1
|
Seizure Phenotype and Underlying Cellular Defects in Drosophila Knock-In Models of DS (R1648C) and GEFS+ (R1648H) SCN1A Epilepsy. eNeuro 2021; 8:ENEURO.0002-21.2021. [PMID: 34475263 PMCID: PMC8454921 DOI: 10.1523/eneuro.0002-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/05/2021] [Accepted: 08/14/2021] [Indexed: 11/21/2022] Open
Abstract
Mutations in the voltage-gated sodium channel gene SCN1A are associated with human epilepsy disorders, but how most of these mutations alter channel properties and result in seizures is unknown. This study focuses on two different mutations occurring at one position within SCN1A. R1648C (R-C) is associated with the severe disorder Dravet syndrome, and R1648H (R-H), with the milder disorder GEFS+. To explore how these different mutations contribute to distinct seizure disorders, Drosophila lines with the R-C or R-H mutation, or R1648R (R-R) control substitution in the fly sodium channel gene para were generated by CRISPR-Cas9 gene editing. The R-C and R-H mutations are homozygous lethal. Animals heterozygous for R-C or R-H mutations displayed reduced life spans and spontaneous and temperature-induced seizures not observed in R-R controls. Electrophysiological recordings from adult GABAergic neurons in R-C and R-H mutants revealed the appearance of sustained neuronal depolarizations and altered firing frequency that were exacerbated at elevated temperature. The only significant change observed in underlying sodium currents in both R-C and R-H mutants was a hyperpolarized deactivation threshold at room and elevated temperature compared with R-R controls. Since this change is constitutive, it is likely to interact with heat-induced changes in other cellular properties to result in the heat-induced increase in sustained depolarizations and seizure activity. Further, the similarity of the behavioral and cellular phenotypes in the R-C and R-H fly lines, suggests that disease symptoms of different severity associated with these mutations in humans could be due in large part to differences in genetic background.
Collapse
|
2
|
Badv RS, Ghamari A, Ashrafi MR, Mohammadi M, Azizi Malamiri R, Heidari M. Managing Status Epilepticus in a Child with Dravet Syndrome: How Difficult It Could Be? JOURNAL OF PEDIATRIC EPILEPSY 2021. [DOI: 10.1055/s-0041-1723951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractPreviously known as severe myoclonic epilepsy of infancy, Dravet syndrome is characterized by febrile or afebrile prolonged hemiconvulsive seizures or generalized status epilepticus in an infant with previously normal development. Immediate management of status epilepticus is critical in these patients. Early control of status epilepticus prevents further brain damage; however, there is no consensus regarding the management of status epilepticus in children with Dravet syndrome, as many conventional antiseizure medications that are recommended in the management of status epilepticus worsen the seizures in these patients. A 2.5-year-old girl child patient was referred due to status epilepticus which was refractory to antiseizure medications. Sodium valproate, nitrazepam, ketogenic diet, intravenous phenytoin, and midazolam continuous infusion were administered. After controlling status epilepticus, the probable diagnosis of Dravet syndrome was proposed and confirmed by a mutation in SCN1A. As previously stated in numerous case reports, phenytoin worsens seizures in patients with Dravet syndrome. Therefore, it seems logical that in every infant with status epilepticus and probable Dravet syndrome, the practicing physician considers administering intravenous valproate or even midazolam continuous infusion instead of intravenous phenytoin.
Collapse
Affiliation(s)
- Reza Shervin Badv
- Department of Pediatric Neurology, Pediatric Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Ghamari
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Department of Pediatric Neurology, Pediatric Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Mohammadi
- Department of Pediatric Neurology, Pediatric Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Azizi Malamiri
- Department of Pediatric Neurology, Golestan Medical, Educational and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Morteza Heidari
- Department of Pediatric Neurology, Pediatric Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatric Neurology, Vali-e-Asr Hospital, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Abstract
Epilepsy includes a number of medical conditions with recurrent seizures as common denominator. The large number of different syndromes and seizure types as well as the highly variable inter-individual response to the therapies makes management of this condition often challenging. In the last two decades, a genetic etiology has been revealed in more than half of all epilepsies and single gene defects in ion channels or neurotransmitter receptors have been associated with most inherited forms of epilepsy, including some focal and lesional forms as well as specific epileptic developmental encephalopathies. Several genetic tests are now available, including targeted assays up to revolutionary tools that have made sequencing of all coding (whole exome) and non-coding (whole genome) regions of the human genome possible. These recent technological advances have also driven genetic discovery in epilepsy and increased our understanding of the molecular mechanisms of many epileptic disorders, eventually providing targets for precision medicine in some syndromes, such as Dravet syndrome, pyroxidine-dependent epilepsy, and glucose transporter 1 deficiency. However, these examples represent a relatively small subset of all types of epilepsy, and to date, precision medicine in epilepsy has primarily focused on seizure control, and other clinical aspects, such as neurodevelopmental and neuropsychiatric comorbidities, have yet been possible to address. We herein summarize the most recent advances in genetic testing and provide up-to-date approaches for the choice of the correct test for some epileptic disorders and tailored treatments that are already applicable in some monogenic epilepsies. In the next years, the most probably scenario is that epilepsy treatment will be very different from the currently almost empirical approach, eventually with a "precision medicine" approach applicable on a large scale.
Collapse
Affiliation(s)
- Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "G. Gaslini", Genoa, Italy.
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Via Gaslini 5, 16148, Genoa, Italy.
| | - Berge A Minassian
- Department of Pediatrics Division of Neurology, University of Texas Southwestern, Dallas, Texas, USA
| |
Collapse
|
4
|
Abstract
INTRODUCTION Myoclonic seizures are brief, involuntary muscular jerks arising from the central nervous system that can occur in different epilepsy syndromes, including idiopathic generalized epilepsies or the most severe group of epileptic encephalopathies. Valproate is commonly the first choice alone or in combination with some benzodiazepines or levetiracetam. However, more treatment options exist today as there is emerging evidence to support the efficacy of some newer antiepileptic drugs. In addition, of major importance remains avoidance of medications (e.g., carbamazepine, phenytoin) that may aggravate myoclonic seizures. This is an updated review on the available therapeutic options for treatment of myoclonic seizures. Areas covered: Key efficacy, tolerability and efficacy data are showed for different antiepileptic drugs with antimyoclonic effect, alone and/or in combination. Expert opinion: Pharmacological treatment of myoclonic seizures is based on clinical experience with little evidence from randomized clinical trials. Valproate, levetiracetam, and some benzodiazepines, are widely used. There is still insufficient evidence for the use of other antiseizure drugs, such as topiramate or zonisamide as monotherapy. Better understanding of pathophysiologic mechanisms of myoclonic epilepsies could yield great improvement in the treatment and quality of life of patients.
Collapse
Affiliation(s)
- Pasquale Striano
- a Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health , University of Genoa, 'G. Gaslini' Institute , Genova , Italy
| | - Vincenzo Belcastro
- b Neurology Unit, Department of Medicine , Sant'Anna Hospital , Como , Italy
| |
Collapse
|
5
|
Balestrini S, Sisodiya SM. Pharmacogenomics in epilepsy. Neurosci Lett 2017; 667:27-39. [PMID: 28082152 PMCID: PMC5846849 DOI: 10.1016/j.neulet.2017.01.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/12/2022]
Abstract
Genetic variation can influence response to antiepileptic drug (AED) treatment through various effector processes. Metabolism of many AEDs is mediated by the cytochrome P450 (CYP) family; some of the CYPs have allelic variants that may affect serum AED concentrations. ‘Precision medicine’ focuses on the identification of an underlying genetic aetiology allowing personalised therapeutic choices. Certain human leukocyte antigen, HLA, alleles are associated with an increased risk of idiosyncratic adverse drug reactions. New results are emerging from large-scale multinational efforts, likely imminently to add knowledge of value from a pharmacogenetic perspective.
There is high variability in the response to antiepileptic treatment across people with epilepsy. Genetic factors significantly contribute to such variability. Recent advances in the genetics and neurobiology of the epilepsies are establishing the basis for a new era in the treatment of epilepsy, focused on each individual and their specific epilepsy. Variation in response to antiepileptic drug treatment may arise from genetic variation in a range of gene categories, including genes affecting drug pharmacokinetics, and drug pharmacodynamics, but also genes held to actually cause the epilepsy itself. From a purely pharmacogenetic perspective, there are few robust genetic findings with established evidence in epilepsy. Many findings are still controversial with anecdotal or less secure evidence and need further validation, e.g. variation in genes for transporter systems and antiepileptic drug targets. The increasing use of genetic sequencing and the results of large-scale collaborative projects may soon expand the established evidence. Precision medicine treatments represent a growing area of interest, focussing on reversing or circumventing the pathophysiological effects of specific gene mutations. This could lead to a dramatic improvement of the effectiveness and safety of epilepsy treatments, by targeting the biological mechanisms responsible for epilepsy in each specific individual. Whilst much has been written about epilepsy pharmacogenetics, there does now seem to be building momentum that promises to deliver results of use in clinic.
Collapse
Affiliation(s)
- Simona Balestrini
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, and Epilepsy Society, Chalfont-St-Peter, Bucks, United Kingdom; Neuroscience Department, Polytechnic University of Marche, Ancona, Italy
| | - Sanjay M Sisodiya
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, and Epilepsy Society, Chalfont-St-Peter, Bucks, United Kingdom.
| |
Collapse
|
6
|
Verrotti A, Zara F, Minetti C, Striano P. Novel treatment perspectives from advances in understanding of genetic epilepsy syndromes. Expert Opin Orphan Drugs 2016. [DOI: 10.1517/21678707.2016.1167594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Striano P, Vari MS, Mazzocchetti C, Verrotti A, Zara F. Management of genetic epilepsies: From empirical treatment to precision medicine. Pharmacol Res 2016; 107:426-429. [PMID: 27080588 DOI: 10.1016/j.phrs.2016.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 04/07/2016] [Accepted: 04/09/2016] [Indexed: 01/17/2023]
Abstract
Despite the over 20 antiepileptic drugs (AEDs) now licensed for epilepsy treatment, seizures can be effectively controlled in about ∼70% of patients. Thus, epilepsy treatment is still challenging in about one third of patients and this may lead to a severe medically, physically, and socially disabling condition. However, there is clear evidence of heterogeneity of response to existing AEDs and a significant unmet need for effective intervention. A number of studies have shown that polymorphisms may influence the poor or inadequate therapeutic response as well as the occurrence of adverse effects. In addition, the new frontier of genomic technologies, including chromosome microarrays and next-generation sequencing, improved our understanding of the genetic architecture of epilepsies. Recent findings in some genetic epilepsy syndromes provide insights into mechanisms of epileptogenesis, unrevealing the role of a number of genes with different functions, such as ion channels, proteins associated to the vesical synaptic cycle or involved in energy metabolism. The rapid progress of high-throughput genomic sequencing and corresponding analysis tools in molecular diagnosis are revolutionizing the practice and it is a fact that for some monogenic epilepsies the molecular confirmation may influence the choice of the treatment. Moreover, the novel genetic methods, that are able to analyze all known genes at a reasonable price, are of paramount importance to discover novel therapeutic avenues and individualized (or precision) medicine.
Collapse
Affiliation(s)
- Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, G. Gaslini Institute, Genova, Italy.
| | - Maria Stella Vari
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, G. Gaslini Institute, Genova, Italy
| | | | - Alberto Verrotti
- Department of Pediatrics, University of L' Aquila, LAquila, Italy
| | - Federico Zara
- Laboratory of Neurosciences and Neurogenetics, Department of Head and Neck Diseases, G. Gaslini Institute, Genova, Italy
| |
Collapse
|
8
|
Wu YW, Sullivan J, McDaniel SS, Meisler MH, Walsh EM, Li SX, Kuzniewicz MW. Incidence of Dravet Syndrome in a US Population. Pediatrics 2015; 136:e1310-5. [PMID: 26438699 PMCID: PMC4621800 DOI: 10.1542/peds.2015-1807] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2015] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE De novo mutations of the gene sodium channel 1α (SCN1A) are the major cause of Dravet syndrome, an infantile epileptic encephalopathy. US incidence of DS has been estimated at 1 in 40 000, but no US epidemiologic studies have been performed since the advent of genetic testing. METHODS In a retrospective, population-based cohort of all infants born at Kaiser Permanente Northern California during 2007-2010, we electronically identified patients who received ≥2 seizure diagnoses before age 12 months and who were also prescribed anticonvulsants at 24 months. A child neurologist reviewed records to identify infants who met 4 of 5 criteria for clinical Dravet syndrome: normal development before seizure onset; ≥2 seizures before age 12 months; myoclonic, hemiclonic, or generalized tonic-clonic seizures; ≥2 seizures lasting >10 minutes; and refractory seizures after age 2 years. SCN1A gene sequencing was performed as part of routine clinical care. RESULTS Eight infants met the study criteria for clinical Dravet syndrome, yielding an incidence of 1 per 15 700. Six of these infants (incidence of 1 per 20 900) had a de novo SCN1A missense mutation that is likely to be pathogenic. One infant had an inherited SCN1A variant that is unlikely to be pathogenic. All 8 experienced febrile seizures, and 6 had prolonged seizures lasting >10 minutes by age 1 year. CONCLUSIONS Dravet syndrome due to an SCN1A mutation is twice as common in the United States as previously thought. Genetic testing should be considered in children with ≥2 prolonged febrile seizures by 1 year of age.
Collapse
Affiliation(s)
- Yvonne W. Wu
- Departments of Neurology and,Pediatrics, University of California, San Francisco, San Francisco, California
| | - Joseph Sullivan
- Departments of Neurology and,Pediatrics, University of California, San Francisco, San Francisco, California
| | | | - Miriam H. Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | | | | | - Michael W. Kuzniewicz
- Research, and,Neonatology, Kaiser Permanente Northern California, Oakland, California; and
| |
Collapse
|
9
|
Striano P, de Jonghe P, Zara F. Genetic epileptic encephalopathies: is all written into the DNA? Epilepsia 2014; 54 Suppl 8:22-6. [PMID: 24571113 DOI: 10.1111/epi.12419] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Epileptic encephalopathy is a condition in which epileptic activity, clinical or subclinical, is thought to be responsible for any disturbance of cognition, behavior, or motor control. However, experimental evidence supporting this clinical observation are still poor and the causal relationship between pharmacoresistant seizures and cognitive outcome is controversial. In the past two decades, genetic studies shed new light onto complex mechanisms underlying different severe epileptic conditions associated with intellectual disability and behavioral abnormalities, thereby providing important clues on the relationship between seizures and cognitive outcome. Dravet syndrome is a childhood disorder associated with loss-of-function mutations in SCN1A and is characterized by frequent seizures and severe cognitive impairment, thus well illustrating the concept of epileptic encephalopathy. However, it is difficult to determine the causative role of the underlying sodium channel dysfunction and that of the consequent seizures in influencing cognitive outcome in these children. It is also difficult to demonstrate whether a recognizable profile of cognitive impairment or a definite behavioral phenotype exists. Data from the laboratory and the clinics may provide greater insight into the degree to which epileptic activity may contribute to cognitive impairment in individual syndromes.
Collapse
Affiliation(s)
- Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, Institute "G. Gaslini", University of Genova, Genoa, Italy
| | | | | |
Collapse
|
10
|
Striano P, Belcastro V. Treatment of myoclonic seizures. Expert Rev Neurother 2014; 12:1411-7; quiz 1418. [DOI: 10.1586/ern.12.90] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Striano P, Striano S. Speeding up disease diagnosis: a reliable option for the epileptologist? JOURNAL OF EPILEPTOLOGY 2013. [DOI: 10.1515/joepi-2015-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
12
|
Striano P, Belcastro V. Treating myoclonic epilepsy in children: state-of-the-art. Expert Opin Pharmacother 2013; 14:1355-61. [DOI: 10.1517/14656566.2013.800045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Rilstone JJ, Coelho FM, Minassian BA, Andrade DM. Dravet syndrome: seizure control and gait in adults with different SCN1A mutations. Epilepsia 2012; 53:1421-8. [PMID: 22780858 DOI: 10.1111/j.1528-1167.2012.03583.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Dravet syndrome (DS) is an aggressive epileptic encephalopathy. Pharmacoresistant seizures of several types plague most patients with DS throughout their lives. Gait difficulties are a common, but inconsistent finding. The majority of cases are caused by mutations in the SCN1A gene, but little information is available about how particular mutations influence the adult phenotype. The purpose of this study is to correlate different types of SCN1A mutations and (1) seizure control, (2) occurrence of convulsive status epilepticus (cSE), and (3) the presence of crouch gait in adult patients. METHODS In a cohort of 10 adult patients with DS caused by SCN1A mutations, we investigated seizure frequency, history of cSE, and gait. All patients were identified in the epilepsy clinic between 2009 and 2011. SCN1A mutations were divided into four different groups based on location or effect of the mutation. Retrospective chart review and recent physical examination were completed in all cases. KEY FINDINGS All patients had a pathogenic mutation in the SCN1A gene. Four SCN1A mutations have not been described previously. Greater than 90% seizure reduction was observed (compared to childhood frequency) in six of seven patients with missense mutations in the pore-forming region (PFR) of the Na(v) 1.1 protein (group A) and nonsense mutations (group B). One patient with a splice-site mutation (group C) and another with a mutation outside the PFR (group D) became free of all types of seizures. cSE after the age of 19 years was observed in only one patient. Crouch gait, without spasticity, is identified as an element of the adult DS phenotype. However, only one half of our adult DS cohort demonstrated crouch gait. This feature was observed in five of seven patients from groups A and B. SIGNIFICANCE This study shows that seizure control improves and cSE become less frequent in DS as patients age, independent of their SCN1A mutation type. Complete seizure freedom was seen in two patients (groups C and D). Finally, this study shows that in DS, crouch gait can be observed in up to 50% of adults with SCN1A mutation. Although no definite statistical correlations could be made due to the small number of patients, it is interesting to note that crouch gait was observed only in those patients with nonsense mutations or mutations in the PFR. Future studies with larger cohorts will be required to formally assess an association of gait abnormalities with particular SCN1A mutations.
Collapse
Affiliation(s)
- Jennifer J Rilstone
- Program in Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
14
|
Verret L, Mann EO, Hang GB, Barth AMI, Cobos I, Ho K, Devidze N, Masliah E, Kreitzer AC, Mody I, Mucke L, Palop JJ. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 2012; 149:708-21. [PMID: 22541439 DOI: 10.1016/j.cell.2012.02.046] [Citation(s) in RCA: 808] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 12/14/2011] [Accepted: 02/22/2012] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) results in cognitive decline and altered network activity, but the mechanisms are unknown. We studied human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of AD. Electroencephalographic recordings in hAPP mice revealed spontaneous epileptiform discharges, indicating network hypersynchrony, primarily during reduced gamma oscillatory activity. Because this oscillatory rhythm is generated by inhibitory parvalbumin (PV) cells, network dysfunction in hAPP mice might arise from impaired PV cells. Supporting this hypothesis, hAPP mice and AD patients had decreased levels of the interneuron-specific and PV cell-predominant voltage-gated sodium channel subunit Nav1.1. Restoring Nav1.1 levels in hAPP mice by Nav1.1-BAC expression increased inhibitory synaptic activity and gamma oscillations and reduced hypersynchrony, memory deficits, and premature mortality. We conclude that reduced Nav1.1 levels and PV cell dysfunction critically contribute to abnormalities in oscillatory rhythms, network synchrony, and memory in hAPP mice and possibly in AD.
Collapse
Affiliation(s)
- Laure Verret
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Brunklaus A, Ellis R, Reavey E, Forbes GH, Zuberi SM. Prognostic, clinical and demographic features in SCN1A mutation-positive Dravet syndrome. Brain 2012; 135:2329-36. [DOI: 10.1093/brain/aws151] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Parisi P, Verrotti A, Paolino MC, Castaldo R, Ianniello F, Ferretti A, Chiarelli F, Villa MP. "Electro-clinical syndromes" with onset in paediatric age: the highlights of the clinical-EEG, genetic and therapeutic advances. Ital J Pediatr 2011; 37:58. [PMID: 22182677 PMCID: PMC3267655 DOI: 10.1186/1824-7288-37-58] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 12/19/2011] [Indexed: 12/13/2022] Open
Abstract
The genetic causes underlying epilepsy remain largely unknown, and the impact of available genetic data on the nosology of epilepsy is still limited. Thus, at present, classification of epileptic disorders should be mainly based on electroclinical features. Electro-clinical syndrome is a term used to identify a group of clinical entities showing a cluster of electro-clinical characteristics, with signs and symptoms that together define a distinctive, recognizable, clinical disorder. These often become the focus of treatment trials as well as of genetic, neuropsychological, and neuroimaging investigations. They are distinctive disorders identifiable on the basis of a typical age onset, specific EEG characteristics, seizure types, and often other features which, when taken together, permit a specific diagnosis which, in turn, often has implications for treatment, management, and prognosis. Each electro-clinical syndrome can be classified according to age at onset, cognitive and developmental antecedents and consequences, motor and sensory examinations, EEG features, provoking or triggering factors, and patterns of seizure occurrence with respect to sleep. Therefore, according to the age at onset, here we review the more frequently observed paediatric electro-clinical syndrome from their clinical-EEG, genetic and therapeutic point of views.
Collapse
Affiliation(s)
- Pasquale Parisi
- NESMOS Department, Chair of Pediatrics, Child Neurology, Faculty of Medicine and Psychology, Sapienza University, Via di Grottarossa, 1035-1039, Rome,00189, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Mueller A, Boor R, Coppola G, Striano P, Dahlin M, von Stuelpnagel C, Lotte J, Staudt M, Kluger G. Low long-term efficacy and tolerability of add-on rufinamide in patients with Dravet syndrome. Epilepsy Behav 2011; 21:282-4. [PMID: 21620771 DOI: 10.1016/j.yebeh.2011.04.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
Abstract
In this retrospective European multicenter study we evaluated the efficacy and tolerability of rufinamide in patients with Dravet syndrome and refractory seizures. Twenty patients were included; in 16 patients a SCN1A mutation was detected. The responder rate after 6 months was 20%, and after 34 months, 5%. The retention rate was 45% after 6 months and 5% after 34 months. Rufinamide treatment was stopped because of aggravation of seizures (30%), no effect (45%), and side effects (10%). The efficacy and long-term retention rate were low in our patients with Dravet syndrome and refractory seizures, far lower than in patients with Lennox-Gastaut syndrome; one-third of our patients experienced seizure aggravation. Therefore, rufinamide does not seem to be a suitable option for long-term treatment in patients with Dravet syndrome.
Collapse
Affiliation(s)
- A Mueller
- Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tang S, Lin JP, Hughes E, Siddiqui A, Lim M, Lascelles K. Encephalopathy and SCN1A mutations. Epilepsia 2011; 52:e26-30. [DOI: 10.1111/j.1528-1167.2011.03019.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Abstract
Levetiracetam is an antiepileptic drug that has been shown to be effective in various types of seizures, both partial and generalized. Although it is not yet well established because of the small number of studies, levetiracetam as both add-on therapy and monotherapy can be considered as an alternative to valproic acid in some pediatric patients. We have reviewed the available data on the efficacy, tolerability, and safety of levetiracetam in children with epilepsy. The efficacy of levetiracetam as an adjunctive therapy and as monotherapy for generalized and partial childhood epilepsies and for some types of specific epileptic syndromes of infancy and childhood (such as juvenile myoclonic epilepsy, benign rolandic epilepsy, and Jeavon syndrome) has been demonstrated in some studies. Moreover, levetiracetam may be a valuable option for children with refractory epilepsy. The reported tolerability of levetiracetam and its safety profile are favorable. Among the side effects reported, behavioral changes and even psychotic reactions seem to occur more frequently in younger patients (under 4 years of age). The onset of signs/symptoms usually occurs early, even during the titration phase, and, in many cases, at a low dosage (<20 mg/kg/day). These side effects were always observed to be reversible after discontinuation of levetiracetam. In conclusion, results from clinical trials to date suggest that levetiracetam has a full spectrum of efficacy as well as a favorable safety profile, and this drug can be considered a valuable option in the treatment of epilepsy in pediatric patients.
Collapse
|