1
|
Feige T, Bosbach A, Krott KJ, Mulorz J, Chatterjee M, Ortscheid J, Krüger E, Krüger I, Salehzadeh N, Goebel S, Ibing W, Grandoch M, Münch G, Wagenhäuser MU, Schelzig H, Elvers M. GP VI-Mediated Platelet Activation and Procoagulant Activity Aggravate Inflammation and Aortic Wall Remodeling in Abdominal Aortic Aneurysm. Arterioscler Thromb Vasc Biol 2024; 44:2294-2317. [PMID: 39206542 DOI: 10.1161/atvbaha.123.320615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Platelets play an important role in cardiovascular and cerebrovascular diseases. Abdominal aortic aneurysm (AAA) is a highly lethal, atherosclerosis-related disease with characteristic features of progressive dilatation of the abdominal aorta and degradation of the vessel wall, accompanied by chronic inflammation. Platelet activation and procoagulant activity play a decisive role in the AAA pathology as they might trigger AAA development in both mice and humans. METHODS The present study investigated the impact of the major platelet collagen receptor GP (platelet glycoprotein) VI in pathophysiological processes underlying AAA initiation and progression. For experimental AAA induction in mice, PPE (porcine pancreatic elastase) and the external PPE model were used. RESULTS Genetic deletion of GP VI offered protection of mice against aortic diameter expansion in experimental AAA. Mechanistically, GP VI deficiency resulted in decreased inflammation with reduced infiltration of neutrophils and platelets into the aortic wall. Furthermore, remodeling of the aortic wall was improved in the absence of GP VI, as indicated by reduced MMP (matrix metalloproteinase)-2/9 and OPN (osteopontin) plasma levels and an enhanced α-SMA (α-smooth muscle actin) content within the aortic wall, accompanied by reduced cell apoptosis. Consequently, an elevation in intima/media thickness and elastin content was observed in GP VI-deficient PPE mice, resulting in a significantly reduced aortic diameter expansion and reduced aneurysm incidence. In patients with AAA, enhanced plasma levels of soluble GP VI and fibrin, as well as fibrin accumulation within the intraluminal thrombus might serve as new biomarkers to detect AAA early. Moreover, we hypothesize that GP VI might play a role in procoagulant activity and thrombus stabilization via binding to fibrin. CONCLUSIONS In conclusion, our results emphasize the potential need for a GP VI-targeted antiplatelet therapy to reduce AAA initiation and progression, as well as to protect patients with AAA from aortic rupture.
Collapse
Affiliation(s)
- Tobias Feige
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | - Agnes Bosbach
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | - Kim J Krott
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | - Joscha Mulorz
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | - Madhumita Chatterjee
- Department of Pharmacology, Experimental Therapy and Toxicology, University Hospital Tuebingen, Germany (M.C.)
| | - Julia Ortscheid
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | - Evelyn Krüger
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | - Irena Krüger
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | - Niloofar Salehzadeh
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | | | - Wiebke Ibing
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | - Maria Grandoch
- Institute of Translational Pharmacology (M.G.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | - Götz Münch
- AdvanceCOR GmbH, Martinsried, Germany (S.G., G.M.)
| | - Markus U Wagenhäuser
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | - Hubert Schelzig
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| | - Margitta Elvers
- Department of Vascular and Endovascular Surgery (T.F., A.B., K.J.K., J.M., J.O., E.K., I.K., N.S., W.I., M.U.W., H.S., M.E.), University Hospital Duesseldorf, Heinrich-Heine University, Germany
| |
Collapse
|
2
|
Yogendrakumar V, Vandelanotte S, Mistry EA, Hill MD, Coutts SB, Nogueira RG, Nguyen TN, Medcalf RL, Broderick JP, De Meyer SF, Campbell BCV. Emerging Adjuvant Thrombolytic Therapies for Acute Ischemic Stroke Reperfusion. Stroke 2024; 55:2536-2546. [PMID: 39105286 DOI: 10.1161/strokeaha.124.045755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Thrombolytic therapies for acute ischemic stroke are widely available but only result in recanalization early enough, to be therapeutically useful, in 10% to 30% of cases. This large gap in treatment effectiveness could be filled by novel therapies that can increase the effectiveness of thrombus clearance without significantly increasing the risk of harm. This focused update will describe the current state of emerging adjuvant treatments for acute ischemic stroke reperfusion. We focus on new treatments that are designed to (1) target different components that make up a stroke thrombus, (2) enhance endogenous fibrinolytic systems, (3) reduce stagnant blood flow, and (4) improve recanalization of distal thrombi and postendovascular thrombectomy.
Collapse
Affiliation(s)
- Vignan Yogendrakumar
- Division of Neurology, The Ottawa Hospital and Ottawa Hospital Research Institute, University of Ottawa, Canada (V.Y.)
- Department of Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Australia (V.Y., B.C.V.C.)
| | - Sarah Vandelanotte
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak, Kortrijk, Belgium (S.V., S.F.D.M.)
| | - Eva A Mistry
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH (E.A.M., J.P.B.)
| | - Michael D Hill
- Department of Clinical Neurosciences, Radiology, and Community Health Sciences, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Canada (M.D.H., S.B.C.)
| | - Shelagh B Coutts
- Department of Clinical Neurosciences, Radiology, and Community Health Sciences, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Canada (M.D.H., S.B.C.)
| | - Raul G Nogueira
- Department of Neurology, University of Pittsburgh, PA (R.G.N.)
| | - Thanh N Nguyen
- Department of Neurology, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, MA (T.N.N.)
| | - Robert L Medcalf
- Central Clinical School, Australian Centre for Blood Diseases, Monash University, Australia (R.L.M.)
| | - Joseph P Broderick
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH (E.A.M., J.P.B.)
- Gardner Neuroscience Institute, Cincinnati, OH (J.P.B.)
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak, Kortrijk, Belgium (S.V., S.F.D.M.)
| | - Bruce C V Campbell
- Department of Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Australia (V.Y., B.C.V.C.)
| |
Collapse
|
3
|
Rodriguez Moore G, Melo-Escobar I, Stegner D, Bracko O. One immune cell to bind them all: platelet contribution to neurodegenerative disease. Mol Neurodegener 2024; 19:65. [PMID: 39334369 PMCID: PMC11438031 DOI: 10.1186/s13024-024-00754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) and related dementias (ADRD) collectively affect a significant portion of the aging population worldwide. The pathological progression of AD involves not only the classical hallmarks of amyloid beta (Aβ) plaque buildup and neurofibrillary tangle development but also the effects of vasculature and chronic inflammatory processes. Recently, platelets have emerged as central players in systemic and neuroinflammation. Studies have shown that patients with altered platelet receptor expression exhibit accelerated cognitive decline independent of traditional risk factors. Additionally, platelets from AD patients exhibit heightened unstimulated activation compared to control groups. Platelet granules contain crucial AD-related proteins like tau and amyloid precursor protein (APP). Dysregulation of platelet exocytosis contributes to disease phenotypes characterized by increased bleeding, stroke, and cognitive decline risk. Recent studies have indicated that these effects are not associated with the quantity of platelets present in circulation. This underscores the hypothesis that disruptions in platelet-mediated inflammation and healing processes may play a crucial role in the development of ADRD. A thorough look at platelets, encompassing their receptors, secreted molecules, and diverse roles in inflammatory interactions with other cells in the circulatory system in AD and ADRD, holds promising prospects for disease management and intervention. This review discusses the pivotal roles of platelets in ADRD.
Collapse
Affiliation(s)
| | - Isabel Melo-Escobar
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - David Stegner
- Institute for Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Oliver Bracko
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
4
|
Starke A, Kollikowski AM, Vogt V, Stoll G, Nieswandt B, Pham M, Stegner D, Schuhmann MK. Soluble Glycoprotein VI Levels Assessed Locally within the Extra- and Intracerebral Circulation in Hyper-Acute Thromboembolic Stroke: A Pilot Study. Biomedicines 2024; 12:2191. [PMID: 39457504 PMCID: PMC11504204 DOI: 10.3390/biomedicines12102191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Severe acute ischemic stroke (AIS) is mainly caused by thromboembolism originating from symptomatic carotid artery (ICA) stenosis or in the heart due to atrial fibrillation. Glycoprotein VI (GPVI), a principal platelet receptor, facilitates platelet adherence and thrombus formation at sites of vascular injury such as symptomatic ICA stenosis. The shedding of GPVI from the platelet surface releases soluble GPVI (sGPVI) into the circulation. Here, we aimed to determine whether sGPVI can serve as a local biomarker to differentiate between local atherosclerotic and systemic cardiac thromboembolism in AIS. Methods: We conducted a cohort study involving 105 patients undergoing emergency endovascular thrombectomy (EVT) for anterior circulation stroke. First, sGPVI concentrations were measured in systemic arterial plasma samples collected at the ipsilateral ICA level, including groups with significantly (≥50%) stenotic and non-stenotic arteries. A second sample, taken from the intracerebral pial circulation, was used to assess GPVI shedding locally within the ischemic brain. Results: Our analysis revealed no significant increase in systemic sGPVI levels in patients with symptomatic ≥ 50% ICA stenosis (3.2 [95% CI 1.5-5.0] ng/mL; n = 33) compared with stroke patients without significant ICA stenosis (3.2 [95% CI 2.3-4.2] ng/mL; n = 72). Additionally, pial blood samples, reflecting intravascular molecular conditions during collateral flow, showed similar sGPVI levels when compared to the systemic ICA samples in both groups. Conclusions: Our findings indicate that GPVI is not locally cleaved and shed into the bloodstream in significant amounts during hyper-acute ischemic stroke, neither at the level of symptomatic ICA nor intracranially during collateral blood supply. Therefore, sGPVI does not appear to be suitable as a local stroke biomarker despite strong evidence of a major role for GPVI-signaling in stroke pathophysiology.
Collapse
Affiliation(s)
- Andreas Starke
- Rudolf Virchow Center for Integrative and Translational Imaging, Julius-Maximilians-Universität Würzburg (JMU), 97080 Würzburg, Germany; (A.S.); (B.N.); (D.S.)
| | - Alexander M. Kollikowski
- Department of Neuroradiology, University Hospital Würzburg, 97080 Würzburg, Germany; (A.M.K.); (M.P.)
| | - Vivian Vogt
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Guido Stoll
- Institute for Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Bernhard Nieswandt
- Rudolf Virchow Center for Integrative and Translational Imaging, Julius-Maximilians-Universität Würzburg (JMU), 97080 Würzburg, Germany; (A.S.); (B.N.); (D.S.)
- Institute for Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Mirko Pham
- Department of Neuroradiology, University Hospital Würzburg, 97080 Würzburg, Germany; (A.M.K.); (M.P.)
| | - David Stegner
- Rudolf Virchow Center for Integrative and Translational Imaging, Julius-Maximilians-Universität Würzburg (JMU), 97080 Würzburg, Germany; (A.S.); (B.N.); (D.S.)
- Institute for Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany;
| | | |
Collapse
|
5
|
McFadyen JD, Wang X, Peter K. The quest for the holy grail in antithrombotic therapy: revitalized hope for platelet GPVI as a safe and effective antithrombotic target. Eur Heart J 2024:ehae592. [PMID: 39299915 DOI: 10.1093/eurheartj/ehae592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Affiliation(s)
- James D McFadyen
- Baker Heart and Diabetes Institute, University of Melbourne, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
- Department of Haematology, The Alfred Hospital, Melbourne, Australia
- School of Translational Medicine, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Xiaowei Wang
- Baker Heart and Diabetes Institute, University of Melbourne, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
- School of Translational Medicine, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, University of Melbourne, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
- School of Translational Medicine, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
- Department of Cardiology, The Alfred Hospital, 55 Commercial Road, Melbourne, VIC 3004, Australia
| |
Collapse
|
6
|
Wu S, Meena D, Yarmolinsky J, Gill D, Smith A, Dib MJ, Chauhan G, Rohatgi A, Dehghan A, Tzoulaki I. Mendelian Randomization and Bayesian Colocalization Analysis Implicate Glycoprotein VI as a Potential Drug Target for Cardioembolic Stroke in South Asian Populations. J Am Heart Assoc 2024; 13:e035008. [PMID: 39119976 DOI: 10.1161/jaha.124.035008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Circulating plasma proteins are clinically useful biomarkers for stroke risk. We examined the causal links between plasma proteins and stroke risk in individuals of South Asian ancestry. METHODS AND RESULTS We applied proteome-wide Mendelian randomization and colocalization approaches to understand causality of 2922 plasma proteins on stroke risk in individuals of South Asian ancestry. We obtained genetic instruments (proxies) for plasma proteins from the UK Biobank (N=920). Genome-wide association studies summary data for strokes (N≤11 312) were sourced from GIGASTROKE consortium. Our primary approach involved the Wald ratio or inverse-variance-weighted methods, with statistical significance set at false discovery rate <0.1. Additionally, a Bayesian colocalization approach assessed shared causal variants among proteome, transcriptome, and stroke phenotypes to minimize bias from linkage disequilibrium. We found evidence of a potential causal effect of plasma GP6 (glycoprotein VI) levels on cardioembolic stroke (odds ratio [OR]Wald ratio=2.53 [95% CI, 1.59-4.03]; P=9.2×10-5, false discovery rate=0.059). Generalized Mendelian randomization accounting for correlated single nucleotide polymorphisms (SNPs), with the P value threshold at P<5×10-8 and clumped at r2=0.3, showed consistent direction of effect of GP6 on cardioembolic stroke (ORgeneralized inverse-variance-weighted=2.21 [95% CI, 1.46-3.33]; P=1.6×10-4). Colocalization analysis indicated that plasma GP6 levels colocalize with cardioembolic stroke (posterior probability=91.4%). Multitrait colocalization combining transcriptome, proteome, and cardioembolic stroke showed moderate to strong evidence that these 2 traits colocalize with GP6 expression in the coronary artery and brain tissues (multitrait posterior probability>50%). The potential causal effect of GP6 on cardioembolic stroke was not significant in European populations (ORinverse-variance-weighted=1.08 [95% CI, 0.93-1.26]; P=0.29). CONCLUSIONS Our joint Mendelian randomization and colocalization analyses suggest that genetically predicted GP6 is potentially causally associated with cardioembolic stroke risk in individuals of South Asian ancestry. As genetic data on individuals of South Asian ancestry increase, future Mendelian randomization studies with larger sample size for plasma GP6 levels should be implemented to further validate our findings. Additionally, clinical studies will be necessary to verify GP6 as a therapeutic target for cardioembolic stroke in South Asians.
Collapse
Affiliation(s)
- Siwei Wu
- Department of Epidemiology and Biostatistics School of Public Health, Imperial College London London United Kingdom
| | - Devendra Meena
- Department of Epidemiology and Biostatistics School of Public Health, Imperial College London London United Kingdom
| | - James Yarmolinsky
- Department of Epidemiology and Biostatistics School of Public Health, Imperial College London London United Kingdom
| | - Dipender Gill
- Department of Epidemiology and Biostatistics School of Public Health, Imperial College London London United Kingdom
| | - Alexander Smith
- Department of Epidemiology and Biostatistics School of Public Health, Imperial College London London United Kingdom
| | - Marie-Joe Dib
- Division of Cardiovascular Medicine Hospital of the University of Pennsylvania Philadelphia PA USA
| | - Ganesh Chauhan
- Department of Genetics & Genomics Rajendra Institute of Medical Sciences (RIMS) Ranchi India
| | - Anand Rohatgi
- Department of Medicine, Division of Cardiology University of Texas Southwestern Medical Center Dallas TX USA
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics School of Public Health, Imperial College London London United Kingdom
- Dementia Research Institute, Imperial College London London United Kingdom
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics School of Public Health, Imperial College London London United Kingdom
- Dementia Research Institute, Imperial College London London United Kingdom
- Biomedical Research Foundation Academy of Athens Athens Greece
| |
Collapse
|
7
|
Navarro S, Talucci I, Göb V, Hartmann S, Beck S, Orth V, Stoll G, Maric HM, Stegner D, Nieswandt B. The humanized platelet glycoprotein VI Fab inhibitor EMA601 protects from arterial thrombosis and ischaemic stroke in mice. Eur Heart J 2024:ehae482. [PMID: 39150906 DOI: 10.1093/eurheartj/ehae482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/12/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024] Open
Abstract
BACKGROUND AND AIMS Glycoprotein VI (GPVI) is a platelet collagen/fibrin(ogen) receptor and an emerging pharmacological target for the treatment of thrombotic and thrombo-inflammatory diseases, notably ischaemic stroke. A first anti-human GPVI (hGPVI) antibody Fab-fragment (ACT017/glenzocimab, KD: 4.1 nM) recently passed a clinical phase 1b/2a study in patients with acute ischaemic stroke and was found to be well tolerated, safe, and potentially beneficial. In this study, a novel humanized anti-GPVI antibody Fab-fragment (EMA601; KD: 0.195 nM) was developed that inhibits hGPVI function with very high potency in vitro and in vivo. METHODS Fab-fragments of the mouse anti-hGPVI IgG Emf6.1 were tested for functional GPVI inhibition in human platelets and in hGPVI expressing (hGP6tg/tg) mouse platelets. The in vivo effect of Emf6.1Fab was assessed in a tail bleeding assay, an arterial thrombosis model and the transient middle cerebral artery occlusion (tMCAO) model of ischaemic stroke. Using complementary-determining region grafting, a humanized version of Emf6.1Fab (EMA601) was generated. Emf6.1Fab/EMA601 interaction with hGPVI was mapped in array format and kinetics and quantified by bio-layer interferometry. RESULTS Emf6.1Fab (KD: 0.427 nM) blocked GPVI function in human and hGP6tg/tg mouse platelets in multiple assays in vitro at concentrations ≥5 µg/mL. Emf6.1Fab (4 mg/kg)-treated hGP6tg/tg mice showed potent hGPVI inhibition ex vivo and were profoundly protected from arterial thrombosis as well as from cerebral infarct growth after tMCAO, whereas tail-bleeding times remained unaffected. Emf6.1Fab binds to a so far undescribed membrane proximal epitope in GPVI. The humanized variant EMA601 displayed further increased affinity for hGPVI (KD: 0.195 nM) and fully inhibited the receptor at 0.5 µg/mL, corresponding to a >50-fold potency compared with ACT017. CONCLUSIONS EMA601 is a conceptually novel and promising anti-platelet agent to efficiently prevent or treat arterial thrombosis and thrombo-inflammatory pathologies in humans at risk.
Collapse
Affiliation(s)
- Stefano Navarro
- Institute of Experimental Biomedicine I, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ivan Talucci
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Vanessa Göb
- Institute of Experimental Biomedicine I, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Stefanie Hartmann
- Institute of Experimental Biomedicine I, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Sarah Beck
- Institute of Experimental Biomedicine I, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | | | - Guido Stoll
- Institute of Experimental Biomedicine I, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Hans M Maric
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - David Stegner
- Institute of Experimental Biomedicine I, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
- EMFRET Analytics GmbH, Eibelstadt, Germany
| |
Collapse
|
8
|
Slater A, Khattak S, Thomas MR. GPVI inhibition: Advancing antithrombotic therapy in cardiovascular disease. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2024; 10:465-473. [PMID: 38453424 PMCID: PMC11323372 DOI: 10.1093/ehjcvp/pvae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024]
Abstract
Glycoprotein (GP) VI (GPVI) plays a major role in thrombosis but not haemostasis, making it a promising antithrombotic target. The primary role of GPVI on the surface of platelets is a signalling receptor for collagen, which is one of the most potent thrombotic sub-endothelial components that is exposed by atherosclerotic plaque rupture. Inhibition of GPVI has therefore been investigated as a strategy for treatment and prevention of atherothrombosis, such as during stroke and acute coronary syndromes. A range of specific GPVI inhibitors have been characterized, and two of these inhibitors, glenzocimab and revacept, have completed Phase II clinical trials in ischaemic stroke. In this review, we summarize mechanisms of GPVI activation and the latest progress of clinically tested GPVI inhibitors, including their mechanisms of action. By focusing on what is known about GPVI activation, we also discuss whether alternate strategies could be used to target GPVI.
Collapse
Affiliation(s)
- Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Sophia Khattak
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
- Cardiology Department, Queen Elizabeth Hospital, University Hospitals Birmingham, B15 2GW, Birmingham, UK
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
- Cardiology Department, Queen Elizabeth Hospital, University Hospitals Birmingham, B15 2GW, Birmingham, UK
| |
Collapse
|
9
|
Feely C, Kaushal N, D’Avino PP, Martin J. Modifying platelets at their birth: anti-thrombotic therapy without haemorrhage. Front Pharmacol 2024; 15:1343896. [PMID: 38562457 PMCID: PMC10982340 DOI: 10.3389/fphar.2024.1343896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Cardiovascular disease is a leading cause of death. The current approach to the prevention of arterial thrombosis in cardiovascular disease is dependent on the use of therapies which inhibit the activation of platelets. Predictably these are associated with an increased risk of haemorrhage which causes significant morbidity. The thrombotic potential of an activated platelet is modifiable; being determined before thrombopoiesis. Increased megakaryocyte ploidy is associated with larger and more active platelets carrying an increased risk of thrombosis. The reduction in the ploidy of megakaryocytes is therefore a novel area of therapeutic interest for reducing thrombosis. We propose a new therapeutic approach for the prevention and treatment of thrombosis by targeting the reduction in ploidy of megakaryocytes. We examine the role of a receptor mediated event causing megakaryocytes to increase ploidy, the potential for targeting the molecular mechanisms underpinning megakaryocyte endomitosis and the existence of two separate regulatory pathways to maintain haemostasis by altering the thrombotic potential of platelets as targets for novel therapeutic approaches producing haemostatically competent platelets which are not prothrombotic.
Collapse
Affiliation(s)
- Conor Feely
- Centre for Clinical Pharmacology, Institute of Health Informatics, University College London, London, United Kingdom
| | - Nitika Kaushal
- Centre for Clinical Pharmacology, Institute of Health Informatics, University College London, London, United Kingdom
| | - Pier Paolo D’Avino
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John Martin
- Centre for Clinical Pharmacology, Institute of Health Informatics, University College London, London, United Kingdom
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
10
|
Ganesh A. Platelet glycoprotein VI inhibition: a promising therapeutic avenue in acute ischaemic stroke. Lancet Neurol 2024; 23:125-127. [PMID: 38267171 DOI: 10.1016/s1474-4422(23)00460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 01/26/2024]
Affiliation(s)
- Aravind Ganesh
- Calgary Stroke Program, Departments of Clinical Neurosciences and Community Health Sciences, Hotchkiss Brain Institute and O'Brien Institute for Public Health, University of Calgary Cumming School of Medicine, Calgary T2N 4N1, AB, Canada.
| |
Collapse
|
11
|
Sodero A, Conti E, Piccardi B, Sarti C, Palumbo V, Kennedy J, Gori AM, Giusti B, Fainardi E, Nencini P, Allegra Mascaro AL, Pavone FS, Baldereschi M. Acute ischemic STROKE - from laboratory to the Patient's BED (STROKELABED): A translational approach to reperfusion injury. Study Protocol. Transl Neurosci 2024; 15:20220344. [PMID: 39005711 PMCID: PMC11245877 DOI: 10.1515/tnsci-2022-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Cerebral edema (CE) and hemorrhagic transformation (HT) are frequent and unpredictable events in patients with acute ischemic stroke (AIS), even when an effective vessel recanalization has been achieved. These complications, related to blood-brain barrier (BBB) disruption, remain difficult to prevent or treat and may offset the beneficial effect of recanalization, and lead to poor outcomes. The aim of this translational study is to evaluate the association of circulating and imaging biomarkers with subsequent CE and HT in stroke patients with the dual purpose of investigating possible predictors as well as molecular dynamics underpinning those events and functional outcomes. Concurrently, the preclinical study will develop a new mouse model of middle cerebral artery (MCA) occlusion and recanalization to explore BBB alterations and their potentially harmful effects on tissue. The clinical section of the study is based on a single-center observational design enrolling consecutive patients with AIS in the anterior circulation territory, treated with recanalization therapies from October 1, 2015 to May 31, 2020. The study will employ an innovative evaluation of routine CT scans: in fact, we will assess and quantify the presence of CE and HT after stroke in CT scans at 24 h, through the quantification of anatomical distortion (AD), a measure of CE and HT. We will investigate the relationship of AD and several blood biomarkers of inflammation and extracellular matrix, with functional outcomes at 3 months. In parallel, we will employ a newly developed mouse model of stroke and recanalization, to investigate the emergence of BBB changes 24 h after the stroke onset. The close interaction between clinical and preclinical research can enhance our understanding of findings from each branch of research, enabling a deeper interpretation of the underlying mechanisms of reperfusion injury following recanalization treatment for AIS.
Collapse
Affiliation(s)
- Alessandro Sodero
- Neurofarba Department, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Emilia Conti
- Neuroscience Institute, National Research Council, Via G. Moruzzi 1, 56124, Pisa, Italy
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - Benedetta Piccardi
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Cristina Sarti
- Neurofarba Department, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Vanessa Palumbo
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - James Kennedy
- Acute Multidisciplinary Imaging & Interventional Centre, John Radcliffe Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anna Maria Gori
- Atherothrombotic Diseases Center, Department of Experimental and Clinical Medicine, University of Florence - Azienda Ospedaliero Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Betti Giusti
- Atherothrombotic Diseases Center, Department of Experimental and Clinical Medicine, University of Florence - Azienda Ospedaliero Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio,”, University of Florence, 50121 Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Patrizia Nencini
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Anna Letizia Allegra Mascaro
- Neurofarba Department, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
- Neuroscience Institute, National Research Council, Via G. Moruzzi 1, 56124, Pisa, Italy
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, 50019, Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, 50019, Sesto Fiorentino, Italy
| | - Marzia Baldereschi
- Neuroscience Institute, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| |
Collapse
|