1
|
Chen TA, Chuang YT, Lin CH. A Decade-Long Review of the Virulence, Resistance, and Epidemiological Risks of Klebsiella pneumoniae in ICUs. Microorganisms 2024; 12:2548. [PMID: 39770751 PMCID: PMC11678397 DOI: 10.3390/microorganisms12122548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Klebsiella pneumoniae, a major opportunistic pathogen, causes severe infections in both community and healthcare settings, especially in intensive care units (ICUs), where multidrug-resistant (MDR) strains, such as carbapenem-resistant K. pneumoniae (CRKP), pose significant treatment challenges. The rise in hypervirulent K. pneumoniae (hvKP) with enhanced virulence factors complicates management further. The ST11 clone, prevalent in China, exhibits both resistance and virulence traits, contributing to hospital outbreaks. ICU patients, particularly those with comorbidities or prior antibiotic exposure, are at higher risk. Treatment is complicated by limited antibiotic options and the increasing prevalence of polymicrobial infections, which involve resistant pathogens like Pseudomonas aeruginosa and Acinetobacter baumannii. Combination therapies offer some promise, but mortality rates remain high, and resistance to last-resort antibiotics is growing. Infection control measures and personalized treatment plans are critical, alongside the urgent need for vaccine development to combat the rising threat of K. pneumoniae, particularly in vulnerable populations. Effective management requires improved diagnostic tools, antimicrobial stewardship, and innovative treatment strategies to reduce the burden of this pathogen, especially in resource-limited settings. This review aims to provide a comprehensive analysis of the virulence, resistance, and epidemiological risks of K. pneumoniae in ICUs over the past decade, highlighting the ongoing challenges and the need for continued efforts to combat this growing threat.
Collapse
Affiliation(s)
- Tao-An Chen
- Division of Respiratory Therapy, Department of Chest Medicine, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Ya-Ting Chuang
- Surgical Intensive Care Unit, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Chieh-Hui Lin
- Department of Chest Medicine, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| |
Collapse
|
2
|
Li K, Wu Y, Liu M, Yan J, Wei L. Cas12a/Guide RNA-Based Platform for Rapidly and Accurately Detecting blaKPC Gene in Carbapenem-Resistant Enterobacterales. Infect Drug Resist 2024; 17:2451-2462. [PMID: 38915320 PMCID: PMC11194173 DOI: 10.2147/idr.s462088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose Accurate detection and identification of pathogens and their associated resistance mechanisms are essential prerequisites for implementing precision medicine in the management of Carbapenem-resistant Enterobacterales (CRE). Among the various resistance mechanisms, the production of KPC carbapenemase is the most prevalent worldwide. Consequently, this study aims to develop a convenient and precise nucleic acid detection platform specifically for the blaKPC gene. Methods The initial phase of our research methodology involved developing a CRISPR/Cas12a detection framework, which was achieved by designing highly specific single-guide RNAs (sgRNAs) targeting the blaKPC gene. To enhance the sensitivity of this system, we incorporated three distinct amplification techniques-polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), and recombinase polymerase amplification (RPA)-into the CRISPR/Cas12a framework. Subsequently, we conducted a comparative analysis of the sensitivity and specificity of these three amplification methods when used in combination with the CRISPR/Cas12a system. Additionally, we assessed the clinical applicability of the methodologies by evaluating fluorescence readouts from 80 different clinical isolates. Furthermore, we employed lateral flow assay technology to provide a visual representation of the results, facilitating point-of-care testing. Results Following a comparative analysis of the sensitivity and specificity of the three methods, we identified the RPA-Cas12a approach as the optimal detection technique. Our findings demonstrated that the limit of detection (LoD) of the RPA-Cas12a platform was 1 aM (~1 copy/µL) for plasmid DNA and 5 × 10³ fg/µL for genomic DNA. Furthermore, both the sensitivity and specificity of the platform achieved 100% upon validation with 80 clinical isolates. Conclusion These findings suggest that the developed RPA-Cas12a platform represents a promising tool for the cost-effective, convenient, and accurate detection of the blaKPC gene.
Collapse
Affiliation(s)
- Keke Li
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, People’s Republic of China
| | - Yaozhou Wu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, People’s Republic of China
- First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Meng Liu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, People’s Republic of China
| | - Junwen Yan
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, People’s Republic of China
| | - Lianhua Wei
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, People’s Republic of China
| |
Collapse
|
3
|
Minerdi D, Loqui D, Sabbatini P. Monooxygenases and Antibiotic Resistance: A Focus on Carbapenems. BIOLOGY 2023; 12:1316. [PMID: 37887026 PMCID: PMC10604202 DOI: 10.3390/biology12101316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023]
Abstract
Carbapenems are a group of broad-spectrum beta-lactam antibiotics that in many cases are the last effective defense against infections caused by multidrug-resistant bacteria, such as some strains of Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Resistance to carbapenems has emerged and is beginning to spread, becoming an ongoing public-health problem of global dimensions, causing serious outbreaks, and dramatically limiting treatment options. This paper reviews the role of flavin monooxygenases in antibiotic resistance, with a specific focus on carbapenem resistance and the recently discovered mechanism mediated by Baeyer-Villiger monooxygenases. Flavin monooxygenases are enzymes involved in the metabolism and detoxification of compounds, including antibiotics. Understanding their role in antibiotic resistance is crucial. Carbapenems are powerful antibiotics used to treat severe infections caused by multidrug-resistant bacteria. However, the rise of carbapenem-resistant strains poses a significant challenge. This paper explores the mechanisms by which flavin monooxygenases confer resistance to carbapenems, examining molecular pathways and genetic factors. Additionally, this paper highlights the discovery of Baeyer-Villiger monooxygenases' involvement in antibiotic resistance. These enzymes catalyze the insertion of oxygen atoms into specific chemical bonds. Recent studies have revealed their unexpected role in promoting carbapenem resistance. Through a comprehensive analysis of the literature, this paper contributes to the understanding of the interplay between flavin monooxygenases, carbapenem resistance, and Baeyer-Villiger monooxygenases. By exploring these mechanisms, it aims to inform the development of strategies to combat antibiotic resistance, a critical global health concern.
Collapse
Affiliation(s)
- Daniela Minerdi
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy;
| | - Davide Loqui
- Emergency Department, Città della Salute e della Scienza of Turin, 10100 Turin, TO, Italy;
| | - Paolo Sabbatini
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy;
| |
Collapse
|
4
|
Al Fadhli AH, Mouftah SF, Jamal WY, Rotimi VO, Ghazawi A. Cracking the Code: Unveiling the Diversity of Carbapenem-Resistant Klebsiella pneumoniae Clones in the Arabian Peninsula through Genomic Surveillance. Antibiotics (Basel) 2023; 12:1081. [PMID: 37508177 PMCID: PMC10376398 DOI: 10.3390/antibiotics12071081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
The rise of antimicrobial resistance is a global challenge that requires a coordinated effort to address. In this study, we examined the genetic similarity of carbapenem-resistant Klebsiella pneumoniae (CRKP) in countries belonging to the Gulf Cooperation Council (GCC) to gain a better understanding of how these bacteria are spreading and evolving in the region. We used in silico genomic tools to investigate the occurrence and prevalence of different types of carbapenemases and their relationship to specific sequence types (STs) of CRKP commonly found in the region. We analyzed 720 publicly available genomes of multi-drug resistant K. pneumoniae isolates collected from six GCC countries between 2011 and 2020. Our findings showed that ST-14 and ST-231 were the most common STs, and 51.7% of the isolates carried blaOXA-48-like genes. Additionally, we identified rare carbapenemase genes in a small number of isolates. We observed a clonal outbreak of ST-231 in Oman, and four Saudi isolates were found to have colistin resistance genes. Our study offers a comprehensive overview of the genetic diversity and resistance mechanisms of CRKP isolates in the GCC region that could aid in developing targeted interventions to combat this pressing global issue.
Collapse
Affiliation(s)
- Amani H Al Fadhli
- Laboratory Sciences, Department of Medical, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Jabriya 24923, Kuwait
| | - Shaimaa F Mouftah
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Department of Biomedical Sciences, University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Wafaa Y Jamal
- Department of Microbiology, College of Medicine, Kuwait University, Jabriya 24923, Kuwait
| | - Vincent O Rotimi
- Center for Infection Control and Patient Safety, College of Medicine University of Lagos, Idi-Araba 102215, Nigeria
| | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
5
|
Zou H, Han J, Zhao L, Wang D, Guan Y, Wu T, Hou X, Han H, Li X. The shared NDM-positive strains in the hospital and connecting aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160404. [PMID: 36427732 DOI: 10.1016/j.scitotenv.2022.160404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
The spread of antibiotic-resistant priority pathogens outside hospital settings is, both, a significant public health concern and an environmental problem. In recent years, New Delhi Metallo-β-lactamase (NDM)-positive strains have caused nosocomial infections with high mortality and poor prognosis worldwide. Our study investigated the links of NDM-positive strains between the hospital and the connecting river system in Jinan city, Eastern China by using NDM-producing Escherichia coli (NDM-EC) as an indicator via whole genome sequencing. Thirteen NDM-EC isolates were detected from 187 river water and sediment samples, while 9 isolates were identified from patients at the local hospital. All NDM-EC isolates were resistant to imipenem, meropenem, cefotaxime, cefoxitin, ampicillin, tetracycline, fosfomycin, piperacillin-tazobactam. The blaNDM-5 (n = 20) and blaNDM-9 (n = 2) genes were identified, which were predominantly on IncX3 plasmids (n = 13), followed by IncFII plasmids (n = 5) and IncFIA plasmids (n = 2). Conjugation experiments showed that 21 isolates could transfer NDM-harboring plasmids. The well-conserved blaNDM-5 genetic environment (ISAba125-blaNDM-5/9-bleMBL-trpF-dsbD-IS26) of these plasmids suggested a common genetic origin. Nine sequence types (STs) were detected, including three international high-risk clones ST167 (n = 8), ST410 (n = 1), and ST617 (n = 1). Phylogenetic analysis showed ST167 E. coli from the river was genotypically related to clinical isolates recovered from patients. Furthermore, ST167 isolates showed high genetic similarities with other clinical strains from geographically distinct regions. The genetic concordance between isolates from different sampling sites in the same river (ST218 clone), and different rivers (ST448 clone) raises concerns regarding the rapid dissemination of NDM-EC in the aquatic environment. The emergence and spread of the clinically relevant NDM-positive strains, especially for E. coli ST167 clone, an international high-risk clone associated with multi-resistance and virulence capacity, within and between the hospital and aquatic environments were elucidated, highlighting the need for attention and action.
Collapse
Affiliation(s)
- Huiyun Zou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jingyi Han
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ling Zhao
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Di Wang
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanyu Guan
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tianle Wu
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xinjiao Hou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hui Han
- Department of Infection Control, Qilu Hospital of Shandong University, Jinan, China.
| | - Xuewen Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
6
|
Yang BS. Detection of the Carbapenem Resistance Gene in Gram-negative Rod Bacteria Isolated from Clinical Specimens. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2022. [DOI: 10.15324/kjcls.2022.54.3.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Byoung Seon Yang
- Department of Medical Laboratory Science, JinJu Health College, Jinju, Korea
| |
Collapse
|
7
|
Assessment of Ceftazidime-Avibactam 30/20-μg Disk, Etest versus Broth Microdilution Results When Tested against Enterobacterales Clinical Isolates. Microbiol Spectr 2022; 10:e0109221. [PMID: 35019685 PMCID: PMC8865541 DOI: 10.1128/spectrum.01092-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this research was to evaluate the correlation between inhibitory zones and MIC when testing ceftazidime-avibactam using disk diffusion, Etest, and broth microdilution method established by the Clinical and Laboratory Standards Institute (CLSI). Four-hundred and 58 isolates of Enterobacterales isolated from 54 medical centers from the China Antimicrobial Surveillance Network (CHINET) in 2016 to 2020 were collected. Antimicrobial susceptibility testing using broth microdilution, Etest, and disk diffusion were performed according to the CLSI. Of the 458 Enterobacterales, 17.2% (79/458) and 82.8%(379/458) were resistant or susceptible to ceftazidime-avibactam by broth microdilution, respectively. Compared with the broth microdilution method, the categorical agreement (CA) and essential agreement (EA) of the Etest were 99.6% (456/458) and 94.8% (434/458), respectively; the major error (ME) and very major error (VME) were both 0.2% (1/458). For disk diffusion, the CA and VME were 99.8% (457/458) and 0.2% (1/458), respectively. For Escherichia coli, the CA and EA of the Etest were 100% and 97.1% (135/139), respectively. The CA of the disk diffusion was 100%. For Klebsiella pneumoniae, the CA and EA of the Etest were 99.3% (288/290) and 93.4% (271/290), respectively, the ME and VME were both 0.3% (1/290). The CA and VME of disk diffusion were 99.7% (289/290) and 0.3% (1/290), respectively. For other Enterobacterales, the CA and EA of the Etest were 100% and 96.6% (28/29), respectively. The CA of the disk diffusion was 100%. Ceftazidime-avibactam disk diffusion (30/20-μg disks) and Etest demonstrated good performance for ceftazidime-avibactam susceptibility testing against Enterobacterales clinical isolates. IMPORTANCE Multidrug-resistant Gram-negative bacteria, especially for extended-spectrum β-lactamases-producing and carbapenemase-producing Enterobacterales, are disseminating rapidly around the world. Treatment options for these infections are limited, which prompt the development of novel or combinational therapies to combat the infections caused by multidrug-resistant pathogens. The newly available β-lactam combination agent ceftazidime-avibactam has been demonstrated good in vitro and in vivo activity against ESBL, AmpC, KPC-2, or OXA-48-like-producing isolates and has shown promise in treating carbapenem-resistant Enterobacterales infections. Concerningly, there are few available automated systems for ceftazidime-avibactam susceptibility testing, and the broth microdilution method is hard to perform in most routine laboratories. Therefore, we urgently need an economical and practical method for the accurate detection of ceftazidime-avibactam activity against Gram-negative bacilli. Here, we evaluate the performance of the disk diffusion and Etest compared with the reference broth microdilution method against Enterobacterales clinical strains.
Collapse
|
8
|
Wang F, Wang L, Chen H, Li N, Wang Y, Li Y, Liang W. Rapid Detection of blaKPC, blaNDM, blaOXA-48-like and blaIMP Carbapenemases in Enterobacterales Using Recombinase Polymerase Amplification Combined With Lateral Flow Strip. Front Cell Infect Microbiol 2021; 11:772966. [PMID: 34926319 PMCID: PMC8674914 DOI: 10.3389/fcimb.2021.772966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/15/2021] [Indexed: 12/31/2022] Open
Abstract
The emergence of carbapenemase-producing Enterobacterales (CPE) infections is a major global public health threat. Rapid and accurate detection of pathogenic bacteria is essential to optimize treatment and timely avoid further transmission of these bacteria. Here, we aimed to develop a rapid on site visualization detection method for CPE using improved recombinase polymerase amplification (RPA) combined with lateral flow strip (LFS) method, based on four most popular carbapenemase genes: blaKPC, blaNDM, blaOXA-48-like, and blaIMP. All available allelic variants of the above carbapenemases were downloaded from the β-lactamase database, and the conserved regions were used as targets for RPA assay. Five primer sets were designed targeting to each carbapenemase gene and the RPA amplification products were analyzed by agarose gel electrophoresis. FITC-labeled specific probes were selected, combined with the best performance primer set (Biotin-labeled on the reverse primer), and detected by RPA-LFS. Mismatches were made to exclude the false positive signals interference. This assay was evaluated in 207 clinically validated carbapenem-resistant Enterobacterales (CRE) isolates and made a comparison with conventional PCR. Results showed that the established RPA-LFS assay for CPE could be realized within 30 min at a constant temperature of 37°C and visually detected amplification products without the need for special equipment. This assay could specifically differentiate the four classes of carbapenemases without cross-reactivity and shared a minimum detection limit of 100 fg/reaction (for blaKPC, blaNDM, and blaOXA-48-like) or 1000 fg/reaction (for blaIMP), which is ten times more sensitive than PCR. Furthermore, the detection of 207 pre-validated clinically CRE strains using the RPA-LFS method resulted in 134 blaKPC, 69 blaNDM, 3 blaOXA-48-like, and 1 blaIMP. The results of the RPA-LFS assay were in consistent with PCR, indicating that this method shared high sensitivity and specificity. Therefore, the RPA-LFS method for CPE may be a simple, specific, and sensitive method for the rapid diagnosis of carbapenemase Enterobacterales.
Collapse
Affiliation(s)
- Fang Wang
- Department of Central Laboratory, The Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Lei Wang
- Department of Central Laboratory, The Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Huimin Chen
- Department of Central Laboratory, The Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Na Li
- Department of Central Laboratory, The Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Yan Wang
- Department of Central Laboratory, The Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Yan Li
- Department of Central Laboratory, The Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Wei Liang
- Department of Central Laboratory, The Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| |
Collapse
|
9
|
Han R, Guo Y, Peng M, Shi Q, Wu S, Yang Y, Zheng Y, Yin D, Hu F. Evaluation of the Immunochromatographic NG-Test Carba 5, RESIST-5 O.O.K.N.V., and IMP K-SeT for Rapid Detection of KPC-, NDM-, IMP-, VIM-type, and OXA-48-like Carbapenemase Among Enterobacterales. Front Microbiol 2021; 11:609856. [PMID: 33519761 PMCID: PMC7843505 DOI: 10.3389/fmicb.2020.609856] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/30/2020] [Indexed: 02/01/2023] Open
Abstract
Background Enterobacterales are the most common pathogens for nosocomial infections. The emergence and spread of KPC, NDM, and OXA-48-like carbapenemase-producing Enterobacterales with their extensively drug-resistant characteristics have posed great threats to public health. This study aimed to evaluate the performance of NG-test Carba 5, RESIST-5 O.O.K.N.V., and IMP K-SeT for rapid detection of five carbapenemases (KPC, NDM, VIM, IMP, and OXA-48-like) among Enterobacterales. Methods A total of 186 carbapenem-resistant Enterobacterales clinical isolates and 29 reference strains were used in this study. Carbapenemase genes were confirmed by PCR and DNA sequencing. The sensitivities and specificities of these assays were calculated utilizing the VassarStats software. Results For clinical isolates, the NG-test Carba 5 detected KPC, NDM, OXA-48-like, IMP, and VIM in less than 15 min with the sensitivity and specificity of 100% and 100%, respectively. The RESIST-5 O.O.K.N.V. detected KPC, NDM, OXA-48-like, and VIM with the sensitivity and specificity of 99.4 and 100%. The IMP K-SeT detected all of the IMP producers (6/6). For reference strains, the sensitivity and specificity of NG-test Carba 5, RESIST-5 O.O.K.N.V., and IMP K-SeT were all 100 and 100%, respectively. Conclusion As efficient, rapid, and convenient diagnostic methods, NG-test Carba 5, RESIST-5 O.O.K.N.V., and IMP K-SeT could help to simplify the complex routine workflow for detecting carbapenemases. Rapid and accurate identification of carbapenemase is of significance for both epidemiological and infection control purposes.
Collapse
Affiliation(s)
- Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Mingjia Peng
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Qingyu Shi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Shi Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yang Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yonggui Zheng
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| |
Collapse
|
10
|
Xu Q, Pan F, Sun Y, Wang C, Shi Y, Zhang T, Yu F, Zhang H. Fecal Carriage and Molecular Epidemiology of Carbapenem-Resistant Enterobacteriaceae from Inpatient Children in a Pediatric Hospital of Shanghai. Infect Drug Resist 2020; 13:4405-4415. [PMID: 33328745 PMCID: PMC7735787 DOI: 10.2147/idr.s275549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022] Open
Abstract
Purpose To determine the epidemiology characteristics of intestinal colonization of carbapenem-resistant Enterobacteriaceae (CRE) among inpatients in a pediatric hospital in China. Methods A retrospective study was conducted from April to December 2019. Medical records were reviewed to extract the clinical information. Antimicrobial susceptibility was performed by broth microdilution method. Drug resistance determinants and plasmid types were analyzed using polymerase chain reaction (PCR) assays. Multilocus sequence typing (MLST) and Enterobacterial repetitive intergenic consensus sequences PCR (ERIC-PCR) were employed to determine the genetic relationships between strains. Results A total of 90 CRE strains were isolated, with a fecal carriage rate of 8.6% (90/1052), and mainly distributed in E. aerogenes (n=30), K. pneumoniae (n=25) and E. coli (n=23). More than 50% of CRE colonizers had a history of invasive procedures and antibiotic exposures. As high as 91.1% (82/90) of CRE isolates carried carbapenemase genes, with blaNDM-5 (n=56) being the most common, and mainly found in E. aerogenes (51.8%, 29/56) and E. coli (32.1%, 18/56) isolates, which primarily belonged to ST4 (100%, 29/29) and ST692 (55.6%, 10/18), respectively. Followed by blaKPC-2 (n=12), and all found in K. pneumoniae ST11 isolates. Other carbapenemase genes including blaNDM-1, blaIMP-4 and blaIMP-26. Meanwhile, ESBL genes (blaCTX-M, blaTEM-1 and blaSHV) and AmpC genes (blaDHA-1 and blaEBC) were also detected. All CRE isolates showed high resistance to cephalosporins and carbapenemases (97.8%-100.0%) but remained susceptible to tigecycline (98.9%). IncX3 was a major plasmid type in NDM-containing strains (91.3%), and 91.7% of KPC-2-producing K. pneumoniae harboring IncFII and IncFIB plasmids. The ERIC-PCR revealed that several strains with identical STs were genetically similar. Conclusion This study revealed a major intestinal colonization of ST4 NDM-5 E. aerogenes, ST11 KPC-2 K. pneumoniae and ST692 NDM-5 E. coli strains among inpatients in a pediatric hospital. Infection control measures should be implemented immediately to prevent the spread of these strains in clinical settings.
Collapse
Affiliation(s)
- Qi Xu
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Fen Pan
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yan Sun
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Chun Wang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yingying Shi
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Tiandong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Fangyuan Yu
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Han R, Shi Q, Wu S, Yin D, Peng M, Dong D, Zheng Y, Guo Y, Zhang R, Hu F. Dissemination of Carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) Among Carbapenem-Resistant Enterobacteriaceae Isolated From Adult and Children Patients in China. Front Cell Infect Microbiol 2020; 10:314. [PMID: 32719751 PMCID: PMC7347961 DOI: 10.3389/fcimb.2020.00314] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
This study aimed to investigate the dissemination and characteristics of blaKPC, blaNDM, blaOXA-48-like , blaIMP, and blaVIM among the carbapenem-resistant Enterobacteriaceae (CRE) strains isolated from adult and children patients. A total of 935 non-duplicate CRE strains were collected from 36 hospitals in 24 provinces or cities across China from 2016 to 2018. Antimicrobial susceptibility testing was performed by broth microdilution method and carbapenemase genes blaKPC, blaNDM, blaOXA-48-like , blaIMP, and blaVIM were screened by PCR and confirmed by DNA sequencing. Overall, carbapenemases were produced in 97.4% (911/935) of CRE strains, including KPC-2 (51.6%, 482/935), NDM (35.7%, 334/935), and OXA-48-like carbapenemases (7.3%, 68/935). Overall, the most prevalent carbapenemase gene was blaKPC-2 among Klebsiella pneumoniae (64.6%, 457/709) and the CRE strains isolated from adult patients (70.3%, 307/437), and blaNDM among Escherichia coli (96.0%, 143/149) and the CRE strains from children (49.0%, 247/498). The blaOXA-232-positive carbapenem-resistant K. pneumoniae (9.3%, 66/709) were all isolated from children. Sixteen strains were positive for blaIMP and 9 strains produced multiple carbapenemases. No strain was positive for blaVIM. Most of the CRE strains (>90%) were resistant to cephalosporins and carbapenems, more than half (>50%) were resistant to aminoglycosides and fluoroquinolones, but the majority (95.8 and 98.4%) were susceptible to polymyxin B and tigecycline. Ceftazidime-avibactam showed excellent in vitro activity against blaKPC-2 and blaOXA-48-like positive strains (100% susceptible). In China, KPC-2, NDM, and OXA-48-like carbapenemases were predominant among CRE clinical isolates. The most prevalent carbapenemase gene was blaKPC-2 among K. pneumoniae isolates from adult patients, and blaNDM among E. coli isolates from children.
Collapse
Affiliation(s)
- Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Qingyu Shi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Shi Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Mingjia Peng
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Dong Dong
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yonggui Zheng
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Rong Zhang
- Department of Clinical Laboratory, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China,*Correspondence: Fupin Hu
| | | |
Collapse
|
12
|
Barrios H, Garza-Ramos U, Mejia-Miranda I, Reyna-Flores F, Sánchez-Pérez A, Mosqueda-García D, Silva-Sanchez J. ESBL-producing Escherichia coli and Klebsiella pneumoniae: The most prevalent clinical isolates obtained between 2005 and 2012 in Mexico. J Glob Antimicrob Resist 2017; 10:243-246. [PMID: 28739224 DOI: 10.1016/j.jgar.2017.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/02/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES To identify the prevalence of ESBL genes in the principal group of Enterobacteriaceae causing nosocomial infections and to identify the phylogenetic group in Escherichia coli isolates. METHODS There were collected 1084 ESBL-producing Enterobacteriaceae isolates during 2005-2012 from adult patients from 14 hospitals and corresponding to eight states and five regions (SE, S, N, W and NW) in Mexico. The CTX-M-(CTX-M-1 group), SHV-, TLA- and GES-type ESBLs genes were screened. The respective alleles were determined in the most of ESBLs genes. In E. coli isolates selected were used to identify the phylogenetic group. RESULTS The ESBL-producing Escherichia coli and Klebsiella pneumoniae corresponded the most prevalent clinical isolates. CTX-M-type ESBLs genes were the most common, followed by SHV-type, GES-type and the ESBLs TLA-1 gene. The allelic frequency showed to CTX-M-15 ESBL the most prevalent, followed by the SHV-12, SHV-5 and GES-1, GES-19 in the GES family. Among ESBL-producing E. coli isolates the phylogenetic groups A and D were the most common ones. CONCLUSIONS The present study showed an epidemiological change in terms of bacterial species, placing E. coli as the most frequently isolated bacteria among ESBL-producing Enterobacteriaceae in Mexico, followed by K. pneumoniae. This frequency is accompanied by a high frequency of ESBL CTX-M-15.
Collapse
Affiliation(s)
- Humberto Barrios
- Instituto Nacional de Salud Pública (INSP), Centro de Investigaciones Sobre Enfermedades Infecciosas, Grupo de Resistencia Bacteriana, Cuernavaca, Mor. Mexico
| | - Ulises Garza-Ramos
- Instituto Nacional de Salud Pública (INSP), Centro de Investigaciones Sobre Enfermedades Infecciosas, Grupo de Resistencia Bacteriana, Cuernavaca, Mor. Mexico
| | - Ilse Mejia-Miranda
- Instituto Nacional de Salud Pública (INSP), Centro de Investigaciones Sobre Enfermedades Infecciosas, Grupo de Resistencia Bacteriana, Cuernavaca, Mor. Mexico
| | - Fernando Reyna-Flores
- Instituto Nacional de Salud Pública (INSP), Centro de Investigaciones Sobre Enfermedades Infecciosas, Grupo de Resistencia Bacteriana, Cuernavaca, Mor. Mexico
| | - Alejandro Sánchez-Pérez
- Instituto Nacional de Salud Pública (INSP), Centro de Investigaciones Sobre Enfermedades Infecciosas, Grupo de Resistencia Bacteriana, Cuernavaca, Mor. Mexico
| | - Dalila Mosqueda-García
- Instituto Nacional de Salud Pública (INSP), Centro de Investigaciones Sobre Enfermedades Infecciosas, Grupo de Resistencia Bacteriana, Cuernavaca, Mor. Mexico
| | - Jesus Silva-Sanchez
- Instituto Nacional de Salud Pública (INSP), Centro de Investigaciones Sobre Enfermedades Infecciosas, Grupo de Resistencia Bacteriana, Cuernavaca, Mor. Mexico.
| | -
- Instituto Nacional de Salud Pública (INSP), Centro de Investigaciones Sobre Enfermedades Infecciosas, Grupo de Resistencia Bacteriana, Cuernavaca, Mor. Mexico
| |
Collapse
|