1
|
Chen L, Zhang N, Huang Y, Zhang Q, Fang Y, Fu J, Yuan Y, Chen L, Chen X, Xu Z, Li Y, Izawa H, Xiang C. Multiple Dimensions of using Mesenchymal Stem Cells for Treating Liver Diseases: From Bench to Beside. Stem Cell Rev Rep 2023; 19:2192-2224. [PMID: 37498509 DOI: 10.1007/s12015-023-10583-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
Liver diseases impose a huge burden worldwide. Although hepatocyte transplantation has long been considered as a potential strategy for treating liver diseases, its clinical implementation has created some obvious limitations. As an alternative strategy, cell therapy, particularly mesenchymal stem cell (MSC) transplantation, is widely used in treating different liver diseases, including acute liver disease, acute-on-chronic liver failure, hepatitis B/C virus, autoimmune hepatitis, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, alcoholic liver disease, liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. Here, we summarize the status of MSC transplantation in treating liver diseases, focusing on the therapeutic mechanisms, including differentiation into hepatocyte-like cells, immunomodulating function with a variety of immune cells, paracrine effects via the secretion of various cytokines and extracellular vesicles, and facilitation of homing and engraftment. Some improved perspectives and current challenges are also addressed. In summary, MSCs have great potential in the treatment of liver diseases based on their multi-faceted characteristics, and more accurate mechanisms and novel therapeutic strategies stemming from MSCs will facilitate clinical practice.
Collapse
Affiliation(s)
- Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Ning Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yuqi Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Qi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Jiamin Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Lu Chen
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Xin Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, People's Republic of China
| | - Zhenyu Xu
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Hiromi Izawa
- Jingugaien Woman Life Clinic, Jingu-Gaien 3-39-5 2F, Shibuya-Ku, Tokyo, Japan
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
2
|
Wang YH, Chen EQ. Mesenchymal Stem Cell Therapy in Acute Liver Failure. Gut Liver 2023; 17:674-683. [PMID: 36843422 PMCID: PMC10502502 DOI: 10.5009/gnl220417] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 02/28/2023] Open
Abstract
Acute liver failure (ALF) is a severe liver disease syndrome with rapid deterioration and high mortality. Liver transplantation is the most effective treatment, but the lack of donor livers and the high cost of transplantation limit its broad application. In recent years, there has been no breakthrough in the treatment of ALF, and the application of stem cells in the treatment of ALF is a crucial research field. Mesenchymal stem cells (MSCs) are widely used in disease treatment research due to their abundant sources, low immunogenicity, and no ethical restrictions. Although MSCs are effective for treating ALF, the application of MSCs to ALF needs to be further studied and optimized. In this review, we discuss the potential mechanisms of MSCs therapy for ALF, summarize some methods to enhance the efficacy of MSCs, and explore optimal approaches for MSC transplantation.
Collapse
Affiliation(s)
- Yong-Hong Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Li K, Wang T, Li R, Xue F, Zeng G, Zhang J, Ma Y, Feng L, Kang YJ. Dose-specific efficacy of adipose-derived mesenchymal stem cells in septic mice. Stem Cell Res Ther 2023; 14:32. [PMID: 36804962 PMCID: PMC9940377 DOI: 10.1186/s13287-023-03253-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 02/09/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) therapy for sepsis has been extensively studied in the past decade; however, the treatment regimen and mechanism of action of MSCs remain elusive. Here, we attempted to understand the efficacy and mechanism of action of MSCs on rescuing mice with sepsis. METHODS A mouse model of sepsis was produced by cecal ligation and puncture (CLP). Allogeneic adipose-derived MSCs (ADSCs) were administered by intravenous infusion at 6 h after CLP, and dose-related effects of ADSCs on these mice were determined by survival rate, histopathological changes, biochemical and coagulation parameters, bacterial load, and plasma levels of endotoxin and inflammatory cytokines. The tissue distribution of intravenously infused ADSCs in septic mice was investigated by pre-labeling ADSCs with the lipophilic membrane dye PKH26. RNA sequencing analysis was performed to assess the transcriptional changes in peripheral blood mononuclear cells (PBMCs) and the liver. RESULTS A significant therapeutic effect of ADSCs at a dose of 2 × 107 cells/kg in septic mice was evidenced by a remarkable reduction in mortality (35.89% vs. 8.89% survival rate), blood bacterial burden, systemic inflammation, and multiple organ damage. In contrast, ADSCs at a lower dose (1 × 107 cells/kg) failed to achieve any beneficial outcomes, while ADSCs at a higher dose (4 × 107 cells/kg) caused more early death within 24 h after CLP, retaining a steady survival rate of 21.42% thereafter. PKH26-labeled ADSCs were predominantly localized in the lungs of septic mice after intravenous infusion, with only a smaller proportion of PKH26-positive signals appearing in the liver and spleen. RNA sequencing analysis identified that insufficient phagocytic activity of PBMCs in addition to a hyperactivation of the hepatic immune response was responsible for the ineffectiveness of low-dose ADSCs therapy, and acute death caused by high-dose ADSCs infusion was associated with impaired coagulation signaling in PBMCs and exacerbated hepatic hypoxic injury. CONCLUSIONS Our findings demonstrate a dose-specific effect of ADSCs on the treatment of sepsis due to dose-related interactions between exogenous stem cells and the host's microenvironment. Therefore, a precise dosing regimen is a prerequisite for ADSCs therapy for sepsis.
Collapse
Affiliation(s)
- Kui Li
- grid.412901.f0000 0004 1770 1022Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041 China
| | - Tao Wang
- grid.412901.f0000 0004 1770 1022Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041 China ,grid.13291.380000 0001 0807 1581Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, Sichuan University West China Hosipital, Chengdu, Sichuan 610041 China
| | - Rui Li
- grid.412901.f0000 0004 1770 1022Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041 China
| | - Fulai Xue
- grid.412901.f0000 0004 1770 1022Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041 China
| | - Guodan Zeng
- grid.412901.f0000 0004 1770 1022Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041 China
| | - Jingyao Zhang
- grid.412901.f0000 0004 1770 1022Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041 China
| | - Yuan Ma
- grid.412901.f0000 0004 1770 1022Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041 China
| | - Li Feng
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, 610041, China.
| | - Y. James Kang
- grid.412901.f0000 0004 1770 1022Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041 China ,grid.267301.10000 0004 0386 9246Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163 USA
| |
Collapse
|
4
|
Abo-Aziza FAM, Zaki AKA, Adel RM, Fotouh A. Amelioration of aflatoxin acute hepatitis rat model by bone marrow mesenchymal stem cells and their hepatogenic differentiation. Vet World 2022; 15:1347-1364. [PMID: 35765490 PMCID: PMC9210847 DOI: 10.14202/vetworld.2022.1347-1364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Bone marrow-derived mesenchymal stem cells (BM-MSCs) transplantation and their hepatogenic differentiated cells (HDCs) can be applied for liver injury repair by tissue grafting. Regenerative potentiality in liver cirrhosis models was widely investigated; however, immunomodulation and anti-inflammation in acute hepatitis remain unexplored. This study aimed to explore the immunomodulatory and evaluate twice intravenous (IV) or intrahepatic (IH) administration of either BM-MSCs or middle-stage HDCs on aflatoxin (AF) acute hepatitis rat model. Materials and Methods: BM-MSCs viability, phenotypes, and proliferation were evaluated. Hepatogenic differentiation, albumin, and mmmmmmmm-fetoprotein gene expression were assessed. AF acute hepatitis was induced in rats using AFB1 supplementation. The transplantation of BM-MSCs or their HDCs was done either by IV or IH route. Hepatic ultrasound was performed after 3-weeks of therapy. Cytokines profile (tumor necrosis factor-α [TNF-α], interleukin [IL]-4, and IL-10) was assessed. Hepatic bio-indices, serum, and hepatic antioxidant activity were evaluated, besides examining liver histological sections. Results: Acute AFB1 showed a significant increase in TNF-α (p<0.01), liver enzyme activities (p<0.05), as well as decrease in IL-4, IL-10, and antioxidant enzyme activities (p<0.05). Cytokines profile was ameliorated in groups treated with IV and IH BM-MCs, showed a negative correlation between IL-4 and TNF-α (p<0.05), and a positive correlation between IL-10 upregulation and TNF-α (p<0.01). In IV HDCs treated group, positive correlations between IL-4 and IL-10 downregulation and TNF-α were observed. However, in IH HDCs group, a significant positive correlation between IL-4 and IL-10 upregulation and TNF-α, were recorded (p<0.05). In addition, IV BM-MSCs and IH HDCs treatments significantly increased antioxidant enzymes activity (p<0.05). IV and IH BM-MSCs significantly ameliorated liver transaminase levels, whereas IH HDCs significantly ameliorated alanine aminotransferase activity and nitric oxide concentration (p<0.05). Conclusion: The administration routes of BM-MSCs did not demonstrate any significant difference; however, the IH route of HDCs showed significant amelioration from the IV route. On the other hand, it showed noticeable anti-inflammatory and immunomodulatory improvements in aflatoxicosis rats. Therefore, it can be concluded that acute hepatitis can be treated by a noninvasive IV route without the expense of hepatogenic differentiation. Further research using clinical trials that address several problems regarding engraftment and potentiation are needed to determine the optimal manipulation strategy as well as to achieve better long term effects.
Collapse
Affiliation(s)
- Faten A. M. Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Abdel Kader A. Zaki
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rana M. Adel
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ahmed Fotouh
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| |
Collapse
|
5
|
Jiang T, Xia G, Yang B, Zhang HW, Yin YS, Tang CW, Yang JH. Application of Bone Marrow Mesenchymal Stem Cells Effectively Eliminates Endotoxemia to Protect Rat from Acute Liver Failure Induced by Thioacetamide. Tissue Eng Regen Med 2022; 19:403-415. [PMID: 35122584 PMCID: PMC8971247 DOI: 10.1007/s13770-021-00421-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Endotoxemia is related to worse clinical outcomes in acute liver failure (ALF), but its management remains unsatisfactory. In this study, we aimed to assess whether the application of bone marrow mesenchymal stem cells (BMSCs) could eliminate endotoxemia and protect rats against ALF induced by thioacetamide (TAA). METHODS BMSCs were isolated from rats and identified by the specific morphology, differentiation potential, and surface markers. The optimal dose of TAA for this study was explored and TAA-induced ALF rats were randomized to three groups: the normal control group (Saline), ALF group (TAA + Saline), and BMSCs-treated group (TAA + BMSCs). The intestinal migration and differentiation of BMSCs was tracked in vivo, and intestinal permeability, endotoxin and inflammatory cytokines, histology, and mortality were analyzed. Moreover, we added the inhibitor of the PI3K/AKT/mTOR signaling pathway into the co-culture system of BMSCs with enterocytes and then performed CK and Villin expression experiments to assess the role of PI3K/AKT/mTOR signal pathway in the intestinal differentiation of BMSCs. RESULTS BMSCs migrated to the intestinal injury sites and differentiated into enterocytes, intestinal permeability was decreased compared with the ALF group. The higher expression of endotoxin and inflammatory cytokines were reversed after BMSCs transplantation in rats with ALF. Mortality and intestinal lesion were significantly decreased. Blocking the PI3K/AKT/mTOR signal pathway inhibited BMSCs' intestinal differentiation in vitro. CONCLUSION BMSCs can eliminate endotoxemia and reduce mortality in rats with ALF, and the PI3K/AKT/mTOR signal pathway is involved in intestinal differentiation. BMSCs transplantation could be a potential candidate for the treatment of endotoxemia in ALF.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Kunming, 650106, Yunnan, China
| | - Geng Xia
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Kunming, 650106, Yunnan, China
| | - Bo Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Kunming, 650106, Yunnan, China
| | - Hong-Wei Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, 935 Jiaoling Road, Kunming, 650031, Yunnan, China
| | - Yue-Shan Yin
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Kunming, 650106, Yunnan, China
| | - Cheng-Wei Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, 37 Guoxue lane, Chengdu, 610044, Sichuan, China
| | - Jin-Hui Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Kunming, 650106, Yunnan, China.
| |
Collapse
|
6
|
Chen H, Tang S, Liao J, Liu M, Lin Y. VEGF 165 gene-modified human umbilical cord blood mesenchymal stem cells protect against acute liver failure in rats. J Gene Med 2021; 23:e3369. [PMID: 34057770 DOI: 10.1002/jgm.3369] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Human umbilical cord blood mesenchymal stem cells (HUCB-MSCs) can exert a protective effect in rat models of acute liver failure (ALF). Vascular endothelial growth factor 165 (VEGF165 ) is the predominant VEGF isoform and possesses a strong pro-angiogenic function. In the present study, HUCB-MSC served as the gene delivery vehicle for the VEGF165 gene, and we explored the therapeutic effects of this system on ALF. METHODS HUCB-MSCs were infected with an adenovirus expressing green fluorescent protein (GFP)-VEFG fusion protein (Ad-VEGF165 ) to overexpress VEGF165 or an adenovirus expressing GFP (Ad-GFP) as control. The control and modified HUCB-MSCs were then transplanted into ALF model rats. Liver function and liver pathological changes were assessed by biochemical tests and liver histology. Immunohistochemistry was carried out to determine the expression of, CD34, Ki67 and VEGF. RESULTS VEGF165 overexpression enhanced the multipotency of HUCB-MSCs and promoted the homing and colonization of HUCB-MSC in the liver tissues of ALF rats. Furthermore, although HUCB-MSC transplantation ameliorated liver damage and promoted liver regeneration to some extent in ALF rats, Ad-VEGF165 -HUCB-MSC transplantation showed stronger therapeutic effects on ALF. CONCLUSIONS In summary, transplantation of VEGF165 -modified HUCB-MSCs exert stronger therapeutic effects on ALF than HUCB-MSCs. The present study provides a novel therapeutic approach for ALF.
Collapse
Affiliation(s)
- Haiou Chen
- Department of Infectious Diseases, Hunan Provincial People's Hospital & First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Shigang Tang
- Department of Infectious Diseases, Hunan Provincial People's Hospital & First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Jinmao Liao
- Department of Hepatopathy, Hunan Provincial People's Hospital & First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Meng Liu
- Department of Infectious Diseases, Hunan Provincial People's Hospital & First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Yihe Lin
- Department of Infectious Diseases, Hunan Provincial People's Hospital & First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
7
|
He C, Yang Y, Zheng K, Chen Y, Liu S, Li Y, Han Q, Zhao RC, Wang L, Zhang F. Mesenchymal stem cell-based treatment in autoimmune liver diseases: underlying roles, advantages and challenges. Ther Adv Chronic Dis 2021; 12:2040622321993442. [PMID: 33633826 PMCID: PMC7887681 DOI: 10.1177/2040622321993442] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Autoimmune liver disease (AILD) is a series of chronic liver diseases with abnormal immune responses, including autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC). The treatment options for AILD remain limited, and the adverse side effects of the drugs that are typically used for treatment frequently lead to a low quality of life for AILD patients. Moreover, AILD patients may have a poor prognosis, especially those with an incomplete response to first-line treatment. Mesenchymal stem cells (MSCs) are pluripotent stem cells with low immunogenicity and can be conveniently harvested. MSC-based therapy is emerging as a promising approach for treating liver diseases based on their advantageous characteristics of immunomodulation, anti-fibrosis effects, and differentiation to hepatocytes, and accumulating evidence has revealed the positive effects of MSC therapy in AILD. In this review, we first summarize the mechanisms, safety, and efficacy of MSC treatment for AILD based on work in animal and clinical studies. We also discuss the challenges of MSC therapy in clinical applications. In summary, although promising data from preclinical studies are now available, MSC therapy is currently far for being applied in clinical practice, thus developing MSC therapy in AILD is still challenging and warrants further research.
Collapse
Affiliation(s)
- Chengmei He
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanlei Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kunyu Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yiran Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Suying Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qin Han
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| |
Collapse
|
8
|
Michalik M, Gładyś A, Czekaj P. Differentiation of Cells Isolated from Afterbirth Tissues into Hepatocyte-Like Cells and Their Potential Clinical Application in Liver Regeneration. Stem Cell Rev Rep 2020; 17:581-603. [PMID: 32974851 PMCID: PMC8036182 DOI: 10.1007/s12015-020-10045-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Toxic, viral and surgical injuries can pose medical indications for liver transplantation. The number of patients waiting for a liver transplant still increases, but the number of organ donors is insufficient. Hepatocyte transplantation was suggested as a promising alternative to liver transplantation, however, this method has some significant limitations. Currently, afterbirth tissues seem to be an interesting source of cells for the regenerative medicine, because of their unique biological and immunological properties. It has been proven in experimental animal models, that the native stem cells, and to a greater extent, hepatocyte-like cells derived from them and transplanted, can accelerate regenerative processes and restore organ functioning. The effective protocol for obtaining functional mature hepatocytes in vitro is still not defined, but some studies resulted in obtaining functionally active hepatocyte-like cells. In this review, we focused on human stem cells isolated from placenta and umbilical cord, as potent precursors of hepatocyte-like cells for regenerative medicine. We summarized the results of preclinical and clinical studies dealing with the introduction of epithelial and mesenchymal stem cells of the afterbirth origin to the liver failure therapy. It was concluded that the use of native afterbirth epithelial and mesenchymal cells in the treatment of liver failure could support liver function and regeneration. This effect would be enhanced by the use of hepatocyte-like cells obtained from placental and/or umbilical stem cells. Graphical abstract ![]()
Collapse
Affiliation(s)
- Marcin Michalik
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Aleksandra Gładyś
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland.
| |
Collapse
|
9
|
Sun XY, Ding XF, Liang HY, Zhang XJ, Liu SH, Bing-Han, Duan XG, Sun TW. Efficacy of mesenchymal stem cell therapy for sepsis: a meta-analysis of preclinical studies. Stem Cell Res Ther 2020; 11:214. [PMID: 32493435 PMCID: PMC7268531 DOI: 10.1186/s13287-020-01730-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/28/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Background Multiple studies have reported that mesenchymal stem cell (MSC) therapy has beneficial effects in experimental models of sepsis. However, this finding remains inconclusive. This study was performed to systematically determine the connection between MSC therapy and mortality in sepsis animal models by pooling and analyzing data from newly published studies. Methods A detailed search of related studies from 2009 to 2019 was conducted in four databases, including MEDLINE, EMBASE, Cochrane Library, and Web of Science. After browsing and filtering out articles that met the inclusion criteria for statistical analysis, the inverse variance method of the fixed effects model was used to calculate the pooled odds ratios (ORs) and their 95% confidence intervals (CIs). Results Twenty-nine animal studies, including 1266 animals, were identified. None of the studies was judged to have a low risk of bias. The meta-analysis demonstrated that MSC therapy was related to a significantly lower mortality rate (OR 0.29, 95% CI 0.22–0.38, P < 0.001). Subgroup analyses performed based on the MSC injection dose (< 1.0 × 106 cells, OR = 0.33, 95% CI 0.20–0.56, P < 0.001; 1.0 × 106 cells, OR = 0.24, 95% CI 0.16–0.35, P < 0.001) and injection time (< 1 h, OR = 0.24, 95% CI 0.13–0.45, P < 0.001; 1 h, OR = 0.28, 95% CI 0.17–0.46, P < 0.001) demonstrated that treatment with MSCs significantly reduced the mortality rate of animals with sepsis. Conclusion This up-to-date meta-analysis showed a connection between MSC therapy and lower mortality in sepsis animal models, supporting the potential therapeutic effect of MSC treatment in future clinical trials. The results in this study contradict a previous meta-analysis with regards to the ideal dose of MSC therapy. Thus, further research is required to support these findings.
Collapse
Affiliation(s)
- Xue-Yi Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, 450052, China
| | - Xian-Fei Ding
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, 450052, China
| | - Huo-Yan Liang
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, 450052, China
| | - Xiao-Juan Zhang
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, 450052, China
| | - Shao-Hua Liu
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, 450052, China
| | - Bing-Han
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, 450052, China
| | - Xiao-Guang Duan
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, 450052, China
| | - Tong-Wen Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, 450052, China.
| |
Collapse
|
10
|
Tricot T, De Boeck J, Verfaillie C. Alternative Cell Sources for Liver Parenchyma Repopulation: Where Do We Stand? Cells 2020; 9:E566. [PMID: 32121068 PMCID: PMC7140465 DOI: 10.3390/cells9030566] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/28/2022] Open
Abstract
Acute and chronic liver failure is a highly prevalent medical condition with high morbidity and mortality. Currently, the therapy is orthotopic liver transplantation. However, in some instances, chiefly in the setting of metabolic diseases, transplantation of individual cells, specifically functional hepatocytes, can be an acceptable alternative. The gold standard for this therapy is the use of primary human hepatocytes, isolated from livers that are not suitable for whole organ transplantations. Unfortunately, primary human hepatocytes are scarcely available, which has led to the evaluation of alternative sources of functional hepatocytes. In this review, we will compare the ability of most of these candidate alternative cell sources to engraft and repopulate the liver of preclinical animal models with the repopulation ability found with primary human hepatocytes. We will discuss the current shortcomings of the different cell types, and some of the next steps that we believe need to be taken to create alternative hepatocyte progeny capable of regenerating the failing liver.
Collapse
|
11
|
Feng X, Liu J, Xu Y, Zhu J, Chen W, Feng B, Pan Q, Yu J, Shi X, Yang J, Li Y, Li L, Cao H. Molecular mechanism underlying the difference in proliferation between placenta-derived and umbilical cord-derived mesenchymal stem cells. J Cell Physiol 2020; 235:6779-6793. [PMID: 31990045 DOI: 10.1002/jcp.29572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
The placenta and umbilical cord are pre-eminent candidate sources of mesenchymal stem cells (MSCs). However, placenta-derived MSCs (P-MSCs) showed greater proliferation capacity than umbilical cord-derived MSCs (UC-MSCs) in our study. We investigated the drivers of this proliferation difference and elucidated the mechanisms of proliferation regulation. Proteomic profiling and Gene Ontology (GO) functional enrichment were conducted to identify candidate proteins that may influence proliferation. Using lentiviral or small interfering RNA infection, we established overexpression and knockdown models and observed changes in cell proliferation to examine whether a relationship exists between the candidate proteins and proliferation capacity. Real-time quantitative polymerase chain reaction, western blot analysis, and immunofluorescence assays were conducted to elucidate the mechanisms underlying proliferation. Six candidate proteins were selected based on the results of proteomic profiling and GO functional enrichment. Through further validation, yes-associated protein 1 (YAP1) and β-catenin were confirmed to affect MSCs proliferation rates. YAP1 and β-catenin showed increased nuclear colocalization during cell expansion. YAP1 overexpression significantly enhanced proliferation capacity and upregulated the expression of both β-catenin and the transcriptional targets of Wnt signaling, CCND1, and c-MYC, whereas silencing β-catenin attenuated this influence. We found that YAP1 directly interacts with β-catenin in the nucleus to form a transcriptional YAP/β-catenin/TCF4 complex. Our study revealed that YAP1 and β-catenin caused the different proliferation capacities of P-MSCs and UC-MSCs. Mechanism analysis showed that YAP1 stabilized the nuclear β-catenin protein, and also triggered the Wnt/β-catenin pathway, promoting proliferation.
Collapse
Affiliation(s)
- Xudong Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jingqi Liu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yanping Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiaqi Zhu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wenyi Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Bing Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaowei Shi
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jinfeng Yang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yang Li
- Department of Obstetrical, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.,Zhejiang Provincial Key Laboratory For Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, Hangzhou, 310003, China
| |
Collapse
|
12
|
Chen H, Tang S, Liao J, Liu M, Lin Y. Therapeutic effect of human umbilical cord blood mesenchymal stem cells combined with G-CSF on rats with acute liver failure. Biochem Biophys Res Commun 2019; 517:670-676. [PMID: 31400854 DOI: 10.1016/j.bbrc.2019.07.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/26/2019] [Indexed: 01/12/2023]
Abstract
Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) have been used to facilitate healing in animal models of liver injury, while granulocyte colony-stimulating factor (G-CSF) has been shown to stimulate stem cell mobilization and these cells may contribute to liver repair. hUCB-MSCs were characterized by flow cytometry, and transplanted into rats with d-galactosamine (D-GalN)/lipopolysaccharides (LPS)-induced acute liver failure (ALF) together with granulocyte colony-stimulating factor (G-CSF). Liver function, oxidative stress and pro-inflammatory cytokines expressions were examined using enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin (HE) staining was used to observe the morphological changes. Apoptosis was investigated by terminal dUTP nick end labeling (TUNEL) staining. Bromodeoxyuridine (BrdU) cell proliferation assay was analyzed by immunofluorescence and immunohistochemistry. In the results, cultured hUCB-MSCs displayed proliferation and adipogenic and osteogenic differentiation potentials. hUCB-MSCs in combination with G-CSF significantly attenuated ALF-induced liver function injury. Furthermore, hUCB-MSCs and G-CSF treatment remarkably suppressed the secretions of pro-inflammatory cytokines and MDA activation induced by ALF. In addition, inflammation, lesions and cell apoptosis in liver tissues were obviously ameliorated by application of hUCB-MSCs and G-CSF. In conclusion, hUCB-MSCs, alone or co-treatment with G-CSF could ameliorate ALF in rats by inhibiting liver function injury, production of pro-inflammatory cytokines, oxidative stress, and liver cell apoptosis.
Collapse
Affiliation(s)
- Haiou Chen
- Department of Infectious Diseases, Hunan Provincial People's Hospital & The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.
| | - Shigang Tang
- Department of Infectious Diseases, Hunan Provincial People's Hospital & The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Jinmao Liao
- Department of Hepatopathy, Hunan Provincial People's Hospital & The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Meng Liu
- Department of Infectious Diseases, Hunan Provincial People's Hospital & The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Yihe Lin
- Department of Infectious Diseases, Hunan Provincial People's Hospital & The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
13
|
Improvement of mesenchymal stromal cells and their derivatives for treating acute liver failure. J Mol Med (Berl) 2019; 97:1065-1084. [DOI: 10.1007/s00109-019-01804-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/28/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
|
14
|
Wang YH, Wu DB, Chen B, Chen EQ, Tang H. Progress in mesenchymal stem cell-based therapy for acute liver failure. Stem Cell Res Ther 2018; 9:227. [PMID: 30143052 PMCID: PMC6109312 DOI: 10.1186/s13287-018-0972-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute liver failure is a life-threatening clinical syndrome characterized by rapid development of hepatocellular necrosis leading to high mortality and resource costs. Numerous treatment strategies for acute liver failure simply prevent complications and decelerate disease progression. The only curative treatment for acute liver failure is liver transplantation, but there are many restrictions on the application of liver transplantation. In recent years, a growing number of studies have shown that stem cells can effectively treat acute liver failure. Several types of stem cells have been used to study liver diseases; mesenchymal stem cells are most commonly used because they are easy to obtain and present no ethical problems. The aims of this article are to review the current knowledge regarding therapeutic mechanisms of mesenchymal stem cells in acute liver failure, to discuss recent advancements in preclinical and clinical studies in the treatment of mesenchymal stem cells, and to summarize the methodological improvement of mesenchymal stem cell transplantation in treating liver failure.
Collapse
Affiliation(s)
- Yong-Hong Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Dong-Bo Wu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Bing Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Zare H, Jamshidi S, Dehghan MM, Saheli M, Piryaei A. Bone marrow or adipose tissue mesenchymal stem cells: Comparison of the therapeutic potentials in mice model of acute liver failure. J Cell Biochem 2018; 119:5834-5842. [PMID: 29575235 DOI: 10.1002/jcb.26772] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
Acute liver failure (ALF) is a lethal disease with limited life-saving therapy. Because lack of whole organ donors for liver transplantation, a substitute treatment strategy is needed for these patients. Preclinical and clinical findings have proved that treatment with mesenchymal stem cells (MSCs) is beneficial for recovery from ALF. In this approach, however, the appropriate sources of these cells are unclear. In the present study, we investigated and compared the therapeutic potentials of bone marrow-mesenchymal stem cells (BM-MSC) with those of adipose tissue (AT-MSC) in carbon tetrachloride (CCL4)-induced acute liver failure in mice. Murine BM- and AT-MSCs obtained from normal mice were cultured and labelled. The cells were transplanted to CCL4-induced ALF mice models intravenously. After cell transplantation, blood samples and liver tissues were collected daily for 72 h to analyze liver enzymes and liver histopathology, respectively. We found that survival rate of AT-MSC transplanted (AT-TR) mice was significantly higher than that of control (ALF) group. Liver histopathology was superior in the AT-TR mice, but not significantly, compared to that in BM-MSC transplanted (BM-TR) ones. Furthermore, in the AT-TR mice the level of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), in some time points were significantly less than those of BM-TR. Taken together, these data suggest that in comparison to BM-MSC, AT-MSCs is an appropriate choice for cell therapy in the case of acute liver failure.
Collapse
Affiliation(s)
- Hossein Zare
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shahram Jamshidi
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad M Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mona Saheli
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Lalu MM, Sullivan KJ, Mei SH, Moher D, Straus A, Fergusson DA, Stewart DJ, Jazi M, MacLeod M, Winston B, Marshall J, Hutton B, Walley KR, McIntyre L. Evaluating mesenchymal stem cell therapy for sepsis with preclinical meta-analyses prior to initiating a first-in-human trial. eLife 2016; 5. [PMID: 27870924 PMCID: PMC5153252 DOI: 10.7554/elife.17850] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022] Open
Abstract
Evaluation of preclinical evidence prior to initiating early-phase clinical studies has typically been performed by selecting individual studies in a non-systematic process that may introduce bias. Thus, in preparation for a first-in-human trial of mesenchymal stromal cells (MSCs) for septic shock, we applied systematic review methodology to evaluate all published preclinical evidence. We identified 20 controlled comparison experiments (980 animals from 18 publications) of in vivo sepsis models. Meta-analysis demonstrated that MSC treatment of preclinical sepsis significantly reduced mortality over a range of experimental conditions (odds ratio 0.27, 95% confidence interval 0.18–0.40, latest timepoint reported for each study). Risk of bias was unclear as few studies described elements such as randomization and no studies included an appropriately calculated sample size. Moreover, the presence of publication bias resulted in a ~30% overestimate of effect and threats to validity limit the strength of our conclusions. This novel prospective application of systematic review methodology serves as a template to evaluate preclinical evidence prior to initiating first-in-human clinical studies. DOI:http://dx.doi.org/10.7554/eLife.17850.001 Most attempts to transform exciting findings from laboratories into clinical treatments are unsuccessful. One reason for this may be the failure to consider all of the laboratory work that has been performed before deciding to test a treatment on patients for the first time. In particular, negative findings (that suggest that a potential new treatment is ineffective) may be overlooked. Stem cells may help to treat life-threatening infections, but this has not been tested in human patients. However, the effectiveness of stem cell treatments has been tested in animals that act as models of human infection. Before deciding to begin a clinical trial of stem cell therapy for life-threatening infections, Lalu et al. performed an exhaustive search to find all the studies in which stem cells were used to treat animal models of infection. Combining the results of all of these studies using particular analysis techniques revealed that stem cell therapy increased the survival of these animals overall. These positive effects were seen over a range of different experimental conditions (for example, when treating the animals with different doses of stem cells, or giving the doses at different times). Lalu et al. also identified some limitations with most of the laboratory studies that had tested stem cell therapy for infections. Many of the studies used animal models that may not be the best representations of humans with severe infection. In addition, many of the scientists did not report that they had used methods (such as randomization) that would generate the most confidence in their results. Despite these limitations, there was a lot of consistency in the reported results. Overall, the results support the decision to proceed to a clinical trial that tests the effectiveness of stem cells for treating human infections. More generally, Lalu et al.’s analysis demonstrates a way of considering all laboratory evidence before deciding to proceed to a first clinical trial in humans. This may help researchers to identify promising therapies to further develop, and also to identify potential failures before they are tested in patients. DOI:http://dx.doi.org/10.7554/eLife.17850.002
Collapse
Affiliation(s)
- Manoj M Lalu
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, Canada.,Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Canada.,Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Katrina J Sullivan
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Shirley Hj Mei
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - David Moher
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Canada.,School of Epidemiology, Public Health and Preventive Medicine, University of Ottawa, Ottawa, Canada
| | - Alexander Straus
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Dean A Fergusson
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Duncan J Stewart
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Mazen Jazi
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Malcolm MacLeod
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Brent Winston
- Department of Critical Care Medicine, University of Calgary, Calgary, Canada
| | - John Marshall
- Departments of Surgery and Critical Care Medicine, Keenan Research Centre of the Li KaShing Knowledge Institute, St. Michaels Hospital, The University of Toronto, Toronto, Canada
| | - Brian Hutton
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Keith R Walley
- Department of Medicine, Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
| | - Lauralyn McIntyre
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|