broader virulence potential of S. epidermidis including biofilm, toxins, proteases, immune evasion strategies and antibiotic resistance mechanisms is surveyed, together with current and future approaches for improved therapeutic interventions.
Collapse
Affiliation(s)
- Órla Burke
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - James P O'Gara
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Ocejo M, Mugica M, Oporto B, Lavín JL, Hurtado A. Whole-genome long-read sequencing to unveil Enterococcus antimicrobial resistance in dairy cattle farms exposed a widespread occurrence of Enterococcus lactis. Microbiol Spectr 2024; 12:e0367223. [PMID: 38230937 PMCID: PMC10846211 DOI: 10.1128/spectrum.03672-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024] Open
Abstract
Enterococcus faecalis (Efs) and Enterococcus faecium (Efm) are major causes of multiresistant healthcare-associated or nosocomial infections. Efm has been traditionally divided into clades A (healthcare associated) and B (community associated) but clade B has been recently reassigned to Enterococcus lactis (Elc). However, identification techniques do not routinely differentiate Elc from Efm. As part of a longitudinal study to investigate the antimicrobial resistance of Enterococcus in dairy cattle, isolates initially identified as Efm were confirmed as Elc after Oxford-Nanopore long-fragment whole-genome sequencing and genome comparisons. An Efm-specific PCR assay was developed and used to identify isolates recovered from animal feces on five farms, resulting in 44 Efs, 23 Efm, and 59 Elc. Resistance, determined by broth microdilution, was more frequent in Efs than in Efm and Elc but all isolates were susceptible to ampicillin, daptomycin, teicoplanin, tigecycline, and vancomycin. Genome sequencing analysis of 32 isolates identified 23 antimicrobial resistance genes (ARGs, mostly plasmid-located) and 2 single nucleotide polymorphisms associated with resistance to 10 antimicrobial classes, showing high concordance with phenotypic resistance. Notably, linezolid resistance in Efm was encoded by the optrA gene, located in plasmids downstream of the fexA gene. Although most Elc lacked virulence factors and genetic determinants of resistance, one isolate carried a plasmid with eight ARGs. This study showed that Elc is more prevalent than Efm in dairy cattle but carries fewer ARGs and virulence genes. However, Elc can carry multi-drug-resistant plasmids like those harbored by Efm and could act as a donor of ARGs for other pathogenic enterococcal species.IMPORTANCEEnterococcus species identification is crucial due to differences in pathogenicity and antibiotic resistance profiles. The failure of traditional methods or whole-genome sequencing-based taxonomic classifiers to distinguish Enterococcus lactis (Elc) from Enterococcus faecium (Efm) results in a biased interpretation of Efm epidemiology. The Efm species-specific real-time PCR assay developed here will help to properly identify Efm (only the formerly known clade A) in future studies. Here, we showed that Elc is prevalent in dairy cattle, and although this species carries fewer genetic determinants of resistance (GDRs) than Enterococcus faecalis (Efs) and Efm, it can carry multi-drug-resistant (MDR) plasmids and could act as a donor of resistance genes for other pathogenic enterococcal species. Although all isolates (Efs, Efm, and Elc) were susceptible to critically or highly important antibiotics like daptomycin, teicoplanin, tigecycline, and vancomycin, the presence of GDRs in MDR-plasmids is a concern since antimicrobials commonly used in livestock could co-select and confer resistance to critically important antimicrobials not used in food-producing animals.
Collapse
Affiliation(s)
- Medelin Ocejo
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Maitane Mugica
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Beatriz Oporto
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - José Luis Lavín
- Applied Mathematics Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Ana Hurtado
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| |
Collapse
|
3
|
Bobrek K, Gaweł A. Antimicrobial Resistance of Erysipelothrix rhusiopathiae Strains Isolated from Geese to Antimicrobials Widely Used in Veterinary Medicine. Antibiotics (Basel) 2023; 12:1339. [PMID: 37627759 PMCID: PMC10451561 DOI: 10.3390/antibiotics12081339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of this study was to determine the antibiotic resistance of E. rhusiopathiae when isolated from clinical outbreaks of erysipelas in geese to antimicrobials commonly used in poultry production. All isolates were susceptible to amoxicillin alone or with clavulanic acid, with MIC values ranging from 0.016 to 0.125 μg/mL. Ninety-six percent of isolates were fully sensitive to penicillin G (MIC 0.125-0.5 μg/mL). All isolates were fully or moderately sensitive to erythromycin (MIC 0.125-0.5 μg/mL). Most E. rhusiopathiae isolates proved resistant to fluoroquinolones (76.6% of isolates were resistant to enrofloxacin, with MIC values ranging from 0.064 to 32 μg/mL, and 68% were resistant to norfloxacin, with MIC values ranging from 0.094 to 96 μg/mL), and tetracyclines (61.7% of isolates were resistant to doxycycline, with MIC values ranging from 0.25 to 64 μg/mL, and 63.8% were resistant to tetracycline, with MIC values ranging from 0.38 to 256 μg/mL). Point mutations in the gyrA gene (responsible for fluoroquinolone resistance) and the presence of the tetM gene (responsible for tetracycline resistance) were noted in most of the resistant isolates. Multidrug resistance, defined as resistance to at least one substance in three or more antimicrobial classes, was not observed.
Collapse
Affiliation(s)
| | - Andrzej Gaweł
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland;
| |
Collapse
|
4
|
Huynh TQ, Tran VN, Thai VC, Nguyen HA, Nguyen NTG, Tran MK, Nguyen TPT, Le CA, Ho LTN, Surian NU, Chen S, Nguyen TTH. Genomic alterations involved in fluoroquinolone resistance development in Staphylococcus aureus. PLoS One 2023; 18:e0287973. [PMID: 37494330 PMCID: PMC10370734 DOI: 10.1371/journal.pone.0287973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
AIM Fluoroquinolone (FQ) is a potent antibiotic class. However, resistance to this class emerges quickly which hinders its application. In this study, mechanisms leading to the emergence of multidrug-resistant (MDR) Staphylococcus aureus (S. aureus) strains under FQ exposure were investigated. METHODOLOGY S. aureus ATCC 29213 was serially exposed to ciprofloxacin (CIP), ofloxacin (OFL), or levofloxacin (LEV) at sub-minimum inhibitory concentrations (sub-MICs) for 12 days to obtain S. aureus -1 strains and antibiotic-free cultured for another 10 days to obtain S. aureus-2 strains. The whole genome (WGS) and target sequencing were applied to analyze genomic alterations; and RT-qPCR was used to access the expressions of efflux-related genes, alternative sigma factors, and genes involved in FQ resistance. RESULTS A strong and irreversible increase of MICs was observed in all applied FQs (32 to 128 times) in all S. aureus-1 and remained 16 to 32 times in all S. aureus-2. WGS indicated 10 noticeable mutations occurring in all FQ-exposed S. aureus including 2 insdel mutations in SACOL0573 and rimI; a synonymous mutation in hslO; and 7 missense mutations located in an untranslated region. GrlA, was found mutated (R570H) in all S. aureus-1 and -2. Genes encoding for efflux pumps and their regulator (norA, norB, norC, and mgrA); alternative sigma factors (sigB and sigS); acetyltransferase (rimI); methicillin resistance (fmtB); and hypothetical protein BJI72_0645 were overexpressed in FQ-exposed strains. CONCLUSION The emergence of MDR S. aureus was associated with the mutations in the FQ-target sequences and the overexpression of efflux pump systems and their regulators.
Collapse
Affiliation(s)
- Thuc Quyen Huynh
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Research Center for Infectious Diseases, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Van Nhi Tran
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Van Chi Thai
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hoang An Nguyen
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Ngoc Thuy Giang Nguyen
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Minh Khang Tran
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thi Phuong Truc Nguyen
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Cat Anh Le
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Le Thanh Ngan Ho
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | | | - Swaine Chen
- Genome Institute of Singapore, Singapore, Singapore
| | - Thi Thu Hoai Nguyen
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Research Center for Infectious Diseases, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Alsughayer A, Elassar AA, Hasan AA, AlSagheer F. Novel synthesis of
N
‐acrylamidociprofloxacin and related polymers: Bioactivity, drug resistance, and drug release. J Appl Polym Sci 2023. [DOI: 10.1002/app.53789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Abdulhakeem Alsughayer
- Pharmaceutical Science Department, College of Health Science The Public Authority for Applied Education and Training Shuwaikh Kuwait
| | - Abdel‐Zaher A. Elassar
- Chemistry Department, Faculty of Science Kuwait University Kuwait City Kuwait
- Chemistry Department, Faculty of Science Helwan University Cairo Egypt
| | - Abdulaziz A. Hasan
- Pharmaceutical Science Department, College of Health Science The Public Authority for Applied Education and Training Shuwaikh Kuwait
| | - Fakhreia AlSagheer
- Chemistry Department, Faculty of Science Kuwait University Kuwait City Kuwait
| |
Collapse
|
6
|
Afzal M, Vijay AK, Stapleton F, Willcox M. The Relationship between Ciprofloxacin Resistance and Genotypic Changes in S. aureus Ocular Isolates. Pathogens 2022; 11:1354. [PMID: 36422605 PMCID: PMC9695201 DOI: 10.3390/pathogens11111354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 07/28/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a frequent cause of eye infections with some isolates exhibiting increased antimicrobial resistance to commonly prescribed antibiotics. The increasing resistance of ocular S. aureus to ciprofloxacin is a serious concern as it is a commonly used as a first line antibiotic to treat S. aureus keratitis. This study aimed to analyse genetic mutations in the genomes of 25 S. aureus isolates from infections or non-infectious ocular conditions from the USA and Australia and their relationship to ciprofloxacin resistance. Overall, 14/25 isolates were phenotypically resistant to ciprofloxacin. All isolates were analyzed for mutations in their quinolone resistance-determining regions (QRDRs) and efflux pump genes. Of the fourteen resistant isolates, 9/14 had ciprofloxacin resistance mutations within their QRDRs, at codons 80 or 84 within the parC subunit and codon 84 within the gyrA subunit of DNA gyrase. The highest resistance (MIC = 2560 μg/mL) was associated with two SNPs in both gyrA and parC. Other resistant isolates (3/14) had mutations within norB. Mutations in genes of other efflux pumps and their regulator (norA, norC, mepA, mdeA, sepA, sdrM, mepR, arlR, and arlS) or the DNA mismatch repair (MMR) system (mutL and mutS) were not associated with increased resistance to ciprofloxacin. The functional mutations associated with ciprofloxacin resistance in QRDRs (gyrA and parC) and norB suggests that these are the most common reasons for ciprofloxacin resistance in ocular isolates. Novel SNPs of gyrA Glu-88-Leu, Asn-860-Thr and Thr-845-Ala and IIe-855-Met, identified in this study, need further gene knock out/in studies to better understand their effect on ciprofloxacin resistance.
Collapse
|
7
|
Kato A, Horita N, Namkoong H, Nomura E, Masuhara N, Kaneko T, Mizuki N, Takeuchi M. Prophylactic antibiotics for postcataract surgery endophthalmitis: a systematic review and network meta-analysis of 6.8 million eyes. Sci Rep 2022; 12:17416. [PMID: 36258003 PMCID: PMC9579149 DOI: 10.1038/s41598-022-21423-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/27/2022] [Indexed: 01/12/2023] Open
Abstract
To reveal optimal antibiotic prophylactic regimen for postoperative endophthalmitis (POE), we conducted systematic review and network meta-analysis. A total of 51 eligible original articles, including two randomized controlled trials, were identified. In total, 4502 POE cases occurred in 6,809,732 eyes (0.066%). Intracameral injection of vancomycin had the best preventive effect (odds ratio [OR] 0.03, 99.6% confidence interval [CI] 0.00-0.53, corrected P-value = 0.006, P-score = 0.945) followed by intracameral injection of cefazoline (OR 0.09, 99.6% CI 0.02-0.42, corrected P-value < 0.001, P-score = 0.821), cefuroxime (OR 0.18, 99.6% CI 0.09-0.35, corrected P-value < 0.001, P-score = 0.660), and moxifloxacin (OR 0.36, 99.6% CI 0.16-0.79, corrected P-value = 0.003, P-score = 0.455). While one randomized controlled trial supported each of intracameral cefuroxime and moxifloxacin, no randomized controlled trial evaluated vancomycin and cefazoline. Sensitivity analysis focusing on the administration route revealed that only intracameral injection (OR 0.19, 99.4% CI 0.12-0.30, corrected P-value < 0.001, P-score = 0.726) significantly decreased the risk of postoperative endophthalmitis. In conclusion, intracameral injection of either vancomycin, cefazoline, cefuroxime, or moxifloxacin prevented POE.
Collapse
Affiliation(s)
- Ai Kato
- grid.268441.d0000 0001 1033 6139Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan ,Department of Ophthalmology, Chigasaki Municipal Hospital, Chigasaki, Kanagawa Japan
| | - Nobuyuki Horita
- grid.470126.60000 0004 1767 0473Chemotherapy Center, Yokohama City University Hospital, Yokohama, Kanagawa Japan
| | - Ho Namkoong
- grid.26091.3c0000 0004 1936 9959Department of Infectious Diseases, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Eiichi Nomura
- grid.268441.d0000 0001 1033 6139Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Nami Masuhara
- Department of Ophthalmology, Chigasaki Municipal Hospital, Chigasaki, Kanagawa Japan
| | - Takeshi Kaneko
- grid.268441.d0000 0001 1033 6139Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa Japan
| | - Nobuhisa Mizuki
- grid.268441.d0000 0001 1033 6139Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Masaki Takeuchi
- grid.268441.d0000 0001 1033 6139Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| |
Collapse
|
8
|
Bharadwaj A, Rastogi A, Pandey S, Gupta S, Sohal JS. Multidrug-Resistant Bacteria: Their Mechanism of Action and Prophylaxis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5419874. [PMID: 36105930 PMCID: PMC9467707 DOI: 10.1155/2022/5419874] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022]
Abstract
In the present scenario, resistance to antibiotics is one of the crucial issues related to public health. Earlier, such resistance to antibiotics was limited to nosocomial infections, but it has now become a common phenomenon. Several factors, like extensive development, overexploitation of antibiotics, excessive application of broad-spectrum drugs, and a shortage of target-oriented antimicrobial drugs, could be attributed to this condition. Nowadays, there is a rise in the occurrence of these drug-resistant pathogens due to the availability of a small number of effective antimicrobial agents. It has been estimated that if new novel drugs are not discovered or formulated, there would be no effective antibiotic available to treat these deadly resistant pathogens by 2050. For this reason, we have to look for the formulation of some new novel drugs or other options or substitutes to treat such multidrug-resistant microorganisms (MDR). The current review focuses on the evolution of the most common multidrug-resistant bacteria and discusses how these bacteria escape the effects of targeted antibiotics and become multidrug resistant. In addition, we also discuss some alternative mechanisms to prevent their infection as well.
Collapse
Affiliation(s)
- Alok Bharadwaj
- Department of Biotechnology, GLA University, Mathura (U.P.)-281 406, India
| | - Amisha Rastogi
- Department of Biotechnology, GLA University, Mathura (U.P.)-281 406, India
| | - Swadha Pandey
- Department of Biotechnology, GLA University, Mathura (U.P.)-281 406, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura (U.P.)-281 406, India
| | - Jagdip Singh Sohal
- Department of Biotechnology, GLA University, Mathura (U.P.)-281 406, India
| |
Collapse
|
9
|
Akunuri R, Unnissa T, Vadakattu M, Bujji S, Mahammad Ghouse S, Madhavi Yaddanapudi V, Chopra S, Nanduri S. Bacterial Pyruvate Kinase: A New Potential Target to Combat Drug‐Resistant
Staphylococcus aureus
Infections. ChemistrySelect 2022. [DOI: 10.1002/slct.202201403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ravikumar Akunuri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Tanveer Unnissa
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Manasa Vadakattu
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Sushmitha Bujji
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Shaik Mahammad Ghouse
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute (CDRI) Sitapur Road, Sector 10, Janakipuram Extension Lucknow 226 031, Uttar Pradesh India
| | - Srinivas Nanduri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| |
Collapse
|
10
|
Enterococcus Virulence and Resistant Traits Associated with Its Permanence in the Hospital Environment. Antibiotics (Basel) 2022; 11:antibiotics11070857. [PMID: 35884110 PMCID: PMC9311936 DOI: 10.3390/antibiotics11070857] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Enterococcus are opportunistic pathogens that have been gaining importance in the clinical setting, especially in terms of hospital-acquired infections. This problem has mainly been associated with the fact that these bacteria are able to present intrinsic and extrinsic resistance to different classes of antibiotics, with a great deal of importance being attributed to vancomycin-resistant enterococci. However, other aspects, such as the expression of different virulence factors including biofilm-forming ability, and its capacity of trading genetic information, makes this bacterial genus more capable of surviving harsh environmental conditions. All these characteristics, associated with some reports of decreased susceptibility to some biocides, all described in this literary review, allow enterococci to present a longer survival ability in the hospital environment, consequently giving them more opportunities to disseminate in these settings and be responsible for difficult-to-treat infections.
Collapse
|
11
|
Wu N, Strömich L, Yaliraki SN. Prediction of allosteric sites and signaling: Insights from benchmarking datasets. PATTERNS (NEW YORK, N.Y.) 2022; 3:100408. [PMID: 35079717 PMCID: PMC8767309 DOI: 10.1016/j.patter.2021.100408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
Allostery is a pervasive mechanism that regulates protein activity through ligand binding at a site different from the orthosteric site. The universality of allosteric regulation complemented by the benefits of highly specific and potentially non-toxic allosteric drugs makes uncovering allosteric sites invaluable. However, there are few computational methods to effectively predict them. Bond-to-bond propensity analysis has successfully predicted allosteric sites in 19 of 20 cases using an energy-weighted atomistic graph. We here extended the analysis onto 432 structures of 146 proteins from two benchmarking datasets for allosteric proteins: ASBench and CASBench. We further introduced two statistical measures to account for the cumulative effect of high-propensity residues and the crucial residues in a given site. The allosteric site is recovered for 127 of 146 proteins (407 of 432 structures) knowing only the orthosteric sites or ligands. The quantitative analysis using a range of statistical measures enables better characterization of potential allosteric sites and mechanisms involved.
Collapse
Affiliation(s)
- Nan Wu
- Department of Chemistry, Imperial College London, London W12 0BZ, UK
| | - Léonie Strömich
- Department of Chemistry, Imperial College London, London W12 0BZ, UK
| | | |
Collapse
|
12
|
Zhu Y, Hao W, Wang X, Ouyang J, Deng X, Yu H, Wang Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med Res Rev 2022; 42:1377-1422. [PMID: 34984699 DOI: 10.1002/med.21879] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), are important effector immune defense molecules in multicellular organisms. AMPs exert their antimicrobial activities through several mechanisms; thus far, induction of drug resistance through AMPs has been regarded as unlikely. Therefore, they have great potential as new generation antimicrobial agents. To date, more than 30 AMP-related drugs are in the clinical trial phase. In recent years, studies show that some AMPs and conventional antibiotics have synergistic effects. The combined use of AMPs and antibiotics can kill drug-resistant pathogens, prevent drug resistance, and significantly improve the therapeutic effects of antibiotics. In this review, we discuss the progress in synergistic studies on AMPs and conventional antibiotics. An overview of the current understanding of the functional scope of AMPs, ongoing clinical trials, and challenges in the development processes are also presented.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Weijing Hao
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xia Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jianhong Ouyang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Deng
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
13
|
Ueda K, Iwasaki T, Ono T, Lee J, Nejima R, Mori Y, Noguchi Y, Yagi A, Miyata K. Age factor in the fluoroquinolone susceptibility of gram-positive cocci isolates from bacterial keratitis cases between 2008 and 2016. Graefes Arch Clin Exp Ophthalmol 2021; 259:3351-3357. [PMID: 34379184 DOI: 10.1007/s00417-021-05351-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To determine the relationship between fluoroquinolone susceptibility of gram-positive cocci (GPC) isolated from patients with bacterial keratitis and the age of the patients or the date of onset. METHODS Bacterial isolates were obtained from corneal lesions of patients with infectious keratitis treated between January 2008 and December 2016. The fluoroquinolone susceptibility of GPC was assessed, and a retrospective review of microbiological records was performed. Fluoroquinolone susceptibility was measured through broth microdilution in accordance with protocols of the Clinical and Laboratory Standards Institute. Statistical analysis was performed using a generalized estimating equation and cubic spline to determine the association between fluoroquinolone susceptibility of GPC isolated from corneal lesions and patient age. RESULTS Of the 1200 bacterial isolates, 471 GPC were identified. They included Staphylococcus epidermidis (45.6%), other coagulase-negative Staphylococcus sp. (17.8%), and Staphylococcus aureus (18.3%). Levofloxacin susceptibility of GPC exhibited a negative relationship with age and had an odds ratio of 0.893 (95% confidence interval, 0.825-0.967) for every 10 years of age. A non-adjusted cubic spline curve was well correlated with year-adjusted data in a generalized additive model, and the levofloxacin susceptibility of GPC was initially stable but gradually declined after 40 years of age, before re-stabilizing again after 70 years of age. CONCLUSION The fluoroquinolone susceptibility of GPC isolated from corneal lesions of infectious keratitis is high in children under 15 years of age and declines with an increase in age of patients using a generalized estimating equation and cubic spline.
Collapse
Affiliation(s)
- Koji Ueda
- Miyata Eye Hospital, Kurahara 6-3, Miyakonojo, Miyazaki, 885-0051, Japan.,Department of Ophthalmology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takuya Iwasaki
- Miyata Eye Hospital, Kurahara 6-3, Miyakonojo, Miyazaki, 885-0051, Japan
| | - Takashi Ono
- Miyata Eye Hospital, Kurahara 6-3, Miyakonojo, Miyazaki, 885-0051, Japan. .,Department of Ophthalmology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Jinhee Lee
- Miyata Eye Hospital, Kurahara 6-3, Miyakonojo, Miyazaki, 885-0051, Japan
| | - Ryohei Nejima
- Miyata Eye Hospital, Kurahara 6-3, Miyakonojo, Miyazaki, 885-0051, Japan
| | - Yosai Mori
- Miyata Eye Hospital, Kurahara 6-3, Miyakonojo, Miyazaki, 885-0051, Japan
| | - Yukari Noguchi
- Miyata Eye Hospital, Kurahara 6-3, Miyakonojo, Miyazaki, 885-0051, Japan
| | - Akiko Yagi
- Miyata Eye Hospital, Kurahara 6-3, Miyakonojo, Miyazaki, 885-0051, Japan
| | - Kazunori Miyata
- Miyata Eye Hospital, Kurahara 6-3, Miyakonojo, Miyazaki, 885-0051, Japan
| |
Collapse
|
14
|
Sharma N, Chhillar AK, Dahiya S, Punia A, Choudhary P, Gulia P, Behl A, Dangi M. Chemotherapeutic Strategies for Combating Staphylococcus aureus Infections. Mini Rev Med Chem 2021; 22:26-42. [PMID: 33797362 DOI: 10.2174/1389557521666210402150325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/08/2021] [Accepted: 03/09/2021] [Indexed: 11/22/2022]
Abstract
Staphylococcus aureus is a prominent human pathogen that causes nosocomial and community acquired infections. The accelerating emergence and prevalence of staphylococcal infections have grotesque health consequences which are mostly due to its anomalous capability to acquire drug resistance and scarcity of novel classes of antibacterials. Many combating therapies are centered on primary targets of S. aureus which are cell envelope, ribosomes and nucleic acids. This review describes various chemotherapeutic strategies for combating S. aureus infections which includes monotherapy, combination drug therapy, phage endolysin therapy, lysostaphins and antibacterial drones. Monotherapy has dwindled in due course of time but combination therapy, endolysin therapy, lysostaphin and antibacterial drones are emerging alternatives which efficiently conquer the shortcomings of monotherapy. Combinations of more than one antibiotic agents or combination of adjuvant with antibiotics provide a synergistic approach to combat infections causing pathogenic strains. Phage endolysin therapy and lysostaphin are also presents as possible alternatives to conventional antibiotic therapies. Antibacterial Drones goes a step further by specifically targeting the virulence genes in bacteria giving them a certain advantage over existing antibacterial strategies. But the challenge remains on the better understanding of these strategies for executing and implementing them in health sector. In this day and age, most of the S. aureus strains are resistant to ample number of antibiotics, so there is an urgent need to overcome such multidrug resistant strains for the welfare of our community.
Collapse
Affiliation(s)
| | | | | | - Aruna Punia
- Centre for Biotechnology, MDU, Rohtak 124001. India
| | | | - Prity Gulia
- Centre for Biotechnology, MDU, Rohtak 124001. India
| | | | - Mehak Dangi
- Centre for Bioinformatics, MDU, Rohtak 124001. India
| |
Collapse
|
15
|
Roy S, Naha S, Rao A, Basu S. CRISPR-Cas system, antibiotic resistance and virulence in bacteria: Through a common lens. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 178:123-174. [PMID: 33685595 DOI: 10.1016/bs.pmbts.2020.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CRISPR-Cas system, antibiotic resistance and virulence are different modes of survival for the bacteria. CRISPR-Cas is an adaptive immune system that can degrade foreign DNA, antibiotic resistance helps bacteria to evade drugs that can threaten their existence and virulence determinants are offensive tools that can facilitate the establishment of infection by pathogens. This chapter focuses on these three aspects, providing insights about the CRISPR system and resistance mechanisms in brief, followed by understanding the synergistic or antagonistic relationship of resistance and virulence determinants in connection to the CRISPR system. We have addressed the discussion of this evolving topic through specific examples and studies. Different approaches for successful detection of this unique defense system in bacteria and various applications of the CRISPR-Cas systems to show how it can be harnessed to tackle the increasing problem of antibiotic resistance have been put forth. World Health Organization has declared antibiotic resistance as a serious global problem of the 21st century. As antibiotic-resistant bacteria increase their footprint across the globe, newer tools such as the CRISPR-Cas system hold immense promise to tackle this problem.
Collapse
Affiliation(s)
- Subhasree Roy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Scheme XM, Beliaghata, Kolkata, India
| | - Sharmi Naha
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Scheme XM, Beliaghata, Kolkata, India
| | - Ankur Rao
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Scheme XM, Beliaghata, Kolkata, India
| | - Sulagna Basu
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Scheme XM, Beliaghata, Kolkata, India.
| |
Collapse
|
16
|
Antibiotic resistance and drug modification: Synthesis, characterization and bioactivity of newly modified potent ciprofloxacin derivatives. Bioorg Chem 2021; 108:104658. [PMID: 33517003 DOI: 10.1016/j.bioorg.2021.104658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 11/23/2022]
Abstract
Development of new derivatives of commercial antibiotics using different organic reagents and testing these derivatives against different microorganisms are the main goals of this article. Thus, the antibiotic ciprofloxacin, CF, was acylated via reaction with ethyl cyanoacetate and ethyl acetoacetate in basic medium to give the cyanoacetylpiprazinyl dihydroquinoline derivative 3, and oxobutanoylpiprazinyl dihydroquinoline derivative 5, respectively. On the other hand, N-alkylated derivatives 8-10, were prepared through the reaction of CF with chloroacetonitrile, chloroacetyl acetone and chloroacetone in the presence of carbonate salt. In basic medium, both 3 and 10 were coupled with benzenediazonium chloride to afford hydrazono derivatives, which were then cyclized to give 4-(dihydropyridazinecarbonyl)piperazinyl-1,4-dihydroquinoline. Furthermore, compounds 3 and 10 were reacted with benylidenemalononitrile to produce 4H-pyan and pyrido[1,2-a]pyrazine derivatives, respectively. Both 3 and 10 were reacted with DMFDMA to give enaminone derivatives. These enaminones were cyclized to aminopyrimidine derivatives by reacting with urea or thiourea. X-ray, elemental analysis and spectral data were used to illustrate and confirm the structures of the isolated compounds. The bioactivities of the novel compounds were investigated against different gram-positive and gram-negative bacteria. In addition, these novel antibiotic derivatives were tested against ciprofloxacin-resistant bacteria isolated from patients aged 65-74 years. This study reveals that most of the modified drugs show high to moderate antibacterial activity. Additionally, these drugs show good effects against ciprofloxacin-resistant bacteria.
Collapse
|
17
|
Nasaj M, Saeidi Z, Tahmasebi H, Dehbashi S, Arabestani MR. Prevalence and distribution of resistance and enterotoxins/enterotoxin-like genes in different clinical isolates of coagulase-negative Staphylococcus. Eur J Med Res 2020; 25:48. [PMID: 33046122 PMCID: PMC7552519 DOI: 10.1186/s40001-020-00447-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/25/2020] [Indexed: 01/19/2023] Open
Abstract
Background Coagulase-negative staphylococcus (CoNS) is considered to be the major reservoirs for genes facilitating the evolution of S. aureus as a successful pathogen. The present study aimed to determine the occurrence of genes conferring resistance to fluoroquinolone, determining of the prevalence of insertion sequence elements IS256, IS257 and different superantigens (SAgs) among CoNS isolates obtained from various clinical sources. Materials and methods The current study conducted on a total of the 91 CoNS species recovered from clinical specimens in Hamadan hospitals in western Iran in 2017–2019. The antimicrobial susceptibility testing was performed using disk diffusion method and the presence of the IS256 and IS257, genes conferring resistance to fluoroquinolone and enterotoxins/enterotoxin-like encoding genes were investigated by polymerase chain reaction (PCR) method. Results Among genes encoding classic enterotoxins, sec was the most frequent which was carried by 48.4% of the 91 isolates, followed by seb in 27.5% of the isolates. None of the CoNS isolates was found to be positive to enterotoxin-like encoding genes. In 11(12%) of all isolates that were phenotypically resistant to levofloxacin, 9 isolates (81.8%) were positive for gyrB, 8 isolates (72.7%) were positive for gyrA, 8 isolates (72.7%) harbored grlB and 7 isolates (63.6%) were found to carry grlA. The IS256 and IS257 were identified in 31.8% and 74.7% of the isolates, respectively. The results of statistical analysis showed a significant association between the occurrence of staphylococcal enterotoxins (SEs) encoding genes and antimicrobial resistance. Conclusion Antimicrobial resistant determinants and SEs are co-present in clinical CoNS isolates that confer selective advantage for colonization and survival in hospital settings. The coexistence of insertion elements and antibiotic resistance indicate their role in pathogenesis and infectious diseases.
Collapse
Affiliation(s)
- Mona Nasaj
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Park Mardome, Hamadan, IR, Iran
| | - Zahra Saeidi
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Park Mardome, Hamadan, IR, Iran
| | - Hamed Tahmasebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sanaz Dehbashi
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Park Mardome, Hamadan, IR, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Park Mardome, Hamadan, IR, Iran. .,Nutrition Research Center, Hamadan University of Medical Sciences, Hamadan, IR, Iran.
| |
Collapse
|
18
|
Alves-Barroco C, Rivas-García L, Fernandes AR, Baptista PV. Tackling Multidrug Resistance in Streptococci - From Novel Biotherapeutic Strategies to Nanomedicines. Front Microbiol 2020; 11:579916. [PMID: 33123110 PMCID: PMC7573253 DOI: 10.3389/fmicb.2020.579916] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
The pyogenic streptococci group includes pathogenic species for humans and other animals and has been associated with enduring morbidity and high mortality. The main reason for the treatment failure of streptococcal infections is the increased resistance to antibiotics. In recent years, infectious diseases caused by pyogenic streptococci resistant to multiple antibiotics have been raising with a significant impact to public health and veterinary industry. The rise of antibiotic-resistant streptococci has been associated to diverse mechanisms, such as efflux pumps and modifications of the antimicrobial target. Among streptococci, antibiotic resistance emerges from previously sensitive populations as result of horizontal gene transfer or chromosomal point mutations due to excessive use of antimicrobials. Streptococci strains are also recognized as biofilm producers. The increased resistance of biofilms to antibiotics among streptococci promote persistent infection, which comprise circa 80% of microbial infections in humans. Therefore, to overcome drug resistance, new strategies, including new antibacterial and antibiofilm agents, have been studied. Interestingly, the use of systems based on nanoparticles have been applied to tackle infection and reduce the emergence of drug resistance. Herein, we present a synopsis of mechanisms associated to drug resistance in (pyogenic) streptococci and discuss some innovative strategies as alternative to conventional antibiotics, such as bacteriocins, bacteriophage, and phage lysins, and metal nanoparticles. We shall provide focused discussion on the advantages and limitations of agents considering application, efficacy and safety in the context of impact to the host and evolution of bacterial resistance.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Lorenzo Rivas-García
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,Biomedical Research Centre, University of Granada, Granada, Spain
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro Viana Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
19
|
Treatment of Severe Infectious Keratitis With Scleral Contact Lenses as a Reservoir of Moxifloxacin 0.5. Cornea 2020; 40:831-836. [PMID: 32833847 DOI: 10.1097/ico.0000000000002482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/22/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE To report the outcomes of using scleral contact lenses as antibiotic reservoirs as a therapeutic approach in a case series of severe infectious keratitis and to discuss the clinical potential. METHODS This was a prospective consecutive case series study of 12 eyes treated for infectious keratitis at the "Conde de Valenciana" Institute of Ophthalmology. A scleral lens (SL) filled with 0.5% moxifloxacin was used as a reservoir and replaced every 24 hours until epithelization was complete or the culture report and/or antibiogram demonstrated either a microorganism not susceptible to or resistant to moxifloxacin. RESULTS The study included 12 eyes of 12 patients (7 women; 58.33%; average age of 63 ± 20.11 years). All patients completed at least 1 month of follow-up. Patients had a diagnosis of infectious keratitis, and the SL was fitted on initial consultation. Of the 12 eyes, 7 had culture-positive bacterial infection, 2 eyes were mycotic, and 3 eyes had no culture growth. In 3 eyes, SL was discontinued because of the lack of response (one eye) and to the presence of mycotic infection (2 eyes). All infections resolved favorably at the final follow-up. CONCLUSIONS The use of SLs could be an alternative for antibiotic impregnation and treatment of infectious keratitis. No complications or side effects were observed related to the use of the scleral contact lens as a reservoir for the antibiotic. This treatment modality could offer a comfortable treatment for the patient, ensuring good impregnation and maintenance of antibiotic concentrations during the 24-hour wear periods.
Collapse
|
20
|
Darboe KS, Oh TH, Choi SM, Kim HK, Kim SE, Kim UJ, Kang SJ, Jang HC, Jung SI, Park KH. Antimicrobial susceptibility of Staphylococcus species isolated from prosthetic joints with a focus on fluoroquinolone-resistance mechanisms. Diagn Microbiol Infect Dis 2020; 99:115173. [PMID: 32992142 DOI: 10.1016/j.diagmicrobio.2020.115173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
We investigated susceptibility to antimicrobials of 89 staphylococcal species from PJIs and analyzed fluoroquinolone (FQ)-resistance mechanisms. Staphylococcal isolates showed high resistance to oral antimicrobials, with the exception of TMP-STX and linezolid. The main mechanism of resistance to FQ was mutations in quinolone-resistance-determining-regions. Fifteen percent of Staphylococcus aureus overexpressed efflux-pump genes.
Collapse
Affiliation(s)
| | - Tae-Hoon Oh
- Department of Infectious Diseases, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Su-Mi Choi
- Department of Infectious Diseases, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hee-Kyung Kim
- Department of Biomedical Science, Chonnam National University Graduate School
| | - Seong Eun Kim
- Department of Infectious Diseases, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Uh Jin Kim
- Department of Infectious Diseases, Chonnam National University Hospital, Gwangju, Republic of Korea; Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Seung-Ji Kang
- Department of Infectious Diseases, Chonnam National University Hospital, Gwangju, Republic of Korea; Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hee-Chang Jang
- Department of Infectious Diseases, Chonnam National University Hospital, Gwangju, Republic of Korea; Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sook-In Jung
- Department of Infectious Diseases, Chonnam National University Hospital, Gwangju, Republic of Korea; Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kyung-Hwa Park
- Department of Infectious Diseases, Chonnam National University Hospital, Gwangju, Republic of Korea; Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
21
|
Miller R, Higuera CA, Wu J, Klika A, Babic M, Piuzzi NS. Periprosthetic Joint Infection. JBJS Rev 2020; 8:e1900224. [DOI: 10.2106/jbjs.rvw.19.00224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Polat HK, Bozdağ Pehlivan S, Özkul C, Çalamak S, Öztürk N, Aytekin E, Fırat A, Ulubayram K, Kocabeyoğlu S, İrkeç M, Çalış S. Development of besifloxacin HCl loaded nanofibrous ocular inserts for the treatment of bacterial keratitis: In vitro, ex vivo and in vivo evaluation. Int J Pharm 2020; 585:119552. [DOI: 10.1016/j.ijpharm.2020.119552] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 11/29/2022]
|
23
|
Jubeh B, Breijyeh Z, Karaman R. Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches. Molecules 2020; 25:E2888. [PMID: 32586045 PMCID: PMC7356343 DOI: 10.3390/molecules25122888] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
The discovery of antibiotics has created a turning point in medical interventions to pathogenic infections, but unfortunately, each discovery was consistently followed by the emergence of resistance. The rise of multidrug-resistant bacteria has generated a great challenge to treat infections caused by bacteria with the available antibiotics. Today, research is active in finding new treatments for multidrug-resistant pathogens. In a step to guide the efforts, the WHO has published a list of the most dangerous bacteria that are resistant to current treatments and requires the development of new antibiotics for combating the resistance. Among the list are various Gram-positive bacteria that are responsible for serious healthcare and community-associated infections. Methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and drug-resistant Streptococcus pneumoniae are of particular concern. The resistance of bacteria is an evolving phenomenon that arises from genetic mutations and/or acquired genomes. Thus, antimicrobial resistance demands continuous efforts to create strategies to combat this problem and optimize the use of antibiotics. This article aims to provide a review of the most critical resistant Gram-positive bacterial pathogens, their mechanisms of resistance, and the new treatments and approaches reported to circumvent this problem.
Collapse
Affiliation(s)
| | | | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine; (B.J.); (Z.B.)
| |
Collapse
|
24
|
Antibiotic Resistance Profiles, Molecular Mechanisms and Innovative Treatment Strategies of Acinetobacter baumannii. Microorganisms 2020; 8:microorganisms8060935. [PMID: 32575913 PMCID: PMC7355832 DOI: 10.3390/microorganisms8060935] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic resistance is one of the biggest challenges for the clinical sector and industry, environment and societal development. One of the most important pathogens responsible for severe nosocomial infections is Acinetobacter baumannii, a Gram-negative bacterium from the Moraxellaceae family, due to its various resistance mechanisms, such as the β-lactamases production, efflux pumps, decreased membrane permeability and altered target site of the antibiotic. The enormous adaptive capacity of A. baumannii and the acquisition and transfer of antibiotic resistance determinants contribute to the ineffectiveness of most current therapeutic strategies, including last-line or combined antibiotic therapy. In this review, we will present an update of the antibiotic resistance profiles and underlying mechanisms in A. baumannii and the current progress in developing innovative strategies for combating multidrug-resistant A. baumannii (MDRAB) infections.
Collapse
|
25
|
Watterson WJ, Tanyeri M, Watson AR, Cham CM, Shan Y, Chang EB, Eren AM, Tay S. Droplet-based high-throughput cultivation for accurate screening of antibiotic resistant gut microbes. eLife 2020; 9:e56998. [PMID: 32553109 PMCID: PMC7351490 DOI: 10.7554/elife.56998] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/14/2020] [Indexed: 12/16/2022] Open
Abstract
Traditional cultivation approaches in microbiology are labor-intensive, low-throughput, and yield biased sampling of environmental microbes due to ecological and evolutionary factors. New strategies are needed for ample representation of rare taxa and slow-growers that are often outcompeted by fast-growers in cultivation experiments. Here we describe a microfluidic platform that anaerobically isolates and cultivates microbial cells in millions of picoliter droplets and automatically sorts them based on colony density to enhance slow-growing organisms. We applied our strategy to a fecal microbiota transplant (FMT) donor stool using multiple growth media, and found significant increase in taxonomic richness and larger representation of rare and clinically relevant taxa among droplet-grown cells compared to conventional plates. Furthermore, screening the FMT donor stool for antibiotic resistance revealed 21 populations that evaded detection in plate-based assessment of antibiotic resistance. Our method improves cultivation-based surveys of diverse microbiomes to gain deeper insights into microbial functioning and lifestyles.
Collapse
Affiliation(s)
- William J Watterson
- Pritzker School of Molecular Engineering, The University of ChicagoChicagoUnited States
- Institute for Genomics and Systems Biology, The University of ChicagoChicagoUnited States
| | - Melikhan Tanyeri
- Pritzker School of Molecular Engineering, The University of ChicagoChicagoUnited States
- Institute for Genomics and Systems Biology, The University of ChicagoChicagoUnited States
- Department of Engineering, Duquesne UniversityPittsburghUnited States
| | - Andrea R Watson
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Candace M Cham
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Yue Shan
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Eugene B Chang
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - A Murat Eren
- Department of Medicine, The University of ChicagoChicagoUnited States
- Graduate Program in the Biophysical Sciences, The University of ChicagoChicagoUnited States
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological LaboratoryWoods HoleUnited States
| | - Savaş Tay
- Pritzker School of Molecular Engineering, The University of ChicagoChicagoUnited States
- Institute for Genomics and Systems Biology, The University of ChicagoChicagoUnited States
| |
Collapse
|
26
|
Li X, Lu S, Liu S, Zheng Q, Shen P, Wang X. Shifts of bacterial community and molecular ecological network at the presence of fluoroquinolones in a constructed wetland system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135156. [PMID: 31780166 DOI: 10.1016/j.scitotenv.2019.135156] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Fluoroquinolones (FQs) has caused increasing concerns regarding its potential environmental risks. However, their effects on bacterial community and microbial interactions in wetland system remains unclear. To verify these issues, a lab-scale constructed wetland exposed to low concentration FQs mixture was carried out for two months. The results showed that the removal efficiencies of COD and TP were negatively affected. FQs significantly increased the bacterial diversity and altered the overall bacterial community structure. Proteobacteria significantly decreased while Firmicutes exhibited opposite tendency (P < 0.05). Dechloromonas and Delftia, involved in phosphorus removal, decreased significantly (P < 0.05). Molecular ecological network analysis suggested that FQs promoted the network complexity and microbial interactions. A super module emerged at FQs and among-module connections were weakened obviously. Additionally, Nodes of Betaproteobacteria lost most interactions while Clostridia acquired more interactions at the presence of FQs. This study provided insights into how the bacterial community and their molecular ecological network respond to FQs in constructed wetland system.
Collapse
Affiliation(s)
- Xinhui Li
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaoyong Lu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shidi Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Quan Zheng
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Shen
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
27
|
Hui J, Dong PT, Liang L, Mandal T, Li J, Ulloa ER, Zhan Y, Jusuf S, Zong C, Seleem MN, Liu GY, Cui Q, Cheng JX. Photo-Disassembly of Membrane Microdomains Revives Conventional Antibiotics against MRSA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903117. [PMID: 32195102 PMCID: PMC7080515 DOI: 10.1002/advs.201903117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/29/2019] [Indexed: 05/21/2023]
Abstract
Confronted with the rapid evolution and dissemination of antibiotic resistance, there is an urgent need to develop alternative treatment strategies for drug-resistant pathogens. Here, an unconventional approach is presented to restore the susceptibility of methicillin-resistant S. aureus (MRSA) to a broad spectrum of conventional antibiotics via photo-disassembly of functional membrane microdomains. The photo-disassembly of microdomains is based on effective photolysis of staphyloxanthin, the golden carotenoid pigment that gives its name. Upon pulsed laser treatment, cell membranes are found severely disorganized and malfunctioned to defense antibiotics, as unveiled by membrane permeabilization, membrane fluidification, and detachment of membrane protein, PBP2a. Consequently, the photolysis approach increases susceptibility and inhibits development of resistance to a broad spectrum of antibiotics including penicillins, quinolones, tetracyclines, aminoglycosides, lipopeptides, and oxazolidinones. The synergistic therapy, without phototoxicity to the host, is effective in combating MRSA both in vitro and in vivo in a mice skin infection model. Collectively, this endogenous chromophore-targeted phototherapy concept paves a novel platform to revive conventional antibiotics to combat drug-resistant S. aureus infections as well as to screen new lead compounds.
Collapse
Affiliation(s)
- Jie Hui
- Department of Electrical and Computer Engineering Boston University Boston MA 02215 USA
- Boston University Photonics Center Boston MA 02215 USA
| | - Pu-Ting Dong
- Boston University Photonics Center Boston MA 02215 USA
- Department of Chemistry Boston University Boston MA 02215 USA
| | - Lijia Liang
- Department of Electrical and Computer Engineering Boston University Boston MA 02215 USA
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Changchun 130012 China
| | | | - Junjie Li
- Department of Electrical and Computer Engineering Boston University Boston MA 02215 USA
- Boston University Photonics Center Boston MA 02215 USA
| | - Erlinda R Ulloa
- Collaborative to Halt Antibiotic-Resistant Microbes (CHARM) Department of Pediatrics University of California San Diego School of Medicine La Jolla CA 92093 USA
- Division of Infectious Disease Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Yuewei Zhan
- Department Biomedical Engineering Boston University Boston MA 02215 USA
| | - Sebastian Jusuf
- Department Biomedical Engineering Boston University Boston MA 02215 USA
| | - Cheng Zong
- Department of Electrical and Computer Engineering Boston University Boston MA 02215 USA
- Boston University Photonics Center Boston MA 02215 USA
| | - Mohamed N Seleem
- College of Veterinary Medicine Purdue University West Lafayette IN 47907 USA
| | - George Y Liu
- Collaborative to Halt Antibiotic-Resistant Microbes (CHARM) Department of Pediatrics University of California San Diego School of Medicine La Jolla CA 92093 USA
- Division of Infectious Diseases Rady Children's Hospital San Diego CA 92123 USA
| | - Qiang Cui
- Department of Chemistry Boston University Boston MA 02215 USA
- Department Biomedical Engineering Boston University Boston MA 02215 USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering Boston University Boston MA 02215 USA
- Boston University Photonics Center Boston MA 02215 USA
- Department of Chemistry Boston University Boston MA 02215 USA
- Department Biomedical Engineering Boston University Boston MA 02215 USA
| |
Collapse
|
28
|
Scangarella-Oman NE, Ingraham KA, Tiffany CA, Tomsho L, Van Horn SF, Mayhew DN, Perry CR, Ashton TC, Dumont EF, Huang J, Brown JR, Miller LA. In Vitro Activity and Microbiological Efficacy of Gepotidacin from a Phase 2, Randomized, Multicenter, Dose-Ranging Study in Patients with Acute Bacterial Skin and Skin Structure Infections. Antimicrob Agents Chemother 2020; 64:e01302-19. [PMID: 31818823 PMCID: PMC7038298 DOI: 10.1128/aac.01302-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
A phase 2 study of gepotidacin demonstrated the safety and efficacy of 3 gepotidacin doses (750 mg every 12 h [q12h], 1,000 mg q12h, and 1,000 mg every 8 h [q8h]) in hospitalized patients with suspected/confirmed Gram-positive acute bacterial skin and skin structure infections (ABSSSIs). Evaluating microbiology outcomes and responses were secondary endpoints. Pretreatment isolates recovered from infected lesions underwent susceptibility testing per Clinical and Laboratory Standards Institute guidelines. Staphylococcus aureus accounted for 78/102 (76%) of Gram-positive isolates; 54/78 (69%) were methicillin-resistant S. aureus (MRSA), and 24/78 (31%) were methicillin-susceptible S. aureus (MSSA). Posttherapy microbiological success (culture-confirmed eradication of the pretreatment pathogen or presumed eradication based on a clinical outcome of success) for S. aureus was 90% for the gepotidacin 750-mg q12h group, 89% for the 1,000-mg q12h, and 73% in the 1000-mg q8h group. For 78 S. aureus isolates obtained from pretreatment lesions, gepotidacin MIC50/MIC90 values were 0.25/0.5 μg/ml against both MRSA and MSSA. Isolates recovered from the few patients with posttreatment cultures showed no significant reduction in gepotidacin susceptibility (≥4-fold MIC increase) between pretreatment and posttreatment isolates. Two of the 78 S. aureus isolates from pretreatment lesions had elevated gepotidacin MICs and had mutations known to occur in quinolone-resistant S. aureus (GyrA S84L, ParC S80Y, and ParE D422E) or to confer elevated MICs to novel bacterial topoisomerase inhibitors (GyrA D83N, both isolates; ParC V67A, one isolate). This first report of microbiological outcomes and responses of gepotidacin in patients with ABSSSIs supports further evaluation of gepotidacin as a novel first-in-class antibacterial agent. (This study has been registered at ClinicalTrials.gov under identifier NCT02045797.).
Collapse
Affiliation(s)
| | - Karen A Ingraham
- Medicine Opportunities Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Courtney A Tiffany
- Medicine Opportunities Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Lynn Tomsho
- Target and Pathway Validation, Target Sciences, GlaxoSmithKline Research and Development, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Stephanie F Van Horn
- Target and Pathway Validation, Target Sciences, GlaxoSmithKline Research and Development, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - David N Mayhew
- Computational Biology, Functional Genomics, GlaxoSmithKline Research and Development, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Caroline R Perry
- Medicine Opportunities Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Theresa C Ashton
- Medicine Opportunities Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Etienne F Dumont
- Medicine Opportunities Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Jianzhong Huang
- Medicine Opportunities Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - James R Brown
- Computational Biology, Human Genetics, GlaxoSmithKline Research and Development, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Linda A Miller
- Medicine Opportunities Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| |
Collapse
|
29
|
Petsas AS, Vagi MC. Trends in the Bioremediation of Pharmaceuticals and Other Organic Contaminants Using Native or Genetically Modified Microbial Strains: A Review. Curr Pharm Biotechnol 2019; 20:787-824. [DOI: 10.2174/1389201020666190527113903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/15/2019] [Accepted: 03/19/2019] [Indexed: 01/28/2023]
Abstract
Nowadays, numerous synthetic and semisynthetic chemicals are extensively produced and consequently used worldwide for many different purposes, such as pharmaceuticals, pesticides, hydrocarbons with aromatic rings (known as polycyclic aromatic hydrocarbons, PAHs), multi-substituted biphenyls with halogens (such as polychlorinated biphenyls, PCBs), and many other toxic and persistent chemical species. The presence of the aforementioned xenobiotic substances not only in various environmental matrices (water, air, and soil), but also in biological tissues (organisms) as well as in several compartments of raw or processed food (of fruit, vegetal, and animal origin), has raised global scientific concerns regarding their potential toxicity towards non target organisms including humans. Additionally, the ability of those persistent organic pollutants to be magnified via food consumption (food chain) has become a crucial threat to human health. Microbial degradation is considered an important route influencing the fate of those toxicants in each matrix. The technique of bioremediation, either with microorganisms (native or genetically modified) which are applied directly (in a reactor or in situ), or with cell extracts or purified enzymes preparations, is reported as a low cost and potential detoxification technology for the removal of toxic chemicals. The sources and toxic impacts of target groups of chemicals are briefly presented in the present study, whereas the bioremediation applications for the removal of pharmaceuticals and other organic contaminants using microbial strains are critically reviewed. All the recently published data concerning the genes encoding the relevant enzymes that catalyze the degradation reactions, the mechanisms of reactions and parameters that influence the bioremediation process are discussed. Finally, research needs and future trends in the direction of decontamination are high-lightened.
Collapse
Affiliation(s)
- Andreas S. Petsas
- Laboratory of Environmental Quality and Geospatial Applications, Department of Marine Sciences, School of Environment, University of the Aegean, Lesvos, Greece
| | - Maria C. Vagi
- Laboratory of Environmental Quality and Geospatial Applications, Department of Marine Sciences, School of Environment, University of the Aegean, Lesvos, Greece
| |
Collapse
|
30
|
Rosen T, Albareda N, Rosenberg N, Alonso FG, Roth S, Zsolt I, Hebert AA. Efficacy and Safety of Ozenoxacin Cream for Treatment of Adult and Pediatric Patients With Impetigo: A Randomized Clinical Trial. JAMA Dermatol 2019; 154:806-813. [PMID: 29898217 DOI: 10.1001/jamadermatol.2018.1103] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Importance Ozenoxacin, a novel topical antibacterial agent with potent bactericidal activity against gram-positive bacteria, has been developed as a cream with 1% active drug for the treatment of impetigo, a highly contagious bacterial skin infection. Objectives To evaluate the efficacy, safety, and tolerability of ozenoxacin cream, 1%, after 5-day twice-daily topical treatment in patients with impetigo. Design, Setting, and Participants This randomized, double-blind, vehicle-controlled clinical trial included patients 2 months or older with impetigo who were enrolled at centers in 6 countries from June 2, 2014, through May 30, 2015. Data were analyzed based on intention to treat from July 9 through July 22, 2015. Interventions Patients were randomized 1:1 to receive topical ozenoxacin or placebo control. Main Outcomes and Measures Efficacy was measured using the Skin Infection Rating Scale and microbiological culture. Safety and tolerability were also evaluated. Results Among the 411 patients who received treatment (210 males [51.1%]; mean [SD] age, 18.6 [18.3] years), ozenoxacin demonstrated superior clinical success compared with placebo, which was evident after 5 days of therapy (112 of 206 [54.4%] vs 78 of 206 [37.9%]; P = .001). Ozenoxacin also demonstrated superior microbiological success compared with placebo after 2 days of therapy (109 of 125 [87.2%] vs 76 of 119 [63.9%]; P = .002). Ozenoxacin was well tolerated, with 8 of 206 patients experiencing adverse effects, with only 1 of these potentially related to the study treatment; none were serious. Conclusions and Relevance Topical ozenoxacin is effective and well tolerated in the treatment of impetigo in patients 2 months and older. This effect is demonstrated by rapid onset of response and superior clinical and microbiological response compared with placebo. Topical ozenoxacin represents a novel option for the treatment of impetigo. Trial Registration ClinicalTrials.gov Identifier: NCT02090764.
Collapse
Affiliation(s)
- Theodore Rosen
- Department of Dermatology, Baylor College of Medicine, Houston, Texas
| | | | | | | | - Sandra Roth
- Medimetriks Pharmaceuticals, Inc, Fairfield, New Jersey
| | | | | |
Collapse
|
31
|
de Carvalho SP, de Almeida JB, de Freitas LM, Guimarães AMS, do Nascimento NC, Dos Santos AP, Campos GB, Messick JB, Timenetsky J, Marques LM. Genomic profile of Brazilian methicillin-resistant Staphylococcus aureus resembles clones dispersed worldwide. J Med Microbiol 2019; 68:693-702. [PMID: 30900970 DOI: 10.1099/jmm.0.000956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Comparative genomic analysis of strains may help us to better understand the wide diversity of their genetic profiles. The aim of this study was to analyse the genomic features of the resistome and virulome of Brazilian first methicillin-resistant Staphylococcus aureus (MRSA) isolates and their relationship to other Brazilian and international MRSA strains. METHODOLOGY The whole genomes of three MRSA strains previously isolated in Vitória da Conquista were sequenced, assembled, annotated and compared with other MRSA genomes. A phylogenetic tree was constructed and the pan-genome and accessory and core genomes were constructed. The resistomes and virulomes of all strains were identified.Results/Key findings. Phylogenetic analysis of all 49 strains indicated different clones showing high similarity. The pan-genome of the analysed strains consisted of 4484 genes, with 31 % comprising the gene portion of the core genome, 47 % comprising the accessory genome and 22 % being singletons. Most strains showed at least one gene related to virulence factors associated with immune system evasion, followed by enterotoxins. The strains showed multiresistance, with the most recurrent genes conferring resistance to beta-lactams, fluoroquinolones, aminoglycosides and macrolides. CONCLUSIONS Our comparative genomic analysis showed that there is no pattern of virulence gene distribution among the clones analysed in the different regions. The Brazilian strains showed similarity with clones from several continents.
Collapse
Affiliation(s)
- Suzi P de Carvalho
- Department of Biological Sciences, Santa Cruz State University, Ilhéus-Itabuna Road, km 16 Salobrinho, Ilhéus 45662-900, Bahia State, Brazil
| | - Jéssica B de Almeida
- Department of Biological Sciences, Santa Cruz State University, Ilhéus-Itabuna Road, km 16 Salobrinho, Ilhéus 45662-900, Bahia State, Brazil.,Multidisciplinary Institute of Health, Universidade Federal da Bahia, Rio de Contas Street, Square 17, Number 58, Candeias, Vitória da Conquista, 45029-094, Bahia State, Brazil
| | - Leandro M de Freitas
- Multidisciplinary Institute of Health, Universidade Federal da Bahia, Rio de Contas Street, Square 17, Number 58, Candeias, Vitória da Conquista, 45029-094, Bahia State, Brazil
| | - Ana Marcia S Guimarães
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, 1374 Professor Lineu Prestes Avenue, Sao Paulo, 05508-900, São Paulo State, Brazil
| | - Naíla C do Nascimento
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Andrea P Dos Santos
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Guilherme B Campos
- Multidisciplinary Institute of Health, Universidade Federal da Bahia, Rio de Contas Street, Square 17, Number 58, Candeias, Vitória da Conquista, 45029-094, Bahia State, Brazil
| | - Joanne B Messick
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Jorge Timenetsky
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, 1374 Professor Lineu Prestes Avenue, Sao Paulo, 05508-900, São Paulo State, Brazil
| | - Lucas M Marques
- Multidisciplinary Institute of Health, Universidade Federal da Bahia, Rio de Contas Street, Square 17, Number 58, Candeias, Vitória da Conquista, 45029-094, Bahia State, Brazil.,Department of Biological Sciences, Santa Cruz State University, Ilhéus-Itabuna Road, km 16 Salobrinho, Ilhéus 45662-900, Bahia State, Brazil.,Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, 1374 Professor Lineu Prestes Avenue, Sao Paulo, 05508-900, São Paulo State, Brazil
| |
Collapse
|
32
|
Vila J, Hebert AA, Torrelo A, López Y, Tato M, García-Castillo M, Cantón R. Ozenoxacin: a review of preclinical and clinical efficacy. Expert Rev Anti Infect Ther 2019; 17:159-168. [PMID: 30686133 DOI: 10.1080/14787210.2019.1573671] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Impetigo is the most common bacterial skin infection in children. Treatment is becoming complicated due to the development of antimicrobial resistance, especially in the main pathogen, Staphylococcus aureus. Ozenoxacin, a novel non-fluorinated topical quinolone antimicrobial, has demonstrated efficacy in impetigo. Areas covered: This article reviews the microbiology, pharmacodynamic and pharmacokinetic properties of ozenoxacin, and its clinical and microbiological efficacy in impetigo. Expert opinion: In an environment of increasing antimicrobial resistance and concurrent slowdown in antimicrobial development, the introduction of a new agent is a major event. Ozenoxacin is characterized by simultaneous affinity for DNA gyrase and topoisomerase IV, appears to be impervious to certain efflux pumps that confer bacterial resistance to other quinolones, shows low selection of resistant mutants, and has a mutant prevention concentration below its concentration in skin. These mechanisms protect ozenoxacin against development of resistance, while the absence of a fluorine atom in its structure confers a better safety profile versus fluoroquinolones. In vitro studies have demonstrated high potency of ozenoxacin against staphylococci and streptococci including resistant strains of S. aureus. Clinical trials of ozenoxacin in patients with impetigo reported high clinical and microbiological success rates. Preserving the activity and availability of ozenoxacin through antimicrobial stewardship is paramount.
Collapse
Affiliation(s)
- Jordi Vila
- a Red Española de Investigación en Patología Infecciosa (REIPI) , Madrid , Spain.,b Servei de Microbiología , Centre de Diagnòstic Biomèdic, Hospital Clinic , Barcelona , Spain.,c ISGlobal - Hospital Clinic , Universitat de Barcelona , Barcelona , Spain
| | - Adelaide A Hebert
- d Departments of Dermatology and Pediatrics , UT Health McGovern Medical School , Houston , TX , USA
| | - Antonio Torrelo
- e Departament of Dermatology , Hospital del Niño Jesús , Madrid , Spain
| | - Yuly López
- c ISGlobal - Hospital Clinic , Universitat de Barcelona , Barcelona , Spain
| | - Marta Tato
- f Servicio de Microbiología , Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) , Madrid , Spain
| | - María García-Castillo
- f Servicio de Microbiología , Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) , Madrid , Spain
| | - Rafael Cantón
- a Red Española de Investigación en Patología Infecciosa (REIPI) , Madrid , Spain.,f Servicio de Microbiología , Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) , Madrid , Spain
| |
Collapse
|
33
|
Abstract
Enterococci are natural inhabitants of the intestinal tract in humans and many animals, including food-producing and companion animals. They can easily contaminate the food and the environment, entering the food chain. Moreover, Enterococcus is an important opportunistic pathogen, especially the species E. faecalis and E. faecium, causing a wide variety of infections. This microorganism not only contains intrinsic resistance mechanisms to several antimicrobial agents, but also has the capacity to acquire new mechanisms of antimicrobial resistance. In this review we analyze the diversity of enterococcal species and their distribution in the intestinal tract of animals. Moreover, resistance mechanisms for different classes of antimicrobials of clinical relevance are reviewed, as well as the epidemiology of multidrug-resistant enterococci of animal origin, with special attention given to beta-lactams, glycopeptides, and linezolid. The emergence of new antimicrobial resistance genes in enterococci of animal origin, such as optrA and cfr, is highlighted. The molecular epidemiology and the population structure of E. faecalis and E. faecium isolates in farm and companion animals is presented. Moreover, the types of plasmids that carry the antimicrobial resistance genes in enterococci of animal origin are reviewed.
Collapse
|
34
|
Resistance profile of clinically relevant bacterial isolates against fluoroquinolone in Ethiopia: a systematic review and meta-analysis. BMC Pharmacol Toxicol 2018; 19:86. [PMID: 30541613 PMCID: PMC6292079 DOI: 10.1186/s40360-018-0274-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/22/2018] [Indexed: 11/13/2022] Open
Abstract
Background Fluoroquinolones are among the most frequently utilized antibacterial agents in developing countries like Ethiopia. Ciprofloxacin has become the most prescribed drug within this class and remains as one of the top three antibacterial agents prescribed in Ethiopia. However, several studies indicated that there is a gradual increase of antibacterial resistance. Therefore, this meta-analysis aimed to quantitatively estimate the prevalence of ciprofloxacin resistance bacterial isolates in Ethiopia. Methods Literature search was conducted from electronic databases and indexing services including EMBASE (Ovid interface), PubMed/MEDLINE, Google Scholar, Science Direct and WorldCat. Data were extracted with structured format prepared in Microsoft Excel and exported to STATA 15.0 software for the analyses. Pooled estimation of outcomes was performed with DerSimonian-Laird random-effects model at 95% confidence level. Degree of heterogeneity of studies was presented with I2 statistics. Publication bias was conducted with comprehensive meta-analysis version 3 software and presented with funnel plots of standard error supplemented by Begg’s and Egger’s tests. The study protocol has been registered on PROSPERO with reference number ID: CRD42018097047. Results A total of 37 studies were included for this study. The pooled prevalence of resistance in selected gram-positive bacterial isolates against ciprofloxacin was found to be 19.0% (95% confidence interval [CI]: 15.0, 23.0). The degree of resistance among Staphylococcus aureus, Coagulase negative Staphyloccoci (CoNS), Enterococcus faecalis and Group B Streptococci (GBS) was found to be 18.6, 21.6, 23.9, and 7.40%, respectively. The pooled prevalence of resistance in gram-negative bacteria was about 21.0% (95% CI: 17, 25). Higher estimates were observed in Neisseria gonorrhea (48.1%), Escherichia coli (24.3%) and Klebsiella pneumonia (23.2%). Subgroup analysis indicated that blood and urine were found to be a major source of resistant S. aureus isolates. Urine was also a major source of resistant strains for CoNS, Klebsiella and Proteus species. Conclusion Among gram-positive bacteria, high prevalence of resistance was observed in E. faecalis and CoNS whereas relatively low estimate of resistance was observed among GBS isolates. Within gram-negative bacteria, nearly half of isolates in N. gonorrhoea were found ciprofloxacin resistant. From enterobacteriaceae isolates, K. pneumonia and E. coli showed higher estimates of ciprofloxacin resistance. Electronic supplementary material The online version of this article (10.1186/s40360-018-0274-6) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol 2018; 9:2928. [PMID: 30555448 PMCID: PMC6283892 DOI: 10.3389/fmicb.2018.02928] [Citation(s) in RCA: 450] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/14/2018] [Indexed: 11/13/2022] Open
Abstract
Emergence of antibiotic resistant pathogenic bacteria poses a serious public health challenge worldwide. However, antibiotic resistance genes are not confined to the clinic; instead they are widely prevalent in different bacterial populations in the environment. Therefore, to understand development of antibiotic resistance in pathogens, we need to consider important reservoirs of resistance genes, which may include determinants that confer self-resistance in antibiotic producing soil bacteria and genes encoding intrinsic resistance mechanisms present in all or most non-producer environmental bacteria. While the presence of resistance determinants in soil and environmental bacteria does not pose a threat to human health, their mobilization to new hosts and their expression under different contexts, for example their transfer to plasmids and integrons in pathogenic bacteria, can translate into a problem of huge proportions, as discussed in this review. Selective pressure brought about by human activities further results in enrichment of such determinants in bacterial populations. Thus, there is an urgent need to understand distribution of resistance determinants in bacterial populations, elucidate resistance mechanisms, and determine environmental factors that promote their dissemination. This comprehensive review describes the major known self-resistance mechanisms found in producer soil bacteria of the genus Streptomyces and explores the relationships between resistance determinants found in producer soil bacteria, non-producer environmental bacteria, and clinical isolates. Specific examples highlighting potential pathways by which pathogenic clinical isolates might acquire these resistance determinants from soil and environmental bacteria are also discussed. Overall, this article provides a conceptual framework for understanding the complexity of the problem of emergence of antibiotic resistance in the clinic. Availability of such knowledge will allow researchers to build models for dissemination of resistance genes and for developing interventions to prevent recruitment of additional or novel genes into pathogens.
Collapse
Affiliation(s)
- Elizabeth Peterson
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
36
|
Kim YB, Seo HJ, Seo KW, Jeon HY, Kim DK, Kim SW, Lim SK, Lee YJ. Characteristics of High-Level Ciprofloxacin-Resistant Enterococcus faecalis and Enterococcus faecium from Retail Chicken Meat in Korea. J Food Prot 2018; 81:1357-1363. [PMID: 30015506 DOI: 10.4315/0362-028x.jfp-18-046] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Genes encoding ciprofloxacin resistance in enterococci in animals may be transferred to bacteria in the animal gut and to zoonotic bacteria where they could pose a human health hazard. The objective of this study was to characterize antimicrobial resistance in high-level ciprofloxacin-resistant (HLCR) Enterococcus faecalis and Enterococcus faecium isolated from retail chicken meat. A total of 345 enterococci (335 E. faecalis and 10 E. faecium) were isolated from 200 chicken meat samples. Of these, 85 E. faecalis isolates and 1 E. faecium isolate were confirmed as HLCR enterococci. All 86 HLCR enterococci displayed gyrA- parC point mutations consisting of S83I-S80I (94.2%, 81 isolates), S83F-S80I (2.3%, 2 isolates), S83Y-S80I (2.3%, 2 isolates), and S83Y-S80F (1.2%, 1 isolate). Sixty-one (72.9%) of the 86 HLCR enterococci showed multidrug resistance to three to six classes of antimicrobial agents. Multilocus sequence typing revealed that E. faecalis had 17 different sequence types (ST) and E. faecium had 1 different ST, with ST256 observed most often (44 isolates, 51.8%). Although these results cannot exclude the possibility that pathotypes of enterococci isolated from chicken might represent transmission to or from humans, the foodborne HLCR E. faecalis indicated that the food chain is a potential route of enterococcal infection in humans.
Collapse
Affiliation(s)
- Yeong Bin Kim
- 1 College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea (ORCID: http://orcid.org/0000-0002-4754-0931 [Y.B.K.]); and
| | - Hyun Joo Seo
- 1 College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea (ORCID: http://orcid.org/0000-0002-4754-0931 [Y.B.K.]); and
| | - Kwang Won Seo
- 1 College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea (ORCID: http://orcid.org/0000-0002-4754-0931 [Y.B.K.]); and
| | - Hye Young Jeon
- 1 College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea (ORCID: http://orcid.org/0000-0002-4754-0931 [Y.B.K.]); and
| | - Dong Kyu Kim
- 1 College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea (ORCID: http://orcid.org/0000-0002-4754-0931 [Y.B.K.]); and
| | - Shin Woo Kim
- 1 College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea (ORCID: http://orcid.org/0000-0002-4754-0931 [Y.B.K.]); and
| | - Suk-Kyung Lim
- 2 Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, Gimcheon 39660, Republic of Korea
| | - Young Ju Lee
- 1 College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea (ORCID: http://orcid.org/0000-0002-4754-0931 [Y.B.K.]); and
| |
Collapse
|
37
|
Wu CJ, Lai JF, Huang IW, Hsieh LY, Wang HY, Shiau YR, Lauderdale TL. Multiclonal emergence of levofloxacin-resistant group B Streptococcus, Taiwan. J Antimicrob Chemother 2018; 72:3263-3271. [PMID: 28961888 DOI: 10.1093/jac/dkx297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/24/2017] [Indexed: 01/16/2023] Open
Abstract
Objectives This study investigated the trend in antimicrobial resistance among group B Streptococcus (GBS) from a national surveillance programme in Taiwan and delineated characteristics of and factors associated with levofloxacin-resistant isolates. Methods Clinical isolates of all sample types and patient groups were collected from multiple hospitals biennially between 2002 and 2012. Susceptibilities to different antibiotics were determined by broth microdilution. Molecular studies of levofloxacin-resistant isolates included serotyping, PFGE, mutations in the QRDRs and MLST. Results A total of 1559 isolates were tested and all remained susceptible to penicillin, cephalosporins, meropenem and vancomycin. However, levofloxacin resistance increased from 2.2% (range 0%-3.3%) in 2002-06 to 6.2% (5.9%-7.5%) in 2008-12 (P = 0.016). Among the 88 levofloxacin-resistant isolates, the majority (79.5%) had the GyrA(S81L)+ParC(S79F/Y) double mutations and most (54.5%) were also resistant to clindamycin, erythromycin and tetracycline. The predominant genotype of the levofloxacin-resistant isolates was ST19/serotype III (43.2%). Four previously unreported genotypes, ST1 and its single-locus variants (ST920 and ST922)/serotype VI (28.4%) and ST1/serotype II (18.2%), were found to have circulated locally. Serotype III isolates were predominately from urine and female genital tract specimens and <65-year-old adult outpatients, while serotype II and VI isolates were mostly from respiratory and urine samples and >65-year-old inpatients. Multivariate analysis revealed that elderly age and respiratory samples were independent factors associated with levofloxacin resistance. Conclusions Multiclonal emergence and dissemination of levofloxacin-resistant GBS isolates occurred in healthcare and community settings in Taiwan. Continuous molecular-level surveillance is important to detect new epidemic trends.
Collapse
Affiliation(s)
- Chi-Jung Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Fen Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - I-Wen Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Li-Yun Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Hui-Ying Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yih-Ru Shiau
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Tsai-Ling Lauderdale
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
38
|
Shen Y, Cai J, Davies MR, Zhang C, Gao K, Qiao D, Jiang H, Yao W, Li Y, Zeng M, Chen M. Identification and Characterization of Fluoroquinolone Non-susceptible Streptococcus pyogenes Clones Harboring Tetracycline and Macrolide Resistance in Shanghai, China. Front Microbiol 2018; 9:542. [PMID: 29628918 PMCID: PMC5876283 DOI: 10.3389/fmicb.2018.00542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/09/2018] [Indexed: 12/18/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is one of the top 10 infectious causes of death worldwide. Macrolide and tetracycline resistant GAS has emerged as a major health concern in China coinciding with an ongoing scarlet fever epidemic. Furthermore, increasing rates of fluoroquinolone (FQ) non-susceptibility within GAS from geographical regions outside of China has also been reported. Fluoroquinolones are the third most commonly prescribed antibiotic in China and is an therapeutic alternative for multi-drug resistant GAS. The purpose of this study was to investigate the epidemiological and molecular features of GAS fluoroquinolone (FQ) non-susceptibility in Shanghai, China. GAS (n = 2,258) recovered between 2011 and 2016 from children and adults were tested for FQ-non-susceptibility. Efflux phenotype and mutations in parC, parE, gyrA, and gyrB were investigated and genetic relationships were determined by emm typing, pulsed-field gel electrophoresis and phylogenetic analysis. The frequency of GAS FQ-non-susceptibility was 1.3% (30/2,258), with the phenotype more prevalent in GAS isolated from adults (14.3%) than from children (1.2%). Eighty percent (24/30) of FQ-non-susceptible isolates were also resistant to both macrolides (ermB) and tetracycline (tetM) including the GAS sequence types emm12, emm6, emm11, and emm1. Genomic fingerprinting analysis of the 30 isolates revealed that non-susceptibility may arise in various genetic backgrounds even within a single emm type. No efflux phenotype was observed in FQ non-susceptible isolates, and molecular analysis of the quinolone resistance-determining regions (QRDRs) identified several sequence polymorphisms in ParC and ParE, and none in GyrA and GyrB. Expansion of this analysis to 152 publically available GAS whole genome sequences from Hong Kong predicted 7.9% (12/152) of Hong Kong isolates harbored a S79F ParC mutation, of which 66.7% (8/12) were macrolide and tetracycline resistant. Phylogenetic analysis of the parC QRDR sequences suggested the possibility that FQ resistance may be acquired through inter-species lateral gene transfer. This study reports the emergence of macrolide, tetracycline, and fluoroquinolone multidrug-resistant clones across several GAS emm types including emm1 and emm12, warranting continual surveillance given the extensive use of fluoroquinolones in clinical use.
Collapse
Affiliation(s)
- Yinfang Shen
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, China.,Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jiehao Cai
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Mark R Davies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Chi Zhang
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Kun Gao
- Department of Clinical Laboratory, Xuhui Dahua Hospital, Shanghai, China
| | - Dan Qiao
- Department of Clinical Laboratory, Ruijin Hospital (North), Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haoqin Jiang
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| | - Weilei Yao
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Yuefang Li
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Mei Zeng
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Mingliang Chen
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.,Department of Microbiology, Shanghai Institutes of Preventive Medicine, Shanghai, China
| |
Collapse
|
39
|
Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev 2018; 41:430-449. [PMID: 28419231 DOI: 10.1093/femsre/fux007] [Citation(s) in RCA: 412] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/12/2017] [Indexed: 12/11/2022] Open
Abstract
The major targets for antibiotics in staphylococci are (i) the cell envelope, (ii) the ribosome and (iii) nucleic acids. Several novel targets emerged from recent targeted drug discovery programmes including the ClpP protease and FtsZ from the cell division machinery. Resistance can either develop by horizontal transfer of resistance determinants encoded by mobile genetic elements viz plasmids, transposons and the staphylococcal cassette chromosome or by mutations in chromosomal genes. Horizontally acquired resistance can occur by one of the following mechanisms: (i) enzymatic drug modification and inactivation, (ii) enzymatic modification of the drug binding site, (iii) drug efflux, (iv) bypass mechanisms involving acquisition of a novel drug-resistant target, (v) displacement of the drug to protect the target. Acquisition of resistance by mutation can result from (i) alteration of the drug target that prevents the inhibitor from binding, (ii) derepression of chromosomally encoded multidrug resistance efflux pumps and (iii) multiple stepwise mutations that alter the structure and composition of the cell wall and/or membrane to reduce drug access to its target. This review focuses on development of resistance to currently used antibiotics and examines future prospects for new antibiotics and informed use of drug combinations.
Collapse
|
40
|
Urushibara N, Suzaki K, Kawaguchiya M, Aung MS, Shinagawa M, Takahashi S, Kobayashi N. Contribution of Type II Topoisomerase Mutations to Fluoroquinolone Resistance inEnterococcus faeciumfrom Japanese Clinical Setting. Microb Drug Resist 2018; 24:1-7. [DOI: 10.1089/mdr.2016.0328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keisuke Suzaki
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mitsuyo Kawaguchiya
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaaki Shinagawa
- Division of Laboratory Medicine, Sapporo Medical University Hospital, Sapporo, Japan
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
41
|
Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol 2018; 9:2928. [PMID: 30555448 DOI: 10.3389/fmicb.2018.02928/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/14/2018] [Indexed: 05/20/2023] Open
Abstract
Emergence of antibiotic resistant pathogenic bacteria poses a serious public health challenge worldwide. However, antibiotic resistance genes are not confined to the clinic; instead they are widely prevalent in different bacterial populations in the environment. Therefore, to understand development of antibiotic resistance in pathogens, we need to consider important reservoirs of resistance genes, which may include determinants that confer self-resistance in antibiotic producing soil bacteria and genes encoding intrinsic resistance mechanisms present in all or most non-producer environmental bacteria. While the presence of resistance determinants in soil and environmental bacteria does not pose a threat to human health, their mobilization to new hosts and their expression under different contexts, for example their transfer to plasmids and integrons in pathogenic bacteria, can translate into a problem of huge proportions, as discussed in this review. Selective pressure brought about by human activities further results in enrichment of such determinants in bacterial populations. Thus, there is an urgent need to understand distribution of resistance determinants in bacterial populations, elucidate resistance mechanisms, and determine environmental factors that promote their dissemination. This comprehensive review describes the major known self-resistance mechanisms found in producer soil bacteria of the genus Streptomyces and explores the relationships between resistance determinants found in producer soil bacteria, non-producer environmental bacteria, and clinical isolates. Specific examples highlighting potential pathways by which pathogenic clinical isolates might acquire these resistance determinants from soil and environmental bacteria are also discussed. Overall, this article provides a conceptual framework for understanding the complexity of the problem of emergence of antibiotic resistance in the clinic. Availability of such knowledge will allow researchers to build models for dissemination of resistance genes and for developing interventions to prevent recruitment of additional or novel genes into pathogens.
Collapse
Affiliation(s)
- Elizabeth Peterson
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
42
|
Yassin AF, Langenberg S, Huntemann M, Clum A, Pillay M, Palaniappan K, Varghese N, Mikhailova N, Mukherjee S, Reddy TBK, Daum C, Shapiro N, Ivanova N, Woyke T, Kyrpides NC. Draft genome sequence of Actinotignum schaalii DSM 15541T: Genetic insights into the lifestyle, cell fitness and virulence. PLoS One 2017; 12:e0188914. [PMID: 29216246 PMCID: PMC5720513 DOI: 10.1371/journal.pone.0188914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/15/2017] [Indexed: 11/19/2022] Open
Abstract
The permanent draft genome sequence of Actinotignum schaalii DSM 15541T is presented. The annotated genome includes 2,130,987 bp, with 1777 protein-coding and 58 rRNA-coding genes. Genome sequence analysis revealed absence of genes encoding for: components of the PTS systems, enzymes of the TCA cycle, glyoxylate shunt and gluconeogensis. Genomic data revealed that A. schaalii is able to oxidize carbohydrates via glycolysis, the nonoxidative pentose phosphate and the Entner-Doudoroff pathways. Besides, the genome harbors genes encoding for enzymes involved in the conversion of pyruvate to lactate, acetate and ethanol, which are found to be the end products of carbohydrate fermentation. The genome contained the gene encoding Type I fatty acid synthase required for de novo FAS biosynthesis. The plsY and plsX genes encoding the acyltransferases necessary for phosphatidic acid biosynthesis were absent from the genome. The genome harbors genes encoding enzymes responsible for isoprene biosynthesis via the mevalonate (MVA) pathway. Genes encoding enzymes that confer resistance to reactive oxygen species (ROS) were identified. In addition, A. schaalii harbors genes that protect the genome against viral infections. These include restriction-modification (RM) systems, type II toxin-antitoxin (TA), CRISPR-Cas and abortive infection system. A. schaalii genome also encodes several virulence factors that contribute to adhesion and internalization of this pathogen such as the tad genes encoding proteins required for pili assembly, the nanI gene encoding exo-alpha-sialidase, genes encoding heat shock proteins and genes encoding type VII secretion system. These features are consistent with anaerobic and pathogenic lifestyles. Finally, resistance to ciprofloxacin occurs by mutation in chromosomal genes that encode the subunits of DNA-gyrase (GyrA) and topisomerase IV (ParC) enzymes, while resistant to metronidazole was due to the frxA gene, which encodes NADPH-flavin oxidoreductase.
Collapse
Affiliation(s)
- Atteyet F. Yassin
- Institut für medizinische Mikrobiologie und Immunologie der Universität Bonn, Bonn, Germany
- * E-mail:
| | - Stefan Langenberg
- Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde/Chirurgie, Bonn, Germany
| | - Marcel Huntemann
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| | - Alicia Clum
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| | - Manoj Pillay
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| | - Krishnaveni Palaniappan
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| | - Neha Varghese
- Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde/Chirurgie, Bonn, Germany
| | - Natalia Mikhailova
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| | - Supratim Mukherjee
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| | - T. B. K. Reddy
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| | - Chris Daum
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| | - Nicole Shapiro
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| | - Nikos C. Kyrpides
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA, United States of America
| |
Collapse
|
43
|
Mendoza-Olazarán S, Garcia-Mazcorro JF, Morfín-Otero R, Villarreal-Treviño L, Camacho-Ortiz A, Rodríguez-Noriega E, Bocanegra-Ibarias P, Maldonado-Garza HJ, Dowd SE, Garza-González E. Draft genome sequences of two opportunistic pathogenic strains of Staphylococcus cohnii isolated from human patients. Stand Genomic Sci 2017; 12:49. [PMID: 28878860 PMCID: PMC5580220 DOI: 10.1186/s40793-017-0263-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/22/2017] [Indexed: 12/16/2022] Open
Abstract
Herein, we report the draft-genome sequences and annotation of two opportunistic pathogenic strains of Staphylococcus cohnii isolated from humans. One strain (SC-57) was isolated from blood from a male patient in May 2006 and the other (SC-532) from a catheter from a male patient in June 2006. Similar to other genomes of Staphylococcus species, most genes (42%) of both strains are involved in metabolism of amino acids and derivatives, carbohydrates and proteins. Eighty (4%) genes are involved in virulence, disease, and defense and both species show phenotypic low biofilm production and evidence of increased antibiotic resistance associated to biofilm production. From both isolates, a new Staphylococcal Cassette Chromosome mec was detected: mec class A, ccr type 1. This is the first report of whole genome sequences of opportunistic S. cohnii isolated from human patients.
Collapse
Affiliation(s)
- Soraya Mendoza-Olazarán
- Servicio de Gastroenterología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León Mexico
| | - José F Garcia-Mazcorro
- Facultad de Medicina Veterinaria, Universidad Autónoma de Nuevo León, General Escobedo, Nuevo León Mexico
| | - Rayo Morfín-Otero
- Hospital Civil de Guadalajara, Fray Antonio Alcalde, and Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco Mexico
| | - Licet Villarreal-Treviño
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León Mexico
| | - Adrián Camacho-Ortiz
- Servicio de Infectología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León Mexico
| | - Eduardo Rodríguez-Noriega
- Hospital Civil de Guadalajara, Fray Antonio Alcalde, and Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco Mexico
| | - Paola Bocanegra-Ibarias
- Servicio de Gastroenterología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León Mexico
| | - Héctor J Maldonado-Garza
- Servicio de Gastroenterología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León Mexico
| | - Scot E Dowd
- Molecular Research DNA Laboratory, Shallowater, TX USA
| | - Elvira Garza-González
- Servicio de Gastroenterología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León Mexico
| |
Collapse
|
44
|
Simoni S, Vincenzi C, Brenciani A, Morroni G, Bagnarelli P, Giovanetti E, Varaldo PE, Mingoia M. Molecular Characterization of Italian Isolates of Fluoroquinolone-Resistant Streptococcus agalactiae and Relationships with Chloramphenicol Resistance. Microb Drug Resist 2017; 24:225-231. [PMID: 28783417 DOI: 10.1089/mdr.2017.0139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A total number of 368 clinical isolates of Streptococcus agalactiae (group B Streptococcus, GBS) were collected in 2010-2016 from three hospitals in a region of central Italy. Fluoroquinolone (FQ)-resistant isolates were selected using levofloxacin. Levofloxacin-resistant (LR) strains (11/368, 2.99%) were characterized for several features, and their FQ resistance was analyzed phenotypically and genotypically using seven additional FQs. Their gyrA and parC quinolone resistance-determining regions were sequenced. Of the 11 LR isolates, 10 showed high-level and 1 low-level resistance. The former isolates exhibited higher minimal inhibitory concentrations also of the other FQs and all shared one amino acid substitution in ParC (Ser79Phe) and one in GyrA (Ser81Leu); only Ser79Phe in ParC was detected in the low-level LR isolate. The 11 LR strains exhibited distinctive relationships between their susceptibilities to non-FQ antibiotics and typing data. Remarkably, despite the very rare occurrence of chloramphenicol resistance in S. agalactiae, no <4 of the 11 LR isolates were chloramphenicol-resistant. Studies of GBS resistance to FQs in Europe remain scarce, notwithstanding the emergence of multidrug-resistant isolates. The incidence of LR GBS isolates is still limited in Italy, consistent with the moderate (though growing) rates reported in Europe, and much lower than the very high rates reported in East Asia. The intriguing relationships between FQ and chloramphenicol resistance deserve further investigation.
Collapse
Affiliation(s)
- Serena Simoni
- 1 Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School , Ancona, Italy
| | - Chiara Vincenzi
- 1 Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School , Ancona, Italy .,2 Clinical Microbiology Laboratory, Torrette Regional Hospital , Ancona, Italy
| | - Andrea Brenciani
- 1 Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School , Ancona, Italy
| | - Gianluca Morroni
- 1 Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School , Ancona, Italy
| | - Patrizia Bagnarelli
- 1 Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School , Ancona, Italy
| | - Eleonora Giovanetti
- 3 Department of Life and Environmental Sciences, Polytechnic University of Marche , Ancona, Italy
| | - Pietro E Varaldo
- 1 Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School , Ancona, Italy
| | - Marina Mingoia
- 1 Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School , Ancona, Italy
| |
Collapse
|
45
|
Abstract
Emergence of resistance among the most important bacterial pathogens is recognized as a major public health threat affecting humans worldwide. Multidrug-resistant organisms have not only emerged in the hospital environment but are now often identified in community settings, suggesting that reservoirs of antibiotic-resistant bacteria are present outside the hospital. The bacterial response to the antibiotic "attack" is the prime example of bacterial adaptation and the pinnacle of evolution. "Survival of the fittest" is a consequence of an immense genetic plasticity of bacterial pathogens that trigger specific responses that result in mutational adaptations, acquisition of genetic material, or alteration of gene expression producing resistance to virtually all antibiotics currently available in clinical practice. Therefore, understanding the biochemical and genetic basis of resistance is of paramount importance to design strategies to curtail the emergence and spread of resistance and to devise innovative therapeutic approaches against multidrug-resistant organisms. In this chapter, we will describe in detail the major mechanisms of antibiotic resistance encountered in clinical practice, providing specific examples in relevant bacterial pathogens.
Collapse
|
46
|
Kim MC, Woo GJ. Characterization of antimicrobial resistance and quinolone resistance factors in high-level ciprofloxacin-resistant Enterococcus faecalis and Enterococcus faecium isolates obtained from fresh produce and fecal samples of patients. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2858-2864. [PMID: 27790716 DOI: 10.1002/jsfa.8115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 10/16/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The emergence of fluoroquinolone-resistant enterococci is worldwide. Antimicrobial resistance was characterized and the effect of quinolone-resistance factors was analyzed in high-level ciprofloxacin-resistant (HLCR) Enterococcus faecalis and Enterococcus faecium isolated from fresh produce and fecal samples of patients. RESULTS Among the 81 ciprofloxacin-resistant Enterococcus isolates, 46 showed high levels of ciprofloxacin resistance, resistance to other quinolone antibiotics, and multidrug resistance profiles. The virulence factors esp and hyl were identified in 27 (58.7%) and 25 (54.3%) of isolates, respectively. Sequence type analysis showed that 35 strains of HLCR E. faecium were clonal complex 17. Eleven strains of HLCR E. faecalis were confirmed as sequence type (ST) 28, ST 64 and ST 125. Quinolone resistance-determining region mutation was identified in HLCR Enterococcus isolates; with serine being changed in gyrA83, gyrA87 and parC80. This result shows that gyrA and parC mutations could be important factors for high-level resistance to fluoroquinolones. CONCLUSION No significant differences were observed in antimicrobial resistance patterns and genetic characteristics among the isolates from fresh produce and fecal samples. Therefore, good agricultural practices in farming and continuous monitoring of patients, food and the environment for Enterococcus spp. should be performed to prevent antimicrobial resistance and enable reduction of resistance rates. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min-Chan Kim
- Laboratory of Food Safety and Evaluation, Department of Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gun-Jo Woo
- Laboratory of Food Safety and Evaluation, Department of Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
47
|
Mohsen L, Ramy N, Saied D, Akmal D, Salama N, Abdel Haleim MM, Aly H. Emerging antimicrobial resistance in early and late-onset neonatal sepsis. Antimicrob Resist Infect Control 2017. [PMID: 28630687 PMCID: PMC5470277 DOI: 10.1186/s13756-017-0225-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Compared to developed countries, the use of antimicrobials in Egypt is less regulated and is available over the counter without the need for prescriptions. The impact of such policy on antimicrobial resistance has not been studied. This study aimed to determine the prevalence of early and late onset sepsis, and the frequency of antimicrobial resistance in a major referral neonatal intensive care unit (NICU). METHODS The study included all neonates admitted to the NICU over a 12-month period. Prospectively collected clinical and laboratory data were retrieved, including blood cultures and endotracheal aspirate cultures if performed. RESULTS A total of 953 neonates were admitted, of them 314 neonates were diagnosed with sepsis; 123 with early onset sepsis (EOS) and 191 with late onset sepsis (LOS). A total of 388 blood cultures were obtained, with 166 positive results. Total endotracheal aspirate samples were 127; of them 79 were culture-positive. The most frequently isolated organisms in blood were Klebsiella pneumoniae (42%) and Coagulase negative staphylococcus (19%) whereas in endotracheal cultures were Klebsiella pneumoniae (41%) and Pseudomonas aeruginosa (19%). Gram negative organisms were most resistant to ampicillins (100%), cephalosporins (93%-100%) and piperacillin-tazobactam (99%) with less resistance to aminoglycosides (36%-52%). Gram positive isolates were least resistant to vancomycin (18%). Multidrug resistance was detected in 92 (38%) cultures, mainly among gram negative isolates (78/92). CONCLUSIONS Antibiotic resistance constitutes a challenge to the management of neonatal sepsis in Egypt. Resistance was predominant in both early and late onset sepsis. This study supports the need to implement policies that prohibits the non-prescription community use of antibiotics.
Collapse
Affiliation(s)
- Lamiaa Mohsen
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt.,New Children Hospital, (Abu El Rish), Cairo University Hospitals, Ali Basha Ebrahim, PO Box 11562, Cairo, Egypt
| | - Nermin Ramy
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt.,New Children Hospital, (Abu El Rish), Cairo University Hospitals, Ali Basha Ebrahim, PO Box 11562, Cairo, Egypt
| | - Dalia Saied
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt.,New Children Hospital, (Abu El Rish), Cairo University Hospitals, Ali Basha Ebrahim, PO Box 11562, Cairo, Egypt
| | - Dina Akmal
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt.,New Children Hospital, (Abu El Rish), Cairo University Hospitals, Ali Basha Ebrahim, PO Box 11562, Cairo, Egypt
| | - Niveen Salama
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt.,New Children Hospital, (Abu El Rish), Cairo University Hospitals, Ali Basha Ebrahim, PO Box 11562, Cairo, Egypt
| | - Mona M Abdel Haleim
- Department of Clinical and Chemical Pathology, Cairo University, Cairo, Egypt.,New Children Hospital, (Abu El Rish), Cairo University Hospitals, Ali Basha Ebrahim, PO Box 11562, Cairo, Egypt
| | - Hany Aly
- Division of Neonatology, the George Washington University and Children's National Health System, 900 23rd Street, N.W. Suite G2092, Washington, DC 20037 USA
| |
Collapse
|
48
|
Reddy PN, Srirama K, Dirisala VR. An Update on Clinical Burden, Diagnostic Tools, and Therapeutic Options of Staphylococcus aureus. Infect Dis (Lond) 2017; 10:1179916117703999. [PMID: 28579798 PMCID: PMC5443039 DOI: 10.1177/1179916117703999] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/18/2017] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus is an important pathogen responsible for a variety of diseases ranging from mild skin and soft tissue infections, food poisoning to highly serious diseases such as osteomyelitis, endocarditis, and toxic shock syndrome. Proper diagnosis of pathogen and virulence factors is important for providing timely intervention in the therapy. Owing to the invasive nature of infections and the limited treatment options due to rampant spread of antibiotic-resistant strains, the trend for development of vaccines and antibody therapy is increasing at rapid rate than development of new antibiotics. In this article, we have discussed elaborately about the host-pathogen interactions, clinical burden due to S aureus infections, status of diagnostic tools, and treatment options in terms of prophylaxis and therapy.
Collapse
|
49
|
Functional Characterization of the DNA Gyrases in Fluoroquinolone-Resistant Mutants of Francisella novicida. Antimicrob Agents Chemother 2017; 61:AAC.02277-16. [PMID: 28167561 DOI: 10.1128/aac.02277-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/20/2017] [Indexed: 11/20/2022] Open
Abstract
Fluoroquinolone (FQ) resistance is a major health concern in the treatment of tularemia. Because DNA gyrase has been described as the main target of these compounds, our aim was to clarify the contributions of both GyrA and GyrB mutations found in Francisella novicida clones highly resistant to FQs. Wild-type and mutated GyrA and GyrB subunits were overexpressed so that the in vitro FQ sensitivity of functional reconstituted complexes could be evaluated. The data obtained were compared to the MICs of FQs against bacterial clones harboring the same mutations and were further validated through complementation experiments and structural modeling. Whole-genome sequencing of highly FQ-resistant lineages was also done. Supercoiling and DNA cleavage assays demonstrated that GyrA D87 is a hot spot FQ resistance target in F. novicida and pointed out the role of the GyrA P43H substitution in resistance acquisition. An unusual feature of FQ resistance acquisition in F. novicida is that the first-step mutation occurs in GyrB, with direct or indirect consequences for FQ sensitivity. Insertion of P466 into GyrB leads to a 50% inhibitory concentration (IC50) comparable to that observed for a mutant gyrase carrying the GyrA D87Y substitution, while the D487E-ΔK488 mutation, while not active on its own, contributes to the high level of resistance that occurs following acquisition of the GyrA D87G substitution in double GyrA/GyrB mutants. The involvement of other putative targets is discussed, including that of a ParE mutation that was found to arise in the very late stage of antibiotic exposure. This study provides the first characterization of the molecular mechanisms responsible for FQ resistance in Francisella.
Collapse
|
50
|
Alexandrino DAM, Mucha AP, Almeida CMR, Gao W, Jia Z, Carvalho MF. Biodegradation of the veterinary antibiotics enrofloxacin and ceftiofur and associated microbial community dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:359-368. [PMID: 28069302 DOI: 10.1016/j.scitotenv.2016.12.141] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 05/07/2023]
Abstract
Fluoroquinolones and cephalosporins are two classes of veterinary antibiotics arising as pollutants of emerging concern. In this work, the microbial degradation of two representative antibiotics of both these classes, enrofloxacin (ENR) and ceftiofur (CEF), is reported. Biodegradation of the target antibiotics was investigated by supplementing the culture medium with ENR and CEF, individually and in mixture. Microbial inocula were obtained from rhizosphere sediments of plants derived from experimental constructed wetlands designed for the treatment of livestock wastewaters contaminated with trace amounts of these antibiotics. Selected microbial inocula were acclimated during a period of 5months, where the antibiotics were supplemented every three weeks at the concentration of 1mgL-1, using acetate as a co-substrate. After this period, the acclimated consortia were investigated for their capacity to biodegrade 2 and 3mgL-1 of ENR and CEF. Complete removal of CEF from the inoculated culture medium was always observed within 21days, independently of its concentration or the concomitant presence of ENR. Biodegradation of ENR decreased with the increase in its concentration in the culture medium, with defluorination percentages decreasing from ca. 65 to 4%. Ciprofloxacin and norfloxacin were detected as biodegradation intermediates of ENR in the microbial cultures supplemented with this antibiotic, indicating that defluorination of at least part of ENR in these cultures is not an immediate catabolic step. Abiotic mechanisms showed high influence in the removal of CEF, affecting less ENR degradation. The acclimation process with the target antibiotics led to significant shifts in the structure and diversity of the microbial communities, predominantly selecting microorganisms belonging to the phyla Proteobacteria (e.g. Achromobacter, Variovorax and Stenotrophomonas genera) and Bacteroidetes (e.g. Dysgonomonas, Flavobacterium and Chryseobacterium genera). The results presented in this study indicate that biodegradation can be an important mechanism for the environmental removal of the tested compounds.
Collapse
Affiliation(s)
- Diogo A M Alexandrino
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; Faculty of Sciences, University of Porto, Rua do Campo Alegre 790, 4150-171 Porto, Portugal
| | - Ana P Mucha
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - C Marisa R Almeida
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Wei Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, China
| | - Maria F Carvalho
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|