1
|
Arango-Cortes ML, Giraldo-Cadavid LF, Latorre Quintana M, Forero-Cubides JD, Gonzalez-Bermejo J. Diaphragm pacing compared with mechanical ventilation in patients with chronic respiratory failure caused by diaphragmatic dysfunction: a systematic review and meta-analysis. Expert Rev Respir Med 2024; 18:1101-1111. [PMID: 39639468 DOI: 10.1080/17476348.2024.2421846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND The effectiveness of diaphragmatic electrical stimulation (DES) compared to mechanical ventilation (MV) in improving clinical outcomes such as quality-of-life (QOL) and hospital stay remains inconsistent. METHODS We conducted a systematic review and meta-analysis by searching PubMed, Scopus, Google Scholar, LILACS, and IEEE Xplore. We included comparative studies (randomized controlled trials and observational studies) of DES administered via the phrenic nerve or intramuscular electrodes, compared with MV in adults with diaphragmatic paralysis or paresis. Two authors independently extracted data and assessed bias, with discrepancies resolved by a senior author. Results were pooled using the inverse variance method. RESULTS Out of 1,290 articles, nine were included in the systematic review, totaling 852 subjects. In spinal cord injury (SCI), one study reported lower mortality with DES, while three found no difference compared to MV. In these patients, DES was associated with shorter hospital stay, similar QOL, and heterogeneous results on respiratory infections. In amyotrophic lateral sclerosis (ALS), DES was associated with higher mortality and similar QOL compared to MV. Most SCI studies had a serious risk of bias. CONCLUSION DES shows potential in reducing hospital stay and respiratory infections in SCI but is associated with higher mortality in ALS.
Collapse
Affiliation(s)
- Maria Lucia Arango-Cortes
- School of Engineering, Universidad de La Sabana, Campus del Puente del Común, Chía, Cundinamarca, Colombia
- Research Direction, Fundación Clínica Shaio, Bogotá DC, Colombia
| | - Luis Fernando Giraldo-Cadavid
- Departments of Epidemiology and Internal Medicine, School of Medicine, Universidad de La Sabana, Chía, Cundinamarca, Colombia
- Interventional Pulmonology Service, Fundación Neumológica Colombiana, Bogotá DC, Colombia
| | - Manuel Latorre Quintana
- Research Direction, Fundación Clínica Shaio, Bogotá DC, Colombia
- Genuino Research Group, Bogotá DC, Colombia
| | | | - Jesus Gonzalez-Bermejo
- INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et Clinique, Sorbonne Université, Paris, France
- Département de médecine et réadaptation respiratoire, Service de Pneumologie, Médecine Intensive et Réanimation (Département R3S), AP-HP, Groupe Hospitalier Pitié Salpêtrièr-Charles Foix, Paris, France
| |
Collapse
|
2
|
Montiel-Troya M, Mohamed-Mohamed H, Pardo-Moreno T, González-Díaz A, Ruger-Navarrete A, de la Mata Fernández M, Tovar-Gálvez MI, Ramos-Rodríguez JJ, García-Morales V. Advancements in Pharmacological Interventions and Novel Therapeutic Approaches for Amyotrophic Lateral Sclerosis. Biomedicines 2024; 12:2200. [PMID: 39457513 PMCID: PMC11505100 DOI: 10.3390/biomedicines12102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease in which the patient suffers from an affection of both upper and lower motor neurons at the spinal and brainstem level, causing a progressive paralysis that leads to the patient's demise. Gender is also considered a predisposing risk factor for developing the disease. A brief review of the pathophysiological mechanisms of the disease is also described in this work. Despite the fact that a cure for ALS is currently unknown, there exists a variety of pharmacological and non-pharmacological therapies that can help reduce the progression of the disease over a certain period of time and alleviate symptoms. (2) We aim to analyze these pharmacological and non-pharmacological therapies through a systematic review. A comprehensive, multidisciplinary approach to treatment is necessary. (3) Drugs such as riluzole, edaravone, and sodium phenylbutyrate, among others, have been investigated. Additionally, it is important to stay updated on research on new drugs, such as masitinib, from which very good results have been obtained. (4) Therapies aimed at psychological support, speech and language, and physical therapy for the patient are also available, which increase the quality of life of the patients.
Collapse
Affiliation(s)
- María Montiel-Troya
- Faculty of Health Sciences Ceuta, University of Granada, 51001 Ceuta, Spain; (M.M.-T.); (T.P.-M.); (A.G.-D.); (A.R.-N.)
| | - Himan Mohamed-Mohamed
- Department of Physiology, Faculty of Health Sciences Ceuta, University of Granada, 51001 Ceuta, Spain; (H.M.-M.); (M.d.l.M.F.); (J.J.R.-R.)
| | - Teresa Pardo-Moreno
- Faculty of Health Sciences Ceuta, University of Granada, 51001 Ceuta, Spain; (M.M.-T.); (T.P.-M.); (A.G.-D.); (A.R.-N.)
| | - Ana González-Díaz
- Faculty of Health Sciences Ceuta, University of Granada, 51001 Ceuta, Spain; (M.M.-T.); (T.P.-M.); (A.G.-D.); (A.R.-N.)
| | - Azahara Ruger-Navarrete
- Faculty of Health Sciences Ceuta, University of Granada, 51001 Ceuta, Spain; (M.M.-T.); (T.P.-M.); (A.G.-D.); (A.R.-N.)
| | - Mario de la Mata Fernández
- Department of Physiology, Faculty of Health Sciences Ceuta, University of Granada, 51001 Ceuta, Spain; (H.M.-M.); (M.d.l.M.F.); (J.J.R.-R.)
| | - María Isabel Tovar-Gálvez
- Nursing Department, Faculty of Health Sciences, University of Granada, Avda. Ilustración 69, 18071 Granada, Spain
| | - Juan José Ramos-Rodríguez
- Department of Physiology, Faculty of Health Sciences Ceuta, University of Granada, 51001 Ceuta, Spain; (H.M.-M.); (M.d.l.M.F.); (J.J.R.-R.)
| | - Victoria García-Morales
- Department of Biomedicine, Biotechnology and Public Health, Physiology Area, Faculty of Medicine, University of Cádiz, Pl. Falla, 9, 11003 Cádiz, Spain;
| |
Collapse
|
3
|
Riva N, Domi T, Pozzi L, Lunetta C, Schito P, Spinelli EG, Cabras S, Matteoni E, Consonni M, Bella ED, Agosta F, Filippi M, Calvo A, Quattrini A. Update on recent advances in amyotrophic lateral sclerosis. J Neurol 2024; 271:4693-4723. [PMID: 38802624 PMCID: PMC11233360 DOI: 10.1007/s00415-024-12435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
In the last few years, our understanding of disease molecular mechanisms underpinning ALS has advanced greatly, allowing the first steps in translating into clinical practice novel research findings, including gene therapy approaches. Similarly, the recent advent of assistive technologies has greatly improved the possibility of a more personalized approach to supportive and symptomatic care, in the context of an increasingly complex multidisciplinary line of actions, which remains the cornerstone of ALS management. Against this rapidly growing background, here we provide an comprehensive update on the most recent studies that have contributed towards our understanding of ALS pathogenesis, the latest results from clinical trials as well as the future directions for improving the clinical management of ALS patients.
Collapse
Affiliation(s)
- Nilo Riva
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy.
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christian Lunetta
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit of Milan Institute, 20138, Milan, Italy
| | - Paride Schito
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Cabras
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Enrico Matteoni
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Monica Consonni
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Eleonora Dalla Bella
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Federica Agosta
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Massimo Filippi
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Andrea Calvo
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
4
|
Martin Schaff C, Kurent JE, Kolodziejczak S, Milic M, Foster LA, Mehta AK. Neuroprognostication for Patients with Amyotrophic Lateral Sclerosis: An Updated, Evidence-Based Review. Semin Neurol 2023; 43:776-790. [PMID: 37751856 DOI: 10.1055/s-0043-1775595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder that presents and progresses in various ways, making prognostication difficult. Several paradigms exist for providers to elucidate prognosis in a way that addresses not only the amount of time a patient has to live, but also a patient's quality of their life moving forward. Prognostication, with regard to both survivability and quality of life, is impacted by several features that include, but are not limited to, patient demographics, clinical features on presentation, and over time, access to therapy, and access to multidisciplinary clinics. An understanding of the impact that these features have on the life of a patient with ALS can help providers to develop a better and more personalized approach for patients related to their clinical prognosis after a diagnosis is made. The ultimate goal of prognostication is to empower patients with ALS to take control and make decisions with their care teams to ensure that their goals are addressed and met.
Collapse
Affiliation(s)
| | - Jerome E Kurent
- Department of Neurology and Medicine, Medical University of South Carolina, Charleston, South Carolina
- Department of Neurology, ALS Multidisciplinary Clinic, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Sherry Kolodziejczak
- ALS Clinic Treatment Center of Excellence, Crestwood Medical Center, Huntsville, Alabama
| | - Michelle Milic
- Division of Pulmonary, Critical Care, and Sleep Medicine, MedStar Georgetown University Hospital, Washington, District of Columbia
- Division of Palliative Care Medicine, MedStar Georgetown University Hospital, Washington, District of Columbia
| | - Laura A Foster
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado
| | - Ambereen K Mehta
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Palliative Care Program, Division of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Mercadante S, Al-Husinat L. Palliative Care in Amyotrophic Lateral Sclerosis. J Pain Symptom Manage 2023; 66:e485-e499. [PMID: 37380145 DOI: 10.1016/j.jpainsymman.2023.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease of the motor neurons. Given the evolutive characteristics of this disease, palliative care principles should be a foundation of ALS care. A multidisciplinary medical intervention is of paramount importance in the different phases of disease. The involvement of the palliative care team improves quality of life and symptoms, and prognosis. Early initiation is of paramount importance to ensuring patient-centered care, when the patient has still the capability to communicate effectively and participate in his medical care. Advance care planning supports patients and family members in understanding and sharing their preferences according to their personal values and life goals regarding future medical treatment. The principal problems which require intensive supportive care include cognitive disturbances, psychological distress, pain, sialorrhrea, nutrition, and ventilatory support. Communication skills of health-care professionals are mandatory to manage the inevitability of death. Palliative sedation has peculiar aspects in this population, particularly with the decision of withdrawing ventilatory support.
Collapse
Affiliation(s)
- Sebastiano Mercadante
- Main Regional Center of Pain Relief and Supportive/Palliative Care (S.M.), La Maddalena Cancer Center, Palermo, Italy; Regional Home Care Program, SAMOT (S.M.), Palermo, Italy.
| | - Lou'i Al-Husinat
- Department of Clinical Medical Sciences (L.A.H.), Yarmouk University, Irbid, Jordan
| |
Collapse
|
6
|
Neuromuscular Weakness in Intensive Care. Crit Care Clin 2023; 39:123-138. [DOI: 10.1016/j.ccc.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Wei C, Zhu Y, Li S, Chen W, Li C, Jiang S, Xu R. Identification of an immune-related gene prognostic index for predicting prognosis, immunotherapeutic efficacy, and candidate drugs in amyotrophic lateral sclerosis. Front Cell Neurosci 2022; 16:993424. [PMID: 36589282 PMCID: PMC9798295 DOI: 10.3389/fncel.2022.993424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Rationale and objectives Considering the great insufficiency in the survival prediction and therapy of amyotrophic lateral sclerosis (ALS), it is fundamental to determine an accurate survival prediction for both the clinical practices and the design of treatment trials. Therefore, there is a need for more accurate biomarkers that can be used to identify the subtype of ALS which carries a high risk of progression to guide further treatment. Methods The transcriptome profiles and clinical parameters of a total of 561 ALS patients in this study were analyzed retrospectively by analysis of four public microarray datasets. Based on the results from a series of analyses using bioinformatics and machine learning, immune signatures are able to be used to predict overall survival (OS) and immunotherapeutic response in ALS patients. Apart from other comprehensive analyses, the decision tree and the nomogram, based on the immune signatures, were applied to guide individual risk stratification. In addition, molecular docking methodology was employed to screen potential small molecular to which the immune signatures might response. Results Immune was determined as a major risk factor contributing to OS among various biomarkers of ALS patients. As compared with traditional clinical features, the immune-related gene prognostic index (IRGPI) had a significantly higher capacity for survival prediction. The determination of risk stratification and assessment was optimized by integrating the decision tree and the nomogram. Moreover, the IRGPI may be used to guide preventative immunotherapy for patients at high risks for mortality. The administration of 2MIU IL2 injection in the short-term was likely to be beneficial for the prolongment of survival time, whose dosage should be reduced to 1MIU if the long-term therapy was required. Besides, a useful clinical application for the IRGPI was to screen potential compounds by the structure-based molecular docking methodology. Conclusion Ultimately, the immune-derived signatures in ALS patients were favorable biomarkers for the prediction of survival probabilities and immunotherapeutic responses, and the promotion of drug development.
Collapse
Affiliation(s)
- Caihui Wei
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Yu Zhu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shu Li
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Wenzhi Chen
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Cheng Li
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China,Department of Neurology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Shishi Jiang
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China,Department of Neurology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China,*Correspondence: Renshi Xu, ;
| |
Collapse
|
8
|
Li A, Yi J, Li X, Dong L, Ostrow LW, Ma J, Zhou J. Deficient Sarcolemma Repair in ALS: A Novel Mechanism with Therapeutic Potential. Cells 2022; 11:cells11203263. [PMID: 36291129 PMCID: PMC9600524 DOI: 10.3390/cells11203263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
The plasma membrane (sarcolemma) of skeletal muscle myofibers is susceptible to injury caused by physical and chemical stresses during normal daily movement and/or under disease conditions. These acute plasma membrane disruptions are normally compensated by an intrinsic membrane resealing process involving interactions of multiple intracellular proteins including dysferlin, annexin, caveolin, and Mitsugumin 53 (MG53)/TRIM72. There is new evidence for compromised muscle sarcolemma repair mechanisms in Amyotrophic Lateral Sclerosis (ALS). Mitochondrial dysfunction in proximity to neuromuscular junctions (NMJs) increases oxidative stress, triggering MG53 aggregation and loss of its function. Compromised membrane repair further worsens sarcolemma fragility and amplifies oxidative stress in a vicious cycle. This article is to review existing literature supporting the concept that ALS is a disease of oxidative-stress induced disruption of muscle membrane repair that compromise the integrity of the NMJs and hence augmenting muscle membrane repair mechanisms could represent a viable therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Li Dong
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Lyle W. Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19122, USA
- Correspondence: (L.W.O.); (J.M.); (J.Z.)
| | - Jianjie Ma
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- Correspondence: (L.W.O.); (J.M.); (J.Z.)
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
- Correspondence: (L.W.O.); (J.M.); (J.Z.)
| |
Collapse
|
9
|
Fournier CN. Considerations for Amyotrophic Lateral Sclerosis (ALS) Clinical Trial Design. Neurotherapeutics 2022; 19:1180-1192. [PMID: 35819713 PMCID: PMC9275386 DOI: 10.1007/s13311-022-01271-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
Thoughtful clinical trial design is critical for efficient therapeutic development, particularly in the field of amyotrophic lateral sclerosis (ALS), where trials often aim to detect modest treatment effects among a population with heterogeneous disease progression. Appropriate outcome measure selection is necessary for trials to provide decisive and informative results. Investigators must consider the outcome measure's reliability, responsiveness to detect change when change has actually occurred, clinical relevance, and psychometric performance. ALS clinical trials can also be performed more efficiently by utilizing statistical enrichment techniques. Innovations in ALS prediction models allow for selection of participants with less heterogeneity in disease progression rates without requiring a lead-in period, or participants can be stratified according to predicted progression. Statistical enrichment can reduce the needed sample size and improve study power, but investigators must find a balance between optimizing statistical efficiency and retaining generalizability of study findings to the broader ALS population. Additional progress is still needed for biomarker development and validation to confirm target engagement in ALS treatment trials. Selection of an appropriate biofluid biomarker depends on the treatment mechanism of interest, and biomarker studies should be incorporated into early phase trials. Inclusion of patients with ALS as advisors and advocates can strengthen clinical trial design and study retention, but more engagement efforts are needed to improve diversity and equity in ALS research studies. Another challenge for ALS therapeutic development is identifying ways to respect patient autonomy and improve access to experimental treatment, something that is strongly desired by many patients with ALS and ALS advocacy organizations. Expanded access programs that run concurrently to well-designed and adequately powered randomized controlled trials may provide an opportunity to broaden access to promising therapeutics without compromising scientific integrity or rushing regulatory approval of therapies without adequate proof of efficacy.
Collapse
Affiliation(s)
- Christina N Fournier
- Department of Neurology, Emory University, Atlanta, GA, USA.
- Department of Veterans Affairs, Atlanta, GA, USA.
| |
Collapse
|
10
|
Yokota K, Masuda M, Koga R, Uemura M, Koga T, Nakashima Y, Kawano O, Maeda T. Diaphragm pacing implantation in Japan for a patient with cervical spinal cord injury: A case report. Medicine (Baltimore) 2022; 101:e29719. [PMID: 35776996 PMCID: PMC9239610 DOI: 10.1097/md.0000000000029719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Traumatic cervical spinal cord injury (SCI) is a devastating condition leading to respiratory failure that requires permanent mechanical ventilation, which is the main driver of increased medical costs. There is a great demand for establishing therapeutic interventions to treat respiratory dysfunction following severe cervical SCI. PATIENT CONCERNS AND DIAGNOSIS We present a 24-year-old man who sustained a cervical displaced C2-C3 fracture with SCI due to a traffic accident. As the patient presented with tetraplegia and difficulty in spontaneous breathing following injury, he was immediately intubated and placed on a ventilator with cervical external fixation by halo orthosis. The patient then underwent open reduction and posterior fusion of the cervical spine 3 weeks after injury. Although the patient showed significant motor recovery of the upper and lower limbs over time, only a slight improvement in lung capacity was observed. INTERVENTIONS AND OUTCOMES At 1.5 years after injury, a diaphragmatic pacing stimulator was surgically implanted to support the patient's respiratory function. The mechanical ventilator support was successfully withdrawn from the patient 14 weeks after implantation. We observed that both the vital capacity and tidal volume of the patient were significantly promoted following implantation. The patient finally returned to daily life without any mechanical support. LESSONS The findings of this report suggest that diaphragmatic pacing implantation could be a promising treatment for improving respiratory function after severe cervical SCI. To our knowledge, this is the first SCI patient treated with a diaphragm pacing implantation covered by official medical insurance in Japan.
Collapse
Affiliation(s)
- Kazuya Yokota
- Department of Orthopaedic Surgery, Japan Labor Health and Welfare Organization Spinal Injuries Center, Fukuoka, Japan
- Departments of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- *Correspondence: Kazuya Yokota, Department of Orthopaedic Surgery, Japan Labor Health and Welfare Organization Spinal Injuries Center, 550-4 Igisu, Iizuka, Fukuoka 820-0053, Japan (e-mail: )
| | - Muneaki Masuda
- Department of Orthopaedic Surgery, Japan Labor Health and Welfare Organization Spinal Injuries Center, Fukuoka, Japan
| | - Ryuichiro Koga
- Department of Rehabilitation Medicine, Japan Labor Health and Welfare Organization Spinal Injuries Center, Fukuoka, Japan
| | - Masatoshi Uemura
- Department of Rehabilitation Medicine, Japan Labor Health and Welfare Organization Spinal Injuries Center, Fukuoka, Japan
| | - Tadashi Koga
- Department of Surgery, Iizuka Hospital, Fukuoka, Japan
| | - Yasuharu Nakashima
- Departments of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Kawano
- Department of Orthopaedic Surgery, Japan Labor Health and Welfare Organization Spinal Injuries Center, Fukuoka, Japan
| | - Takeshi Maeda
- Department of Orthopaedic Surgery, Japan Labor Health and Welfare Organization Spinal Injuries Center, Fukuoka, Japan
| |
Collapse
|
11
|
Patel N, Chong K, Baydur A. Methods and Applications in Respiratory Physiology: Respiratory Mechanics, Drive and Muscle Function in Neuromuscular and Chest Wall Disorders. Front Physiol 2022; 13:838414. [PMID: 35774289 PMCID: PMC9237333 DOI: 10.3389/fphys.2022.838414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Individuals with neuromuscular and chest wall disorders experience respiratory muscle weakness, reduced lung volume and increases in respiratory elastance and resistance which lead to increase in work of breathing, impaired gas exchange and respiratory pump failure. Recently developed methods to assess respiratory muscle weakness, mechanics and movement supplement traditionally employed spirometry and methods to evaluate gas exchange. These include recording postural change in vital capacity, respiratory pressures (mouth and sniff), electromyography and ultrasound evaluation of diaphragmatic thickness and excursions. In this review, we highlight key aspects of the pathophysiology of these conditions as they impact the patient and describe measures to evaluate respiratory dysfunction. We discuss potential areas of physiologic investigation in the evaluation of respiratory aspects of these disorders.
Collapse
|
12
|
Finder JD. Respiratory Complications in Neuromuscular Disorders. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Brennan M, McDonnell M, Duignan N, Gargoum F, Rutherford R. The use of cough peak flow in the assessment of respiratory function in clinical practice- A narrative literature review. Respir Med 2022; 193:106740. [DOI: 10.1016/j.rmed.2022.106740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 12/12/2022]
|
14
|
Yi J, Li A, Li X, Park K, Zhou X, Yi F, Xiao Y, Yoon D, Tan T, Ostrow LW, Ma J, Zhou J. MG53 Preserves Neuromuscular Junction Integrity and Alleviates ALS Disease Progression. Antioxidants (Basel) 2021; 10:antiox10101522. [PMID: 34679657 PMCID: PMC8532806 DOI: 10.3390/antiox10101522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Respiratory failure from progressive respiratory muscle weakness is the most common cause of death in amyotrophic lateral sclerosis (ALS). Defects in neuromuscular junctions (NMJs) and progressive NMJ loss occur at early stages, thus stabilizing and preserving NMJs represents a potential therapeutic strategy to slow ALS disease progression. Here we demonstrate that NMJ damage is repaired by MG53, an intrinsic muscle protein involved in plasma membrane repair. Compromised diaphragm muscle membrane repair and NMJ integrity are early pathological events in ALS. Diaphragm muscles from ALS mouse models show increased susceptibility to injury and intracellular MG53 aggregation, which is also a hallmark of human muscle samples from ALS patients. We show that systemic administration of recombinant human MG53 protein in ALS mice protects against injury to diaphragm muscle, preserves NMJ integrity, and slows ALS disease progression. As MG53 is present in circulation in rodents and humans under physiological conditions, our findings provide proof-of-concept data supporting MG53 as a potentially safe and effective therapy to mitigate ALS progression.
Collapse
Affiliation(s)
- Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (J.Y.); (A.L.); (X.L.)
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
| | - Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (J.Y.); (A.L.); (X.L.)
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (J.Y.); (A.L.); (X.L.)
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
| | - Kiho Park
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (K.P.); (X.Z.); (F.Y.); (T.T.)
| | - Xinyu Zhou
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (K.P.); (X.Z.); (F.Y.); (T.T.)
| | - Frank Yi
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (K.P.); (X.Z.); (F.Y.); (T.T.)
| | - Yajuan Xiao
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
| | - Dosuk Yoon
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (K.P.); (X.Z.); (F.Y.); (T.T.)
| | - Lyle W. Ostrow
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (K.P.); (X.Z.); (F.Y.); (T.T.)
- Correspondence: (J.M.); (J.Z.)
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (J.Y.); (A.L.); (X.L.)
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
- Correspondence: (J.M.); (J.Z.)
| |
Collapse
|
15
|
Hannan LM, De Losa R, Romeo N, Muruganandan S. Diaphragm dysfunction: A comprehensive review from diagnosis to management. Intern Med J 2021; 52:2034-2045. [PMID: 34402156 DOI: 10.1111/imj.15491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/08/2021] [Accepted: 06/27/2021] [Indexed: 11/29/2022]
Abstract
Although the diaphragm represents a critical component of the respiratory pump, the clinical presentations of diaphragm dysfunction are often non-specific and can be mistaken for other more common causes of dyspnoea. While acute bilateral diaphragm dysfunction typically presents dramatically, progressive diaphragm dysfunction associated with neuromuscular disorders and unilateral hemidiaphragm dysfunction may be identified incidentally or by recognising subtle associated symptoms. Diaphragm dysfunction should be considered in individuals with unexplained dyspnoea, restrictive respiratory function tests or abnormal diaphragm position on plain chest imaging. A higher index of suspicion should occur for individuals with profound orthopnoea, those who have undergone procedures in proximity to the phrenic nerve(s) or those with co-morbid conditions that are associated with diaphragm dysfunction, particularly neuromuscular disorders. A systematic approach to the evaluation of diaphragm function using non-invasive diagnostic techniques such as respiratory function testing and diaphragm imaging can often confirm a diagnosis. Neurophysiological assessment may confirm diaphragm dysfunction and assist in identifying an underlying cause. Identifying those with or at risk of respiratory failure can allow institution of respiratory support, while specific cases may also benefit from surgical plication or phrenic nerve pacing techniques. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Liam M Hannan
- Department of Respiratory Medicine, Northern Health, Epping, Victoria, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne Medicine
| | - Rebekah De Losa
- Department of Respiratory Medicine, Northern Health, Epping, Victoria, Australia
| | - Nicholas Romeo
- Department of Respiratory Medicine, Northern Health, Epping, Victoria, Australia
| | | |
Collapse
|
16
|
Xu X, Shen D, Gao Y, Zhou Q, Ni Y, Meng H, Shi H, Le W, Chen S, Chen S. A perspective on therapies for amyotrophic lateral sclerosis: can disease progression be curbed? Transl Neurodegener 2021; 10:29. [PMID: 34372914 PMCID: PMC8353789 DOI: 10.1186/s40035-021-00250-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/09/2021] [Indexed: 01/17/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease involving both upper and lower motor neurons, leading to paralysis and eventually death. Symptomatic treatments such as inhibition of salivation, alleviation of muscle cramps, and relief of spasticity and pain still play an important role in enhancing the quality of life. To date, riluzole and edaravone are the only two drugs approved by the Food and Drug Administration for the treatment of ALS in a few countries. While there is adequate consensus on the modest efficacy of riluzole, there are still open questions concerning the efficacy of edaravone in slowing the disease progression. Therefore, identification of novel therapeutic strategies is urgently needed. Impaired autophagic process plays a critical role in ALS pathogenesis. In this review, we focus on therapies modulating autophagy in the context of ALS. Furthermore, stem cell therapies, gene therapies, and newly-developed biomaterials have great potentials in alleviating neurodegeneration, which might halt the disease progression. In this review, we will summarize the current and prospective therapies for ALS.
Collapse
Affiliation(s)
- Xiaojiao Xu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Chengdu, 610031, China
| | - Dingding Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - Yining Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - You Ni
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - Huanyu Meng
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - Hongqin Shi
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China.,Department of Neurology, Xinrui Hospital, Wuxi, 214028, China
| | - Weidong Le
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China. .,Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Chengdu, 610031, China. .,Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China.
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China.
| |
Collapse
|
17
|
Nardini M, Jayakumar S, Migliore M, Nosotti M, Paul I, Dunning J. Minimally Invasive Plication of the Diaphragm: A Single-Center Prospective Study. INNOVATIONS-TECHNOLOGY AND TECHNIQUES IN CARDIOTHORACIC AND VASCULAR SURGERY 2021; 16:343-349. [PMID: 34130535 DOI: 10.1177/15569845211011583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Plication of the diaphragm is a life-changing procedure for patients affected by diaphragm paralysis. Traditionally, this procedure is performed through a thoracotomy. Access to the diaphragm via this incision is poor and the indications for surgery are limited to patients who can actually sustain such an invasive approach and associated morbidities. A minimally invasive approach was developed to improve the surgical management of diaphragm paralysis. METHODS Patients underwent minimally invasive diaphragm plication either by video-assisted or robotic surgery through a 3-port technique with CO2 insufflation. Patients were followed at the routine 6-week clinic and also by telephone consultation 6 to 12 months postoperatively. Data were collected on postoperative complications, postoperative pain or numbness, symptomatic improvement, and change to quality of life following surgery. RESULTS Forty-eight patients underwent 49 minimally invasive diaphragm plication. Median postoperative length of hospital stay was 4 days (range: 2 to 34 days) and there were no cases of mortality. Mean reduction in Medical Research Council dyspnea score per patient was 2.2 points (mode: 3 points). Twenty-eight patients (77.8%) reported a significant symptomatic improvement enabling improvements in quality of life, and 97.2% (n = 35) were satisfied with the surgical outcome. CONCLUSIONS Minimally invasive diaphragm plication is a safe procedure associated with prompt postoperative recovery. It is effective at reducing debilitating dyspnea and improving quality of life.
Collapse
Affiliation(s)
- Marco Nardini
- 9304 Department of Thoracic Surgery and Lung Transplantation, University of Milan, Italy.,4964 Department of Cardiothoracic Surgery, Royal Brompton and Harefield Hospitals, London, UK
| | - Shruti Jayakumar
- 156705 Department of Thoracic Surgery, James Cook University Hospital, Middlesbrough, UK
| | - Marcello Migliore
- 8903 Department of Thoracic Surgery, University Hospital of Wales, Cardiff, UK
| | - Mario Nosotti
- 9304 Department of Thoracic Surgery and Lung Transplantation, University of Milan, Italy
| | - Ian Paul
- 156705 Department of Thoracic Surgery, James Cook University Hospital, Middlesbrough, UK
| | - Joel Dunning
- 156705 Department of Thoracic Surgery, James Cook University Hospital, Middlesbrough, UK
| |
Collapse
|
18
|
Garbuzova-Davis S, Shell R, Mustafa H, Hailu S, Willing AE, Sanberg PR, Borlongan CV. Advancing Stem Cell Therapy for Repair of Damaged Lung Microvasculature in Amyotrophic Lateral Sclerosis. Cell Transplant 2021; 29:963689720913494. [PMID: 32207340 PMCID: PMC7444221 DOI: 10.1177/0963689720913494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease of motor neuron
degeneration in the brain and spinal cord. Progressive paralysis of
the diaphragm and other respiratory muscles leading to respiratory
dysfunction and failure is the most common cause of death in ALS
patients. Respiratory impairment has also been shown in animal models
of ALS. Vascular pathology is another recently recognized hallmark of
ALS pathogenesis. Central nervous system (CNS) capillary damage is a
shared disease element in ALS rodent models and ALS patients.
Microvascular impairment outside of the CNS, such as in the lungs, may
occur in ALS, triggering lung damage and affecting breathing function.
Stem cell therapy is a promising treatment for ALS. However, this
therapeutic strategy has primarily targeted rescue of degenerated
motor neurons. We showed functional benefits from intravenous delivery
of human bone marrow (hBM) stem cells on restoration of capillary
integrity in the CNS of an superoxide dismutase 1 (SOD1) mouse model
of ALS. Due to the widespread distribution of transplanted cells via
this route, administered cells may enter the lungs and effectively
restore microvasculature in this respiratory organ. Here, we provided
preliminary evidence of the potential role of microvasculature
dysfunction in prompting lung damage and treatment approaches for
repair of respiratory function in ALS. Our initial studies showed
proof-of-principle that microvascular damage in ALS mice results in
lung petechiae at the late stage of disease and that systemic
transplantation of mainly hBM-derived endothelial progenitor cells
shows potential to promote lung restoration via re-established
vascular integrity. Our new understanding of previously underexplored
lung competence in this disease may facilitate therapy targeting
restoration of respiratory function in ALS.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Robert Shell
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Hilmi Mustafa
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Surafuale Hailu
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Alison E Willing
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cesario V Borlongan
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
19
|
Woo AL, Tchoe HJ, Shin HW, Shin CM, Lim CM. Assisted Breathing with a Diaphragm Pacing System: A Systematic Review. Yonsei Med J 2020; 61:1024-1033. [PMID: 33251776 PMCID: PMC7700882 DOI: 10.3349/ymj.2020.61.12.1024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Patients with respiratory failure associated with neurological dysfunction often require mechanical ventilator support, which poses increased economic burden and ventilator-associated complications. A diaphragm pacing system (DPS) is an implanted device that provides respiratory support for such patients. In this systematic review, we reviewed the literature to assess the safety and efficacy of DPS for patients with respiratory failure resulting from amyotrophic lateral sclerosis (ALS) or cervical spinal cord injuries. MATERIALS AND METHODS The following databases were searched from July 10 to July 30, 2018: MEDLINE, EMBASE, Cochran library, KoreaMed, Research Information Sharing Service, Korean studies Information Service System, Korea Institute of Science and Technology Information, and Korean Medical database. The abstracts and full texts of the searched articles were reviewed by two reviewers. RESULTS The search keywords generated 197 articles: two randomized controlled trials, two case-control studies, and one case report involving patients with ALS; one cohort study, one case-control study, and two case reports involving patients with cervical spine injury; and one case report involving patients with both conditions were included. The primary outcome was safety profile (complications and adverse event) and efficacy (overall survival and sleep improvement). Complications and adverse events were more common in patients with ALS and spinal cord injury receiving DPS than in controls. Efficacy outcomes were inconsistent across ALS studies. CONCLUSION Based on safety and efficacy results, we do not support using DPS to manage respiratory failure in patients with ALS or cervical spine injury.
Collapse
Affiliation(s)
- A La Woo
- Division of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ha Jin Tchoe
- Division for New Technology Assessment, National Evidence-Based Healthcare Collaborating Agency, Seoul, Korea
| | - Hae Won Shin
- Division for New Technology Assessment, National Evidence-Based Healthcare Collaborating Agency, Seoul, Korea
| | - Chae Min Shin
- Division for New Technology Assessment, National Evidence-Based Healthcare Collaborating Agency, Seoul, Korea
| | - Chae Man Lim
- Division of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
20
|
Beatmung bei neuromuskulären Erkrankungen. NEUROLOGISCHE BEATMUNGSMEDIZIN 2020. [PMCID: PMC7236064 DOI: 10.1007/978-3-662-59014-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neuromuskuläre Erkrankungen betreffen das erste und zweite Motoneuron, die peripheren Nerven, die neuromuskulären Übertragung und die Muskelzelle. Es handelt sich um eine heterogene Gruppe von erblichen, degenerativen und autoimmunen Erkrankungen. Eine korrekte diagnostische Einordnung ist erforderlich, da zentralnervöse, kardiale, endokrine und weitere Begleitsymptome vorliegen können und für einige Erkrankungen bereits medikamentöse Therapien zur Verfügung stehen. Neuromuskuläre Erkrankungen haben eine große Bedeutung in der neuromuskulären Beatmungsmedizin. Die respiratorische Symptomatik resultiert in der Regel aus Paresen der am Atmen, Schlucken oder Husten beteiligten Muskulatur mit konsekutiver ventilatorischer Insuffienz, Dysphagie bis hin zur Speichelaspiration und Sekretretention. Mittels eines strukturierte Sekretmanagements und einer effektive nichtinvasive oder invasive Beatmungstherapie können neuromuskuläre Patienten viele Jahre mit guter Lebensqualität überleben. Themen dieses Kapitels sind ein Überblick über die neuromuskulären Erkrankungen, die Indikationen und Strategien der nichtinvasiven und der invasiven Beatmung und eine ausführliche Darstellung beatmungsmedizinisch besonders relevanter neuromuskulärer Erkrankungen wie der amyotrophe Lateralsklerose, des Guillain-Barré-Syndroms, der Myasthenia gravis und der Critical-Illness-Polyneuropathie/-Myopathie.
Collapse
|
21
|
Guimarães-Costa R, Niérat MC, Rivals I, Morélot-Panzini C, Romero NB, Menegaux F, Salachas F, Gonzalez-Bermejo J, Similowski T, Bruneteau G. Implanted Phrenic Stimulation Impairs Local Diaphragm Myofiber Reinnervation in Amyotrophic Lateral Sclerosis. Am J Respir Crit Care Med 2019; 200:1183-1187. [PMID: 31291123 DOI: 10.1164/rccm.201903-0653le] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Raquel Guimarães-Costa
- Assistance Publique-Hôpitaux de ParisParis, France.,Institut du Cerveau et de la Moelle EpinièreParis, France
| | | | - Isabelle Rivals
- Sorbonne UniversitéParis, Franceand.,PSL Research UniversityParis, France
| | | | | | | | | | | | - Thomas Similowski
- Assistance Publique-Hôpitaux de ParisParis, France.,Sorbonne UniversitéParis, Franceand
| | - Gaëlle Bruneteau
- Assistance Publique-Hôpitaux de ParisParis, France.,Sorbonne UniversitéParis, Franceand
| | | |
Collapse
|
22
|
Hobson EV, Baird WO, Bradburn M, Cooper C, Mawson S, Quinn A, Shaw PJ, Walsh T, McDermott CJ. Using telehealth in motor neuron disease to increase access to specialist multidisciplinary care: a UK-based pilot and feasibility study. BMJ Open 2019; 9:e028525. [PMID: 31640993 PMCID: PMC6830633 DOI: 10.1136/bmjopen-2018-028525] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/23/2019] [Accepted: 07/25/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Care of patients with motor neuron disease (MND) in a specialist, multidisciplinary clinic is associated with improved survival, but access is not universal. We wanted to pilot and establish the feasibility of a definitive trial of a novel telehealth system (Telehealth in Motor neuron disease, TiM) in patients with MND. DESIGN An 18-month, single-centre, mixed-methods, randomised, controlled pilot and feasibility study. INTERVENTION TiM telehealth plus usual care versus usual care. SETTING A specialist MND care centre in the UK. PARTICIPANTS Patients with MND and their primary informal carers. PRIMARY AND SECONDARY OUTCOME MEASURES Recruitment, retention and data collection rates, clinical outcomes including participant quality of life and anxiety and depression. RESULTS Recruitment achieved the target of 40 patients and 37 carers. Participant characteristics reflected those attending the specialist clinic and included those with severe disability and those with limited experience of technology. Retention and data collection was good. Eighty per cent of patients and 82% of carer participants reported outcome measures were completed at 6 months. Using a longitudinal analysis with repeated measures of quality of life (QoL), a sample size of 131 per arm is recommended in a definitive trial. The methods and intervention were acceptable to participants who were highly motivated to participate to research. The low burden of participation and accessibility of the intervention meant barriers to participation were minimal. However, the study highlighted difficulties assessing the associated costs of the intervention, the challenge of recruitment in such a rare disease and the difficulties of producing rigorous evidence of impact in such a complex intervention. CONCLUSION A definitive trial of TiM is feasible but challenging. The complexity of the intervention and heterogeneity of the patient population means that a randomised controlled trial may not be the best way to evaluate the further development and implementation of the TiM. TRIAL REGISTRATION NUMBER ISRCTN26675465.
Collapse
Affiliation(s)
- Esther V Hobson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
- Academic Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Wendy O Baird
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Mike Bradburn
- Clinical Trials Research Unit, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Cindy Cooper
- Clinical Trials Research Unit, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Susan Mawson
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Ann Quinn
- Sheffield Motor Neurone Disease Association Research Advisory Group, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
- Academic Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Theresa Walsh
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
- Academic Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
- Academic Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
23
|
Diaphragmatic dysfunction. Pulmonology 2019; 25:223-235. [DOI: 10.1016/j.pulmoe.2018.10.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/16/2018] [Accepted: 10/28/2018] [Indexed: 12/13/2022] Open
|
24
|
Panchabhai TS, Mireles Cabodevila E, Pioro EP, Wang X, Han X, Aboussouan LS. Pattern of lung function decline in patients with amyotrophic lateral sclerosis: implications for timing of noninvasive ventilation. ERJ Open Res 2019; 5:00044-2019. [PMID: 31579678 PMCID: PMC6759589 DOI: 10.1183/23120541.00044-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/20/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The course of lung function decline in amyotrophic lateral sclerosis (ALS) and the effect of noninvasive positive-pressure ventilation (NIPPV) on that decline are uncertain. We sought to model lung function decline, determine when NIPPV is initiated along that course, and assess its impact on the course of decline. METHODS An observed sigmoid pattern of forced vital capacity decline was reproduced with a four-parameter nonlinear mixed-effects logistic model. RESULTS Analyses were performed on 507 patients overall and in 353 patients for whom a determination of adherence to NIPPV was ascertained. A sigmoid bi-asymptotic model provided a statistical fit of the data and showed a period of stable vital capacity, followed by an accelerated decline, an inflection point, then a slowing in decline to a plateau. By the time NIPPV was initiated in accordance with reimbursement guidelines, vital capacity had declined by ≥85% of the total range. Nearly half of the total loss of vital capacity occurred over 6.2 months centred at an inflection point occurring 17 months after disease onset and 5.2 months before initiation of NIPPV at a vital capacity of about 60%. Fewer bulbar symptoms and a faster rate of decline of lung function predicted adherence to NIPPV, but the intervention had no impact on final vital capacity. CONCLUSIONS In patients with ALS, vital capacity decline is rapid but slows after an inflection point regardless of NIPPV. Initiating NIPPV along reimbursement guidelines occurs after ≥85% of vital capacity loss has already occurred.
Collapse
Affiliation(s)
- Tanmay S. Panchabhai
- Section of Interventional Pulmonology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Erik P. Pioro
- Dept of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaofeng Wang
- Dept of Qualitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaozhen Han
- Dept of Qualitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Loutfi S. Aboussouan
- Dept of Pulmonary Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
- Dept of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
25
|
Dorst J, Ludolph AC. Non-invasive ventilation in amyotrophic lateral sclerosis. Ther Adv Neurol Disord 2019; 12:1756286419857040. [PMID: 31258624 PMCID: PMC6589990 DOI: 10.1177/1756286419857040] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 05/23/2019] [Indexed: 12/11/2022] Open
Abstract
Non-invasive ventilation (NIV) has become an important cornerstone of symptomatic treatment in amyotrophic lateral sclerosis (ALS), improving survival and quality of life. In this review, we summarize the most important recent developments and insights, including evidence of efficacy, indication criteria and time of initiation, ventilation parameters and adaptation strategies, treatment of complicating factors, transition from NIV to invasive ventilation, termination of NIV and end-of-life management. Recent publications have questioned former conventions and guideline recommendations, especially with regard to timing and prognostic factors; therefore, a fresh look and re-evaluation of current evidence is needed.
Collapse
Affiliation(s)
- Johannes Dorst
- Universitätsklinik Ulm, Abteilung für Neurologie, Oberer Eselsberg 45, D-89081 Ulm, Germany
| | - Albert C. Ludolph
- Universitätsklinik Ulm, Abteilung für Neurologie, Oberer Eselsberg 45, D-89081 Ulm, Germany
| |
Collapse
|
26
|
Thakore NJ, Lapin BR, Pioro EP, Aboussouan LS. Variation in noninvasive ventilation use in amyotrophic lateral sclerosis. Neurology 2019; 93:e306-e316. [DOI: 10.1212/wnl.0000000000007776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
ObjectiveWe sought to examine prevalence and predictors of noninvasive ventilation (NIV) in a composite cohort of patients with amyotrophic lateral sclerosis (ALS) followed in a clinical trials setting (Pooled Resource Open-Access ALS Clinical Trials database).MethodsNIV initiation and status were ascertained from response to question 12 of the revised ALS Functional Rating Scale (ALSFRS-R). Factors affecting NIV use in patients with forced vital capacity (FVC) ≤50% of predicted were examined. Predictors of NIV were evaluated by Cox proportional hazard models and generalized linear mixed models.ResultsAmong 1,784 patients with 8,417 simultaneous ALSFRS-R and FVC% measures, NIV was used by 604 (33.9%). Of 918 encounters when FVC% ≤50%, NIV was reported in 482 (52.5%). Independent predictors of NIV initiation were lower FVC% (hazard ratio [HR] 1.27, 95% confidence interval [CI] 1.17–1.37 for 10% drop), dyspnea (HR 2.62, 95% CI 1.87–3.69), orthopnea (HR 4.09, 95% CI 3.02–5.55), lower bulbar and gross motor subscores of ALSFRS-R (HRs 1.09 [95% CI 1.03–1.14] and 1.13 [95% CI 1.07–1.20], respectively, per point), and male sex (HR 1.73, 95% CI 1.31–2.28). Adjusted for other variables, bulbar onset did not significantly influence time to NIV (HR 0.72, 95% CI 0.47–1.08). Considerable unexplained variability in NIV use was found.ConclusionNIV use was lower than expected in this ALS cohort that was likely to be optimally managed. Absence of respiratory symptoms and female sex may be barriers to NIV use. Prospective exploration of factors affecting adoption of NIV may help bridge this gap and improve care in ALS.
Collapse
|
27
|
A Case-Based Approach to the Identification and Treatment of Sleep Disorders in Neurology Practice. CURRENT SLEEP MEDICINE REPORTS 2019. [DOI: 10.1007/s40675-019-0135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Evans D, Shure D, Clark L, Criner GJ, Dres M, de Abreu MG, Laghi F, McDonagh D, Petrof B, Nelson T, Similowski T. Temporary transvenous diaphragm pacing vs. standard of care for weaning from mechanical ventilation: study protocol for a randomized trial. Trials 2019; 20:60. [PMID: 30654837 PMCID: PMC6337771 DOI: 10.1186/s13063-018-3171-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mechanical ventilation (MV) is a life-saving technology that restores or assists breathing. Like any treatment, MV has side effects. In some patients it can cause diaphragmatic atrophy, injury, and dysfunction (ventilator-induced diaphragmatic dysfunction, VIDD). Accumulating evidence suggests that VIDD makes weaning from MV difficult, which involves increased morbidity and mortality. METHODS AND ANALYSIS This paper describes the protocol of a randomized, controlled, open-label, multicenter trial that is designed to investigate the safety and effectiveness of a novel therapy, temporary transvenous diaphragm pacing (TTVDP), to improve weaning from MV in up to 88 mechanically ventilated adult patients who have failed at least two spontaneous breathing trials over at least 7 days. Patients will be randomized (1:1) to TTVDP (treatment) or standard of care (control) groups. The primary efficacy endpoint is time to successful extubation with no reintubation within 48 h. Secondary endpoints include maximal inspiratory pressure and ultrasound-measured changes in diaphragm thickness and diaphragm thickening fraction over time. In addition, observational data will be collected and analyzed, including 30-day mortality and time to discharge from the intensive care unit and from the hospital. The hypothesis to be tested postulates that more TTVDP patients than control patients will be successfully weaned from MV within the 30 days following randomization. DISCUSSION This study is the first large-scale clinical trial of a novel technology (TTVDP) aimed at accelerating difficult weaning from MV. The technology tested provides the first therapy directed specifically at VIDD, an important cause of delayed weaning from MV. Its results will help delineate the place of this therapeutic approach in clinical practice and help design future studies aimed at defining the indications and benefits of TTVDP. TRIAL REGISTRATION ClinicalTrials.gov, NCT03096639 . Registered on 30 March 2017.
Collapse
Affiliation(s)
- Douglas Evans
- Lungpacer Medical Incorporated, Burnaby, BC, Canada.,Lungpacer Medical, 260 Sierra Drive, Exton, PA, 19335, USA
| | | | - Linda Clark
- Lungpacer Medical Incorporated, Burnaby, BC, Canada
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Martin Dres
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique and AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale du Département R3S, Paris, France
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Franco Laghi
- Division of Pulmonary and Critical Care Medicine, Hines Veterans Affairs Hospital Hines, Loyola University, Maywood, IL, USA
| | - David McDonagh
- Departments of Anesthesiology and Pain Management, Neurological surgery, Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Basil Petrof
- Meakins-Christie Laboratories, and Translational Research in Respiratory Diseases Program, McGill University Health Centre and Research Institute, Montreal, QC, Canada
| | | | - Thomas Similowski
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique and AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale du Département R3S, Paris, France.
| |
Collapse
|
29
|
|
30
|
Oskarsson B, Gendron TF, Staff NP. Amyotrophic Lateral Sclerosis: An Update for 2018. Mayo Clin Proc 2018; 93:1617-1628. [PMID: 30401437 DOI: 10.1016/j.mayocp.2018.04.007] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/12/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons and other neuronal cells, leading to severe disability and eventually death from ventilatory failure. It has a prevalence of 5 in 100,000, with an incidence of 1.7 per 100,000, reflecting short average survival. The pathogenesis is incompletely understood, but defects of RNA processing and protein clearance may be fundamental. Repeat expansions in the chromosome 9 open reading frame 72 gene (C9orf72) are the most common known genetic cause of ALS and are seen in approximately 40% of patients with a family history and approximately 10% of those without. No environmental risk factors are proved to be causative, but many have been proposed, including military service. The diagnosis of ALS rests on a history of painless progressive weakness coupled with examination findings of upper and lower motor dysfunction. No diagnostic test is yet available, but electromyography and genetic tests can support the diagnosis. Care for patients is best provided by a multidisciplinary team, and most interventions are directed at managing symptoms. Two medications with modest benefits have Food and Drug Administration approval for the treatment of ALS: riluzole, a glutamate receptor antagonist, and, new in 2017, edaravone, a free radical scavenger. Many other encouraging treatment strategies are being explored in clinical trials for ALS; herein we review stem cell and antisense oligonucleotide gene therapies.
Collapse
|
31
|
Abstract
ALS is a neurodegenerative disease in which the primary symptoms result in progressive neuromuscular weakness. Recent studies have highlighted that there is significant heterogeneity with regard to anatomical and temporal disease progression. Importantly, more recent advances in genetics have revealed new causative genes to the disease. New efforts have focused on the development of biomarkers that could aid in diagnosis, prognosis, and serve as pharmacodynamics markers. Although traditional pharmaceuticals continue to undergo trials for ALS, new therapeutic strategies including stem cell transplantation studies, gene therapies, and antisense therapies targeting some of the familial forms of ALS are gaining momentum.
Collapse
|
32
|
Talbot K, Feneberg E, Scaber J, Thompson AG, Turner MR. Amyotrophic lateral sclerosis: the complex path to precision medicine. J Neurol 2018; 265:2454-2462. [PMID: 30054789 PMCID: PMC6182683 DOI: 10.1007/s00415-018-8983-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of the corticomotorneuronal network responsible for voluntary movement. There are well-established clinical, genetic and pathological overlaps between ALS and frontotemporal dementia (FTD), which together constitute the 'TDP-43 proteinopathies'. An ever-expanding list of genes in which mutation leads to typical ALS have implicated abnormalities in RNA processing, protein homoeostasis and axonal transport. How these apparently distinct pathways converge to cause the characteristic clinical syndrome of ALS remains unclear. Although there are major gaps in our understanding of the essential nature of ALS pathophysiology, the identification of genetic causes in up to 15% of ALS patients, coupled with advances in biotechnology and biomarker research provide a foundation for approaches to treatment based on 'precision medicine', and even prevention of the disease in pre-symptomatic mutation carriers in the future. Currently, multidisciplinary care remains the bedrock of management and this is increasingly being put onto an evidence-based footing.
Collapse
Affiliation(s)
- Kevin Talbot
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
| | - Emily Feneberg
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Jakub Scaber
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Alexander G Thompson
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
33
|
Niedermeyer S, Murn M, Choi PJ. Respiratory Failure in Amyotrophic Lateral Sclerosis. Chest 2018; 155:401-408. [PMID: 29990478 DOI: 10.1016/j.chest.2018.06.035] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis is a progressive neuromuscular disease characterized by both lower motor neuron and upper motor neuron dysfunction. Although clinical presentations can vary, there is no cure for ALS, and the disease is universally terminal, with most patients dying of respiratory complications. Patients die, on average, within 3 to 5 years of diagnosis, unless they choose to undergo tracheostomy, in which case, they may live, on average, 2 additional years. Up to 95% of patients with ALS in the United States choose not to undergo tracheostomy; management of respiratory failure is therefore aimed at both prolonging survival as well as improving quality of life. Standard of care for patients with ALS includes treatment from multidisciplinary teams, but many patients do not have consistent access to a pulmonary physician who regularly sees patients with this disease. The goal of this review was to serve as an overview of respiratory considerations in the management of ALS. This article discusses noninvasive ventilation in the management of respiratory muscle weakness, mechanical insufflation/exsufflation devices for airway clearance, and treatment of aspiration, including timing of placement of a percutaneous endoscopic gastrostomy tube, as well as secretion management. In addition, it is important for physicians to consider end-of-life issues such as advanced directives, hospice referral, and ventilator withdrawal.
Collapse
Affiliation(s)
- Shannon Niedermeyer
- Duke University Hospital, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Michael Murn
- Duke University Hospital, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Philip J Choi
- Division of Pulmonary and Critical Care, Department of Medicine, University of Michigan, University of Michigan Medical Center, Ann Arbor, MI.
| |
Collapse
|
34
|
Kokatnur L, Rudrappa M. Diaphragmatic Palsy. Diseases 2018; 6:E16. [PMID: 29438332 PMCID: PMC5871962 DOI: 10.3390/diseases6010016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
The diaphragm is the primary muscle of respiration, and its weakness can lead to respiratory failure. Diaphragmatic palsy can be caused by various causes. Injury to the phrenic nerve during thoracic surgeries is the most common cause for diaphragmatic palsy. Depending on the cause, the symptoms of diaphragmatic palsies vary from completely asymptomatic to disabling dyspnea requiring mechanical ventilation. On pulmonary function tests, there will be a decrease in the maximum respiratory muscle power. Spirometry shows reduced lung functions and a significant drop of lung function in supine position is typical of diaphragmatic palsy. Diaphragmatic movements with respiration can be directly visualized by fluoroscopic examination. Currently, this test is being replaced by bedside thoracic ultrasound examination, looking at the diaphragmic excursion with deep breathing or sniffing. This test is found to be equally efficient, and without risks of ionizing radiation of fluoroscope. Treatment of diaphragmatic palsy depends on the cause. Surgical approach of repair of diaphragm or nonsurgical approach of noninvasive ventilation has been tried with good success. Overall prognosis of diaphragmatic palsy is good, except when it is related to neuromuscular degeneration conditions.
Collapse
Affiliation(s)
- Laxmi Kokatnur
- Department of Neurology, Louisiana State University Health Science Center, 1501 Kings Highway, Shreveport, LA 711031, USA.
- Department of Neurology, Overton Brooks VA Medical Center, 501 E Stoner Ave, Shreveport, LA 71101, USA.
- Department of Neurology, Mercy Hospital, 100 Mercy Way, Joplin, MO 64804, USA.
| | - Mohan Rudrappa
- Department of Pulmonary and Critical Care Medicine, Louisiana State University Health Science Center, 1501 Kings Highway, Shreveport, LA 711031, USA.
- Department of Pulmonary and Critical Care Medicine, Overton Brooks VA Medical Center, 501 E Stoner Ave, Shreveport, LA 71101, USA.
- Department of Pulmonary and Critical Care Medicine, Mercy Hospital, 100 Mercy Way, Joplin, MO 64804, USA.
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Although there is no cure for motor neurone disease (MND), the advent of multidisciplinary care and neuroprotective agents has improved treatment interventions and enhanced quality of life for MND patients and their carers. RECENT FINDINGS Evidence-based multidisciplinary care, respiratory management and disease-modifying therapy have improved the outcomes of patients diagnosed with MND. Supportive approaches to nutritional maintenance and optimization of symptomatic treatments, including management of communication and neuropsychiatric issues, improve the quality of life for MND patients. SUMMARY Recent progress in the understanding of the clinical, pathophysiological and genetic heterogeneity of MND has improved the approach of clinicians to treatment. Notwithstanding improvement to care and quality of life, survival benefit has become evident with the advent of a multidisciplinary care framework, early treatment with riluzole and noninvasive ventilation. Weight maintenance remains critical, with weight loss associated with more rapid disease progression. The end-of-life phase is poorly defined and treatment is challenging, but effective symptom control through palliative care is achievable and essential. Encouragingly, current progress of clinical trials continues to close the gap towards the successful development of curative treatment in MND.
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Understanding the mechanisms and abnormalities of respiratory function in neuromuscular disease is critical to supporting the patient and maintaining ventilation in the face of acute or chronic progressive impairment. RECENT FINDINGS Retrospective clinical studies reviewing the care of patients with Guillain-Barré syndrome and myasthenia have shown a disturbingly high mortality following step-down from intensive care. This implies high dependency and rehabilitation management is failing despite evidence that delayed improvement can occur with long-term care. A variety of mechanisms of phrenic nerve impairment have been recognized with newer investigation techniques, including EMG and ultrasound. Specific treatment for progressive neuromuscular and muscle disease has been increasingly possible particularly for the treatment of myasthenia, metabolic myopathies, and Duchenne muscular dystrophy. For those conditions without specific treatment, it has been increasingly possible to support ventilation in the domiciliary setting with newer techniques of noninvasive ventilation and better airway clearance. There remained several areas of vigorous debates, including the role for tracheostomy care and the place of respiratory muscle training and phrenic nerve/diaphragm pacing. SUMMARY Recent studies and systematic reviews have defined criteria for anticipating, recognizing, and managing ventilatory failure because of acute neuromuscular disease. The care of patients requiring long-term noninvasive ventilatory support for chronic disorders has also evolved. This has resulted in significantly improved survival for patients requiring domiciliary ventilatory support.
Collapse
|
37
|
van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, van den Berg LH. Amyotrophic lateral sclerosis. Lancet 2017; 390:2084-2098. [PMID: 28552366 DOI: 10.1016/s0140-6736(17)31287-4] [Citation(s) in RCA: 846] [Impact Index Per Article: 105.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis is characterised by the progressive loss of motor neurons in the brain and spinal cord. This neurodegenerative syndrome shares pathobiological features with frontotemporal dementia and, indeed, many patients show features of both diseases. Many different genes and pathophysiological processes contribute to the disease, and it will be necessary to understand this heterogeneity to find effective treatments. In this Seminar, we discuss clinical and diagnostic approaches as well as scientific advances in the research fields of genetics, disease modelling, biomarkers, and therapeutic strategies.
Collapse
Affiliation(s)
- Michael A van Es
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland; Department of Neurology, Beaumont Hospital, Beaumont, Ireland
| | - Adriano Chio
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero Universitaria Citta della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin, Turin, Italy
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK; NIHR Dementia Biomedical Research Unit, King's College London, London, UK
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands.
| |
Collapse
|
38
|
Aboussouan LS, Mireles-Cabodevila E. Sleep in Amyotrophic Lateral Sclerosis. CURRENT SLEEP MEDICINE REPORTS 2017. [DOI: 10.1007/s40675-017-0094-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Dorst J, Ludolph AC, Huebers A. Disease-modifying and symptomatic treatment of amyotrophic lateral sclerosis. Ther Adv Neurol Disord 2017; 11:1756285617734734. [PMID: 29399045 PMCID: PMC5784546 DOI: 10.1177/1756285617734734] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
Abstract
In this review, we summarize the most important recent developments in the treatment of amyotrophic lateral sclerosis (ALS). In terms of disease-modifying treatment options, several drugs such as dexpramipexole, pioglitazone, lithium, and many others have been tested in large multicenter trials, albeit with disappointing results. Therefore, riluzole remains the only directly disease-modifying drug. In addition, we discuss antisense oligonucleotides (ASOs) as a new and potentially causal treatment option. Progress in symptomatic treatments has been more important. Nutrition and ventilation are now an important focus of ALS therapy. Several studies have firmly established that noninvasive ventilation improves patients' quality of life and prolongs survival. On the other hand, there is still no consensus regarding best nutritional management, but big multicenter trials addressing this issue are currently ongoing. Evidence regarding secondary symptoms like spasticity, muscle cramps or sialorrhea remains generally scarce, but some new insights will also be discussed. Growing evidence suggests that multidisciplinary care in specialized clinics improves survival.
Collapse
Affiliation(s)
- Johannes Dorst
- Universitätsklinik Ulm, RKU, Oberer Eselsberg 45, D-89081 Ulm, Germany
| | | | | |
Collapse
|
40
|
Research round-up. Nature 2017. [DOI: 10.1038/550s118a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Goutman SA. Diagnosis and Clinical Management of Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders. Continuum (Minneap Minn) 2017; 23:1332-1359. [DOI: 10.1212/con.0000000000000535] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Bach JR. Noninvasive Respiratory Management of Patients With Neuromuscular Disease. Ann Rehabil Med 2017; 41:519-538. [PMID: 28971036 PMCID: PMC5608659 DOI: 10.5535/arm.2017.41.4.519] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/19/2017] [Indexed: 12/14/2022] Open
Abstract
This review article describes definitive noninvasive respiratory management of respiratory muscle dysfunction to eliminate need to resort to tracheotomy. In 2010 clinicians from 22 centers in 18 countries reported 1,623 spinal muscular atrophy type 1 (SMA1), Duchenne muscular dystrophy (DMD), and amyotrophic lateral sclerosis users of noninvasive ventilatory support (NVS) of whom 760 required it continuously (CNVS). The CNVS sustained their lives by over 3,000 patient-years without resort to indwelling tracheostomy tubes. These centers have now extubated at least 74 consecutive ventilator unweanable patients with DMD, over 95% of CNVS-dependent patients with SMA1, and hundreds of others with advanced neuromuscular disorders (NMDs) without resort to tracheotomy. Two centers reported a 99% success rate at extubating 258 ventilator unweanable patients without resort to tracheotomy. Patients with myopathic or lower motor neuron disorders can be managed noninvasively by up to CNVS, indefinitely, despite having little or no measurable vital capacity, with the use of physical medicine respiratory muscle aids. Ventilator-dependent patients can be decannulated of their tracheostomy tubes.
Collapse
Affiliation(s)
- John R Bach
- Department of Physical Medicine and Rehabilitation for Rutgers New Jersey Medical School & Center for Ventilator Management Alternatives at University Hospital, Newark, NJ, USA
| |
Collapse
|
43
|
Soriani MH, Desnuelle C. Care management in amyotrophic lateral sclerosis. Rev Neurol (Paris) 2017; 173:288-299. [PMID: 28461024 DOI: 10.1016/j.neurol.2017.03.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive and fatal neurodegenerative disease characterized by progressive weakness of voluntary muscles of movement as well as those for swallowing, speech and respiration. In the absence of curative treatment, care can improve quality of life, prolong survival, and support ALS patients and their families, and also help them to anticipate and prepare for the end of life. Multidisciplinary management in tertiary centers is recommended in close collaboration with general practitioners, home carers and a dedicated health network. Patients' follow-up deals mainly with motor impairment and physical disability, adaptation, nutrition and respiratory function. Involvement of palliative care as part of the multidisciplinary team management offers patients the possibility of discussing their end of life issues. This review summarizes the different aspects of ALS care, from delivering the diagnosis to the end of life, and the organization of its management.
Collapse
Affiliation(s)
- M-H Soriani
- Centre de référence maladies neuromusculaire/SLA, university hospital of Nice, CS 51069, 06001 Nice cedex 1, France.
| | - C Desnuelle
- Centre de référence maladies neuromusculaire/SLA, university hospital of Nice, CS 51069, 06001 Nice cedex 1, France
| |
Collapse
|
44
|
Frija-Masson J, Wanono R, Robinot A, d’Ortho MP. Syndrome d’apnées centrales du sommeil. Presse Med 2017; 46:413-422. [DOI: 10.1016/j.lpm.2016.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/06/2016] [Indexed: 11/16/2022] Open
|
45
|
Franssen FME. Breathe journal club: virtually meet the experts. Breathe (Sheff) 2017; 13:9-10. [PMID: 28289445 PMCID: PMC5343734 DOI: 10.1183/20734735.020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
A recap of the first Breathe online journal club by @fritsfranssen http://ow.ly/5uXX308xAG1.
Collapse
|
46
|
Abstract
Neuromuscular diseases are syndromic disorders that affect nerve, muscle, and/or neuromuscular junction. Knowledge about the management of these diseases is required for anesthesiologists, because these may frequently be encountered in the intensive care unit, operating room, and other settings. The challenges and advances in management for some of the neuromuscular diseases most commonly encountered in the operating room and neurointensive care unit are reviewed.
Collapse
Affiliation(s)
- Veronica Crespo
- Department of Anesthesiology, Duke University, Erwin Road, Durham, NC 27710, USA
| | - Michael L Luke James
- Department of Anesthesiology, Duke University, Erwin Road, Durham, NC 27710, USA; Department of Neurology, Duke University, Erwin Road, Durham, NC 27710, USA.
| |
Collapse
|
47
|
Diaphragm Dysfunction: Diagnostic Approaches and Management Strategies. J Clin Med 2016; 5:jcm5120113. [PMID: 27929389 PMCID: PMC5184786 DOI: 10.3390/jcm5120113] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022] Open
Abstract
The diaphragm is the main inspiratory muscle, and its dysfunction can lead to significant adverse clinical consequences. The aim of this review is to provide clinicians with an overview of the main causes of uni- and bi-lateral diaphragm dysfunction, explore the clinical and physiological consequences of the disease on lung function, exercise physiology and sleep and review the available diagnostic tools used in the evaluation of diaphragm function. A particular emphasis is placed on the clinical significance of diaphragm weakness in the intensive care unit setting and the use of ultrasound to evaluate diaphragmatic action.
Collapse
|
48
|
Lewis RA. Diaphragmatic pacing in amyotrophic lateral sclerosis. Lancet Neurol 2016; 15:1196-1197. [DOI: 10.1016/s1474-4422(16)30259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 11/25/2022]
|
49
|
Gonzalez-Bermejo J, Morélot-Panzini C, Tanguy ML, Meininger V, Pradat PF, Lenglet T, Bruneteau G, Forestier NL, Couratier P, Guy N, Desnuelle C, Prigent H, Perrin C, Attali V, Fargeot C, Nierat MC, Royer C, Ménégaux F, Salachas F, Similowski T. Early diaphragm pacing in patients with amyotrophic lateral sclerosis (RespiStimALS): a randomised controlled triple-blind trial. Lancet Neurol 2016; 15:1217-1227. [PMID: 27751553 DOI: 10.1016/s1474-4422(16)30233-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder associated with respiratory muscle weakness and respiratory failure. Non-invasive ventilation alleviates respiratory symptoms and prolongs life, but is a palliative intervention. Slowing the deterioration of diaphragm function before respiratory failure would be desirable. We aimed to assess whether early diaphragm pacing could slow down diaphragm deterioration and would therefore delay the need for non-invasive ventilation. METHODS We did a multicentre, randomised, controlled, triple-blind trial in patients with probable or definite ALS in 12 ALS centres in France. The main inclusion criterion was moderate respiratory involvement (forced vital capacity 60-80% predicted). Other key eligibility criteria were age older than 18 years and bilateral responses of the diaphragm to diagnostic phrenic stimulation. All patients were operated laparoscopically and received phrenic stimulators. Clinicians randomly assigned patients (1:1) to receive either active or sham stimulation with a central web-based randomisation system (computer-generated list). Investigators, patients, and an external outcome allocation committee were masked to treatment. The primary outcome was non-invasive ventilation-free survival, analysed in the intention-to-treat population. Safety outcomes were also assessed in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, number NCT01583088. FINDINGS Between Sept 27, 2012, and July 8, 2015, 74 participants were randomly assigned to receive either active (n=37) or sham (n=37) stimulation. On July 16, 2015, an unplanned masked analysis was done after another trial showed excess mortality with diaphragm pacing in patients with hypoventilation (DiPALS, ISRCTN 53817913). In view of this finding, we analysed mortality in our study and found excess mortality (death from any cause) in our active stimulation group. We therefore terminated the study on July, 16, 2015. Median non-invasive ventilation-free survival was 6·0 months (95% CI 3·6-8·7) in the active stimulation group versus 8·8 months (4·2-not reached) in the control (sham stimulation) group (hazard ratio 1·96 [95% CI 1·08-3·56], p=0·02). Serious adverse events (mainly capnothorax or pneumothorax, acute respiratory failure, venous thromboembolism, and gastrostomy) were frequent (24 [65%] patients in the active stimulation group vs 22 [59%] patients in the control group). No treatment-related death was reported. INTERPRETATION Early diaphragm pacing in patients with ALS and incipient respiratory involvement did not delay non-invasive ventilation and was associated with decreased survival. Diaphragm pacing is not indicated at the early stage of the ALS-related respiratory involvement. FUNDING Hospital Program for Clinical Research, French Ministry of Health; French Patients' Association for ALS Research (Association pour la Recherche sur la Sclérose Latérale Amyotrophique); and Thierry de Latran Foundation.
Collapse
Affiliation(s)
- Jésus Gonzalez-Bermejo
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale (Département "R3S"), Paris, France.
| | - Capucine Morélot-Panzini
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale (Département "R3S"), Paris, France
| | - Marie-Laure Tanguy
- AP-HP, Groupe Hospitalier Pitié Salpêtrière Charles Foix, Unité de Recherche Clinique, Paris, France
| | - Vincent Meininger
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Centre de Référence Maladies Rares SLA, Département des Maladies du Système Nerveux, Paris, France
| | - Pierre-François Pradat
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Centre de Référence Maladies Rares SLA, Département des Maladies du Système Nerveux, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France
| | - Timothée Lenglet
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Centre de Référence Maladies Rares SLA, Département des Maladies du Système Nerveux, Paris, France
| | - Gaëlle Bruneteau
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Centre de Référence Maladies Rares SLA, Département des Maladies du Système Nerveux, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moëlle Epinière, ICM, Paris, France
| | - Nadine Le Forestier
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Centre de Référence Maladies Rares SLA, Département des Maladies du Système Nerveux, Paris, France
| | | | - Nathalie Guy
- CHU Gabriel Montpied, Service de Neurologie, Clermont-Ferrand, France; Faculté de Chirurgie Dentaire, Neuro-Dol, INSERM U1107, Douleur Trigéminale et Migraine, Clermont-Ferrand, France
| | | | - Hélène Prigent
- AP-HP, GHU Paris Ouest-site Raymond Poincaré-Service de Physiologie et d'Explorations Fonctionnelles, Garches, France
| | | | - Valérie Attali
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpêtrière Charles Foix, Service des Pathologies du Sommeil (Département "R3S"), Paris, France
| | - Catherine Fargeot
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service Pharmacie UFDMS, Paris, France
| | - Marie-Cécile Nierat
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Catherine Royer
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Département d'Anesthésie et Réanimation, Paris, France
| | - Fabrice Ménégaux
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Chirurgie Viscérale, Paris, France
| | - François Salachas
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Centre de Référence Maladies Rares SLA, Département des Maladies du Système Nerveux, Paris, France
| | - Thomas Similowski
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale (Département "R3S"), Paris, France
| |
Collapse
|
50
|
Hobson EV, McDermott CJ. Supportive and symptomatic management of amyotrophic lateral sclerosis. Nat Rev Neurol 2016; 12:526-38. [PMID: 27514291 DOI: 10.1038/nrneurol.2016.111] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The main aims in the care of individuals with amyotrophic lateral sclerosis (ALS) are to minimize morbidity and maximize quality of life. Although no cure exists for ALS, supportive and symptomatic care provided by a specialist multidisciplinary team can improve survival. The basis for supportive management is shifting from expert consensus guidelines towards an evidence-based approach, which encourages the use of effective treatments and could reduce the risk of harm caused by ineffective or unsafe interventions. For example, respiratory support using noninvasive ventilation has been demonstrated to improve survival and quality of life, whereas evidence supporting other respiratory interventions is insufficient. Increasing evidence implicates a causal role for metabolic dysfunction in ALS, suggesting that optimizing nutrition could improve quality of life and survival. The high incidence of cognitive dysfunction and its impact on prognosis is increasingly recognized, although evidence for effective treatments is lacking. A variety of strategies are used to manage the other physical and psychological symptoms, the majority of which have yet to be thoroughly evaluated. The need for specialist palliative care throughout the disease is increasingly recognized. This Review describes the current approaches to symptomatic and supportive care in ALS and outlines the current guidance and evidence for these strategies.
Collapse
Affiliation(s)
- Esther V Hobson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| |
Collapse
|