1
|
Sadeghi Shaker M, Rokni M, Mahmoudi M, Farhadi E. Ras family signaling pathway in immunopathogenesis of inflammatory rheumatic diseases. Front Immunol 2023; 14:1151246. [PMID: 37256120 PMCID: PMC10225558 DOI: 10.3389/fimmu.2023.1151246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023] Open
Abstract
The Ras (rat sarcoma virus) is a GTP-binding protein that is considered one of the important members of the Ras-GTPase superfamily. The Ras involves several pathways in the cell that include proliferation, migration, survival, differentiation, and fibrosis. Abnormalities in the expression level and activation of the Ras family signaling pathway and its downstream kinases such as Raf/MEK/ERK1-2 contribute to the pathogenic mechanisms of rheumatic diseases including immune system dysregulation, inflammation, and fibrosis in systemic sclerosis (SSc); destruction and inflammation of synovial tissue in rheumatoid arthritis (RA); and autoantibody production and immune complexes formation in systemic lupus erythematosus (SLE); and enhance osteoblast differentiation and ossification during skeletal formation in ankylosing spondylitis (AS). In this review, the basic biology, signaling of Ras, and abnormalities in this pathway in rheumatic diseases including SSc, RA, AS, and SLE will be discussed.
Collapse
Affiliation(s)
- Mina Sadeghi Shaker
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Rokni
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Xiao L, Xiao W, Zhan F. Targets of Tripterygium glycosides in systemic lupus erythematosus treatment: A network-pharmacology study. Lupus 2022; 31:319-329. [PMID: 35067081 DOI: 10.1177/09612033221076725] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We aimed to explore the underlying mechanism of Tripterygium glycosides (TGs) in treating systemic lupus erythematosus (SLE) through network-pharmacology approach. METHODS The protein targets of TGs' three active ingredients (triptolide, tripterine, and wilforlide) and SLE were identified by database search. Then, the intersection of the two groups was studied. The drug-target network between the active ingredients of TGs and the overlapping genes was constructed, visualized, and analyzed with Cytoscape software. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment were performed to analyze these genes. Finally, we validated our predictions of the potential targets through docking study. RESULTS A total of 55 overlapping genes were discovered. Results suggested that the TGs' mechanism in SLE treatment was associated with heat shock protein family A member 5, heat shock protein family A member 8, eukaryotic translation elongation factor 1 alpha 1, and so forth with their related 4042 gene network, which regulated ribosome, spliceosome, viral carcinogenesis, Epstein-Barr virus infection signaling, and so forth. Molecular-docking analysis proved that hydrogen bonding was the main form of interaction. CONCLUSIONS Our research provided the protein targets affected by TGs in SLE treatment. The key targets (CASP3, MAPK1, HIF1A, and so forth) involving 4042 proteins became the multitarget mechanism of TGs in SLE treatment.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Rheumatology, 26496Hainan general hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, China
| | - Wei Xiao
- Department of Respiratory, 26496Hainan general hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, China
| | - Feng Zhan
- Department of Rheumatology, 26496Hainan general hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, China
| |
Collapse
|
3
|
Dysregulated protein kinase/phosphatase networks in SLE T cells. Clin Immunol 2022; 236:108952. [PMID: 35149196 DOI: 10.1016/j.clim.2022.108952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease associated with multiple phenotypic and functional aberrations in T lymphocytes. Among these, altered expression and/or activity of several protein kinases and phosphatases has been consistently documented in T cells obtained from patients with SLE. In this review, we describe and contextualize some of the kinase and phosphatase defects reported in T cells from patients with SLE, highlighting their relevance and possible consequences. Additionally, we discuss the origin of the defects and its significance for disease development and expression.
Collapse
|
4
|
Kim CS, Mathew AP, Vasukutty A, Uthaman S, Joo SY, Bae EH, Ma SK, Park IK, Kim SW. Glycol chitosan-based tacrolimus-loaded nanomicelle therapy ameliorates lupus nephritis. J Nanobiotechnology 2021; 19:109. [PMID: 33865397 PMCID: PMC8052756 DOI: 10.1186/s12951-021-00857-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background Recently, we developed hydrophobically modified glycol chitosan (HGC) nanomicelles loaded with tacrolimus (TAC) (HGC-TAC) for the targeted renal delivery of TAC. Herein, we determined whether the administration of the HGC-TAC nanomicelles decreases kidney injury in a model of lupus nephritis. Lupus-prone female MRL/lpr mice were randomly assigned into three groups that received intravenous administration of either vehicle control, an equivalent dose of TAC, or HGC-TAC (0.5 mg/kg TAC) weekly for 8 weeks. Age-matched MRL/MpJ mice without Faslpr mutation were also treated with HGC vehicle and used as healthy controls. Results Weekly intravenous treatment with HGC-TAC significantly reduced genetically attributable lupus activity in lupus nephritis-positive mice. In addition, HGC-TAC treatment mitigated renal dysfunction, proteinuria, and histological injury, including glomerular proliferative lesions and tubulointerstitial infiltration. Furthermore, HGC-TAC treatment reduced renal inflammation and inflammatory gene expression and ameliorated increased apoptosis and glomerular fibrosis. Moreover, HGC-TAC administration regulated renal injury via the TGF-β1/MAPK/NF-κB signaling pathway. These renoprotective effects of HGC-TAC treatment were more potent in lupus mice compared to those of TAC treatment alone. Conclusion Our study indicates that weekly treatment with the HGC-TAC nanomicelles reduces kidney injury resulting from lupus nephritis by preventing inflammation, fibrosis, and apoptosis. This advantage of a new therapeutic modality using kidney-targeted HGC-TAC nanocarriers may improve drug adherence and provide treatment efficacy in lupus nephritis mice. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00857-w.
Collapse
Affiliation(s)
- Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju, 61496, Republic of Korea.,Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Ansuja Pulickal Mathew
- Department of Biomedical Sciences, BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
| | - Arathy Vasukutty
- Department of Biomedical Sciences, BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Soo Yeon Joo
- Department of Internal Medicine, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju, 61496, Republic of Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju, 61496, Republic of Korea.,Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju, 61496, Republic of Korea.,Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea.
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju, 61496, Republic of Korea. .,Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea.
| |
Collapse
|
5
|
Andersson CR, Selvin T, Blom K, Rubin J, Berglund M, Jarvius M, Lenhammar L, Parrow V, Loskog A, Fryknäs M, Nygren P, Larsson R. Mebendazole is unique among tubulin-active drugs in activating the MEK-ERK pathway. Sci Rep 2020; 10:13124. [PMID: 32753665 PMCID: PMC7403428 DOI: 10.1038/s41598-020-68986-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/19/2020] [Indexed: 11/09/2022] Open
Abstract
We recently showed that the anti-helminthic compound mebendazole (MBZ) has immunomodulating activity in monocyte/macrophage models and induces ERK signalling. In the present study we investigated whether MBZ induced ERK activation is shared by other tubulin binding agents (TBAs) and if it is observable also in other human cell types. Curated gene signatures for a panel of TBAs in the LINCS Connectivity Map (CMap) database showed a unique strong negative correlation of MBZ with MEK/ERK inhibitors indicating ERK activation also in non-haematological cell lines. L1000 gene expression signatures for MBZ treated THP-1 monocytes also connected negatively to MEK inhibitors. MEK/ERK phosphoprotein activity testing of a number of TBAs showed that only MBZ increased the activity in both THP-1 monocytes and PMA differentiated macrophages. Distal effects on ERK phosphorylation of the substrate P90RSK and release of IL1B followed the same pattern. The effect of MBZ on MEK/ERK phosphorylation was inhibited by RAF/MEK/ERK inhibitors in THP-1 models, CD3/IL2 stimulated PBMCs and a MAPK reporter HEK-293 cell line. MBZ was also shown to increase ERK activity in CD4+ T-cells from lupus patients with known defective ERK signalling. Given these mechanistic features MBZ is suggested suitable for treatment of diseases characterized by defective ERK signalling, notably difficult to treat autoimmune diseases.
Collapse
Affiliation(s)
- Claes R Andersson
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden.
| | - Tove Selvin
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Kristin Blom
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Jenny Rubin
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Malin Berglund
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Malin Jarvius
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Lena Lenhammar
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Vendela Parrow
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Angelica Loskog
- Department of Immunology, Genetics and Pathology, Section of Oncology, Uppsala University, 75185, Uppsala, Sweden
| | - Mårten Fryknäs
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Peter Nygren
- Department of Immunology, Genetics and Pathology, Section of Oncology, Uppsala University, 75185, Uppsala, Sweden
| | - Rolf Larsson
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden.
| |
Collapse
|
6
|
De Angelis MT, Santamaria G, Parrotta EI, Scalise S, Lo Conte M, Gasparini S, Ferlazzo E, Aguglia U, Ciampi C, Sgura A, Cuda G. Establishment and characterization of induced pluripotent stem cells (iPSCs) from central nervous system lupus erythematosus. J Cell Mol Med 2019; 23:7382-7394. [PMID: 31536674 PMCID: PMC6815917 DOI: 10.1111/jcmm.14598] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022] Open
Abstract
Involvement of the central nervous system (CNS) is an uncommon feature in systemic lupus erythematosus (SLE), making diagnosis rather difficult and challenging due to the poor specificity of neuropathic symptoms and neurological symptoms. In this work, we used human‐induced pluripotent stem cells (hiPSCs) derived from CNS‐SLE patient, with the aim to dissect the molecular insights underlying the disease by gene expression analysis and modulation of implicated pathways. CNS‐SLE‐derived hiPSCs allowed us to provide evidence of Erk and Akt pathways involvement and to identify a novel cohort of potential biomarkers, namely CHCHD2, IDO1, S100A10, EPHA4 and LEFTY1, never reported so far. We further extended the study analysing a panel of oxidative stress‐related miRNAs and demonstrated, under normal or stress conditions, a strong dysregulation of several miRNAs in CNS‐SLE‐derived compared to control hiPSCs. In conclusion, we provide evidence that iPSCs reprogrammed from CNS‐SLE patient are a powerful useful tool to investigate the molecular mechanisms underlying the disease and to eventually develop innovative therapeutic approaches.
Collapse
Affiliation(s)
- Maria Teresa De Angelis
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| | - Elvira Immacolata Parrotta
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| | - Stefania Scalise
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| | - Michela Lo Conte
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| | - Sara Gasparini
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy.,Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy.,Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Clara Ciampi
- Department of Science, University of Rome " Roma Tre", Rome, Italy
| | - Antonella Sgura
- Department of Science, University of Rome " Roma Tre", Rome, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| |
Collapse
|
7
|
Crispin JC, Hedrich CM, Suárez-Fueyo A, Comte D, Tsokos GC. SLE-Associated Defects Promote Altered T Cell Function. Crit Rev Immunol 2019; 37:39-58. [PMID: 29431078 DOI: 10.1615/critrevimmunol.2018025213] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease linked to profound defects in the function and phenotype of T lymphocytes. Here, we describe abnormal signaling pathways that have been documented in T cells from patients with SLE and discuss how they impact gene expression and immune function, in order to understand how they contribute to disease development and progression.
Collapse
Affiliation(s)
- Jose C Crispin
- Departamento de Inmunologia y Reumatologia, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Christian M Hedrich
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - Abel Suárez-Fueyo
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Denis Comte
- Divisions of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland
| | - George C Tsokos
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Sipka S, Brugós B, Czifra G, Griger Z, Balogh N, Tarr T, Papp G, Bíró T, Zeher M. Season Dependent Changes in the Expression of Protein Kinase C Isoenzymes in a Female Patient with Systemic Lupus Erythematosus. Pathol Oncol Res 2019; 25:801-805. [PMID: 30715676 PMCID: PMC6449297 DOI: 10.1007/s12253-019-00591-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 01/15/2019] [Indexed: 01/21/2023]
Abstract
We aimed to answer the question whether the decreased expression of protein kinase C (PKC) isoenzymes in the peripheral blood mononuclear cells (PBMC) of patients with systemic lupus erythematosus (SLE) is inherited or not. For this reason we examined the expression of PKC isoenzymes in a European white girl with acute SLE and in her healthy mother and father simultaneously in summer and winter during one year using western blotting and densitometry. We found that in the father the expression of PKC isoenzymes did not differ from that of eight healthy controls included women and men. However, in the "SLE-free" mother and in the patient arrived in July with acute symptoms of lupus, the expression of PKC isoenzymes showed a season dependent undulation in parallel. Namely, in summer the expression values were significantly lower, in winter they were significantly higher than those in the controls. Thus, the decreased expression of PKC isoenzymes in the PBMC of SLE patient is not a disease specific marker; it appears also in her lupus free mother. This phenomenon may be due to a season dependent female genetic background. However, the low PKC levels in summer can still decrease further the low production of IL-2 in T cells of lupus patients augmenting the existing AP-1 defects. This is the first report on the season and female dependent inherited changing of PKC expression in a European white patient with SLE and her mother. Further studies are needed to confirm these findings in other populations.
Collapse
Affiliation(s)
- Sándor Sipka
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Móricz Zs. str. 22, Debrecen, H-4032, Hungary.
| | - Boglárka Brugós
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Móricz Zs. str. 22, Debrecen, H-4032, Hungary
| | - Gabriella Czifra
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei blvd, 98, Debrecen, H-4032, Hungary
| | - Zoltán Griger
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Móricz Zs. str. 22, Debrecen, H-4032, Hungary
| | - Norbert Balogh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei blvd, 98, Debrecen, H-4032, Hungary
| | - Tünde Tarr
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Móricz Zs. str. 22, Debrecen, H-4032, Hungary
| | - Gábor Papp
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Móricz Zs. str. 22, Debrecen, H-4032, Hungary
| | - Tamás Bíró
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei blvd, 98, Debrecen, H-4032, Hungary
| | - Margit Zeher
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Móricz Zs. str. 22, Debrecen, H-4032, Hungary
| |
Collapse
|
9
|
Autoimmune rheumatic disease IgG has differential effects upon neutrophil integrin activation that is modulated by the endothelium. Sci Rep 2019; 9:1283. [PMID: 30718722 PMCID: PMC6361939 DOI: 10.1038/s41598-018-37852-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
The importance of neutrophils in the pathogenesis of autoimmune rheumatic diseases, such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), is increasingly recognised. Generation of reactive oxygen species (ROS) and release of neutrophil extracellular traps (NETs) by activated neutrophils are both thought to contribute to pathology; although the underlying mechanisms, particularly the effects of IgG autoantibodies upon neutrophil function, are not fully understood. Therefore, we determined whether purified IgG from patients with SLE or RA have differential effects upon neutrophil activation and function. We found that SLE- and RA-IgG both bound human neutrophils but differentially regulated neutrophil function. RA- and SLE-IgG both increased PMA-induced β1 integrin-mediated adhesion to fibronectin, whilst only SLE-IgG enhanced αMβ2 integrin-mediated adhesion to fibrinogen. Interestingly, only SLE-IgG modulated neutrophil adhesion to endothelial cells. Both SLE- and RA-IgG increased ROS generation and DNA externalisation by unstimulated neutrophils. Only SLE-IgG however, drove DNA externalisation following neutrophil activation. Co-culture of neutrophils with resting endothelium prevented IgG-mediated increase of extracellular DNA, but this inhibition was overcome for SLE-IgG when the endothelium was stimulated with TNF-α. This differential pattern of neutrophil activation has implications for understanding SLE and RA pathogenesis and may highlight avenues for development of novel therapeutic strategies.
Collapse
|
10
|
Small GTPase RAS in multiple sclerosis - exploring the role of RAS GTPase in the etiology of multiple sclerosis. Small GTPases 2018; 11:312-319. [PMID: 30043672 DOI: 10.1080/21541248.2018.1502591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
RAS signaling is involved in the development of autoimmunity in general. Multiple sclerosis (MS) is a T cell-mediated autoimmune disease of the central nervous system. It is widely recognized that a reduction of Foxp3+ regulatory T (Treg) cells is an immunological hallmark of MS, but the underlying mechanisms are unclear. In experimental autoimmune models, N-Ras and K-Ras inhibition triggers an anti-inflammatory effect up-regulating, via foxp3 elevation, the numbers and the functional suppressive properties of Tregs. Similarly, an increase in natural Tregs number during Experimental Autoimmune Encephalomyelitis (EAE) in R-RAS -/- mice results in attenuated disease. In humans, only KRAS GTPase isoform is involved in mechanism causing tolerance defects in rheumatoid arthritis (RA). T cells from these patients have increased transcription of KRAS (but not NRAS). RAS genes are major drivers in human cancers. Consequently, there has been considerable interest in developing anti-RAS inhibitors for cancer treatment. Despite efforts, no anti-RAS therapy has succeeded in the clinic. The major strategy that has so far reached the clinic aimed to inhibit activated Ras indirectly through blocking its post-translational modification and inducing its mis-localization. The disappointing clinical outcome of Farnesyl Transferase Inhibitors (FTIs) in cancers has decreased interest in these drugs. However, FTIs suppress EAE by downregulation of myelin-reactive activated T-lymphocytes and statins are currently studied in clinical trials for MS. However, no pharmacologic approaches to targeting Ras proteins directly have yet succeeded. The therapeutic strategy to recover immune function through the restoration of impaired Tregs function with the mounting evidences regarding KRAS in autoimmune mediated disorder (MS, SLE, RA, T1D) suggest as working hypothesis the direct targeting KRAS activation using cancer-derived small molecules may be clinically relevant. ABBREVIATIONS FTIs: Farnesyl Transferase Inhibitors; MS: Multiple Sclerosis; RRMS: Relapsing Remitting Multiple Sclerosis; PPMS: Primary Progressive Multiple Sclerosis; Tregs: regulatory T-cells; Foxp3: Forkhead box P3; EAE: Experimental Autoimmune Encephalomyelitis; T1D: Type 1 Diabete; SLE: Systemic Lupus Erythematosus; RA: Rheumatoid Arthritis; CNS: Central Nervous System; TMEV: Theiler's murine encephalomyelitis virus; FTS: farnesyl thiosalicylic acid; TCR: T-Cell Receptor; AIA: Adjuvant-induced Arthritis; EAN: experimental autoimmune neuritis; HVR: hypervariable region; HMG-CoA: 3-hydroxy-3-methylglutaryl coenzyme A reductase; PBMC: Peripheral Blood Mononuclear Cells.
Collapse
|
11
|
Chen J. Functional roles of magnesium binding to extracellular signal-regulated kinase 2 explored by molecular dynamics simulations and principal component analysis. J Biomol Struct Dyn 2017; 36:351-361. [PMID: 28030988 DOI: 10.1080/07391102.2016.1277783] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molecular dynamics (MD) simulations coupled with principal component (PC) analysis were carried out to study functional roles of Mg2+ binding to extracellular signal-regulated kinase 2 (ERK2). The results suggest that Mg2+ binding heavily decreases eigenvalue of the first principal component and totally inhibits motion strength of ERK2, which favors stabilization of ERK2 structure. Binding free energy predictions indicate that Mg2+ binding produces an important effect on binding ability of adenosine triphosphate (ATP) to ERK2 and strengthens the ATP binding. The calculations of residue-based free energy decomposition show that lack of Mg2+ weakens interactions between the hydrophobic rings of ATP and five residues I29, V37, A50, L105, and L154. Hydrogen bond analyses also prove that Mg2+ binding increases occupancies of hydrogen bonds formed between ATP and residues K52, Q103, D104, and M106. We expect that this study can provide a significant theoretical hint for designs of anticancer drugs targeting ERK2.
Collapse
Affiliation(s)
- Jianzhong Chen
- a School of Science, Shandong Jiaotong University , Jinan 250357 , China
| |
Collapse
|
12
|
He Y, Huang Y, Tu L, Luo J, Yu B, Qian H, Duan L, Shi G. Decreased Gαq expression in T cells correlates with enhanced cytokine production and disease activity in systemic lupus erythematosus. Oncotarget 2016; 7:85741-85749. [PMID: 27965465 PMCID: PMC5349870 DOI: 10.18632/oncotarget.13903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/01/2016] [Indexed: 11/25/2022] Open
Abstract
Aberrant T cell immune responses appear central to the development of systemic lupus erythematosus (SLE). We previously reported that Gαq, the alpha subunit of Gq, regulates T and B cell immune responses, promoting autoimmunity. To address whether Gαq contributes to the pathogenesis of SLE, Gαq mRNA expression was studied using real time-PCR in PBMCs and T cells from SLE patients as well as age- and sex-matched healthy controls. Our results showed that Gαq mRNA expression was decreased in PBMCs and T cells from SLE patients compared to healthy individuals. Correlation analyses showed that Gαq expression in T cells from SLE patients was associated with disease severity (as per SLE Disease Activity Index), the presence of lupus nephritis, and expression of Th1, Th2 and Th17 cytokines. In keeping with clinical results, T-helper cell subsets (Th1, Th2 and Th17) were over-represented in Gαq knockout mice. In addition, Gαq expression in SLE T cells was negatively correlated with the expression of Bcl-2, an anti-apoptotic gene, and positively correlated with the expression of Bax, a pro-apoptotic gene. These data suggest that reduced Gαq levels in T cells may promote enhanced and prolonged T cell activation, contributing to the clinical manifestations of SLE.
Collapse
Affiliation(s)
- Yan He
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yan Huang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiao Luo
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Bing Yu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hongyan Qian
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
13
|
Rai R, Chauhan SK, Singh VV, Rai M, Rai G. RNA-seq Analysis Reveals Unique Transcriptome Signatures in Systemic Lupus Erythematosus Patients with Distinct Autoantibody Specificities. PLoS One 2016; 11:e0166312. [PMID: 27835693 PMCID: PMC5106032 DOI: 10.1371/journal.pone.0166312] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/26/2016] [Indexed: 01/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) patients exhibit immense heterogeneity which is challenging from the diagnostic perspective. Emerging high throughput sequencing technologies have been proved to be a useful platform to understand the complex and dynamic disease processes. SLE patients categorised based on autoantibody specificities are reported to have differential immuno-regulatory mechanisms. Therefore, we performed RNA-seq analysis to identify transcriptomics of SLE patients with distinguished autoantibody specificities. The SLE patients were segregated into three subsets based on the type of autoantibodies present in their sera (anti-dsDNA+ group with anti-dsDNA autoantibody alone; anti-ENA+ group having autoantibodies against extractable nuclear antigens (ENA) only, and anti-dsDNA+ENA+ group having autoantibodies to both dsDNA and ENA). Global transcriptome profiling for each SLE patients subsets was performed using Illumina® Hiseq-2000 platform. The biological relevance of dysregulated transcripts in each SLE subsets was assessed by ingenuity pathway analysis (IPA) software. We observed that dysregulation in the transcriptome expression pattern was clearly distinct in each SLE patients subsets. IPA analysis of transcripts uniquely expressed in different SLE groups revealed specific biological pathways to be affected in each SLE subsets. Multiple cytokine signaling pathways were specifically dysregulated in anti-dsDNA+ patients whereas Interferon signaling was predominantly dysregulated in anti-ENA+ patients. In anti-dsDNA+ENA+ patients regulation of actin based motility by Rho pathway was significantly affected. The granulocyte gene signature was a common feature to all SLE subsets; however, anti-dsDNA+ group showed relatively predominant expression of these genes. Dysregulation of Plasma cell related transcripts were higher in anti-dsDNA+ and anti-ENA+ patients as compared to anti-dsDNA+ ENA+. Association of specific canonical pathways with the uniquely expressed transcripts in each SLE subgroup indicates that specific immunological disease mechanisms are operative in distinct SLE patients' subsets. This 'sub-grouping' approach could further be useful for clinical evaluation of SLE patients and devising targeted therapeutics.
Collapse
Affiliation(s)
- Richa Rai
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sudhir Kumar Chauhan
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vikas Vikram Singh
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Madhukar Rai
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Geeta Rai
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
14
|
Mehdipour M, Taghavi Zenouz A, Davoodi F, Gholizadeh N, Damghani H, Helli S, Safarnavadeh M. Evaluation of the Relationship between Serum Lipid Profile andOral Lichen Planus. J Dent Res Dent Clin Dent Prospects 2016; 9:261-6. [PMID: 26889364 PMCID: PMC4753036 DOI: 10.15171/joddd.2015.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/29/2015] [Indexed: 01/17/2023] Open
Abstract
Background and aims. Oral lichen planus (OLP) is an immunologic disorder. A large number of studies have reported that lipid rafts have a key role in receptor signaling of lymphocytes. Here, we explore the potential of lipid rafts as targets for the development of a new class of agents to down-modulate immune responses and treat autoimmune diseases. Materials and methods. The present cross-sectional study evaluated 88 patients referring to the Department of Oral Medicine in 3 groups (Group 1: erosive OLP; Group 2: non-erosive OLP; Group 3: healthy). A total of 3 mL of blood sample was taken from each subject and the serum levels of cholesterol, triglycerides, HDL and LDL were determined. The mean outcomes of each group were compared with each other and analyzed two by two. Results. The results of statistical analyses showed no significant differences in mean HDL and LDL serum levels between the three groups. The results of post hoc LSD test showed that mean serum levels of subjects with erosive and non-erosive lichen planus were higher than those in healthy subjects. In relation to triglyceride serum levels, the mean serum levels of triglycerides were higher in erosive and non-erosive OLP patients compared to healthy subjects. Conclusion. Triglyceride and cholesterol can be considered to have a critical role in the incidence of lichen planus and in its manifestations as predisposing factors.
Collapse
Affiliation(s)
- Masoumeh Mehdipour
- Associate Professor, Department of Oral Medicine, Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Taghavi Zenouz
- Associate Professor, Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnaz Davoodi
- Postgraduate Student, Department of Operative Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Gholizadeh
- Assistant Professor, Department of Oral Medicine, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Damghani
- Postgraduate Student, Department of Oral Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Helli
- Postgraduate Student, Department of Oral Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Safarnavadeh
- Assistant Professor, Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Rother N, van der Vlag J. Disturbed T Cell Signaling and Altered Th17 and Regulatory T Cell Subsets in the Pathogenesis of Systemic Lupus Erythematosus. Front Immunol 2015; 6:610. [PMID: 26648939 PMCID: PMC4663269 DOI: 10.3389/fimmu.2015.00610] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the presence of autoantibodies against nuclear components. Circulating immune complexes of chromatin and autoantibodies deposit in various tissues leading to inflammation and tissue damage. It has been well documented that autoimmunity in SLE depends on autoreactive T cells. In this review, we summarize the literature that addresses the roles of T cell signaling, and Th17 and regulatory T cells (Tregs) in the development of SLE. T cell receptor (TCR) signaling appears to be aberrant in T cells of patients with SLE. In particular, defects in the TCRζ chain, Syk kinase, and calcium signaling molecules have been associated with SLE, which leads to hyperresponsive autoreactive T cells. Furthermore, in patients with SLE increased numbers of autoreactive Th17 cells have been documented, and Th17 cells appear to be responsible for tissue inflammation and damage. In addition, reduced numbers of Tregs as well as Tregs with an impaired regulatory function have been associated with SLE. The altered balance between the number of Tregs and Th17 cells in SLE may result from changes in the cytokine milieu that favors the development of Th17 cells over Tregs.
Collapse
Affiliation(s)
- Nils Rother
- Department of Nephrology, Radboud University Medical Center, Radboud Institute of Molecular Life Sciences , Nijmegen , Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Radboud Institute of Molecular Life Sciences , Nijmegen , Netherlands
| |
Collapse
|
16
|
Mak A, Kow NY. The pathology of T cells in systemic lupus erythematosus. J Immunol Res 2014; 2014:419029. [PMID: 24864268 PMCID: PMC4017881 DOI: 10.1155/2014/419029] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 12/02/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by the production of a wide array of autoantibodies. Thus, the condition was traditionally classified as a "B-cell disease". Compelling evidence has however shown that without the assistance of the helper T lymphocytes, it is indeed difficult for the "helpless" B cells to become functional enough to trigger SLE-related inflammation. T cells have been recognized to be crucial in the pathogenicity of SLE through their capabilities to communicate with and offer enormous help to B cells for driving autoantibody production. Recently, a number of phenotypic and functional alterations which increase the propensity to trigger lupus-related inflammation have been identified in lupus T cells. Here, potential mechanisms involving alterations in T-cell receptor expressions, postreceptor downstream signalling, epigenetics, and oxidative stress which favour activation of lupus T cells will be discussed. Additionally, how regulatory CD4+, CD8+, and γδ T cells tune down lupus-related inflammation will be highlighted. Lastly, while currently available outcomes of clinical trials evaluating therapeutic agents which manipulate the T cells such as calcineurin inhibitors indicate that they are at least as efficacious and safe as conventional immunosuppressants in treating lupus glomerulonephritis, larger clinical trials are undoubtedly required to validate these as-yet favourable findings.
Collapse
MESH Headings
- Animals
- Autoantibodies/biosynthesis
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Calcineurin Inhibitors/therapeutic use
- Cell Communication
- Clinical Trials as Topic
- Gene Expression Regulation
- Humans
- Immunologic Factors/therapeutic use
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Mice
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Anselm Mak
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore 119228
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Nien Yee Kow
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| |
Collapse
|
17
|
MiR-320a is Downregulated in Patients with Myasthenia Gravis and Modulates Inflammatory Cytokines Production by Targeting Mitogen-activated Protein Kinase 1. J Clin Immunol 2012. [DOI: 10.1007/s10875-012-9834-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Reedquist KA, Tak PP. Signal transduction pathways in chronic inflammatory autoimmune disease: small GTPases. Open Rheumatol J 2012; 6:259-72. [PMID: 23028410 PMCID: PMC3460313 DOI: 10.2174/1874312901206010259] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 01/28/2023] Open
Abstract
Ras superfamily small GTPases represent a wide and diverse class of intracellular signaling proteins that are highly conserved during evolution. These enzymes serve as key checkpoints in coupling antigen receptor, growth factor, cytokine and chemokine stimulation to cellular responses. Once activated, via their ability to regulate multiple downstream signaling pathways, small GTPases amplify and diversify signaling cascades which regulate cellular proliferation, survival, cytokine expression, trafficking and retention. Small GTPases, particularly members of the Ras, Rap, and Rho family, critically coordinate the function and interplay of immune and stromal cells during inflammatory respones, and increasing evidence indicates that alterations in small GTPase signaling contribute to the pathological behavior of these cell populations in human chronic inflammatory diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Here, we review how Ras, Rap, and Rho family GTPases contribute to the biology of cell populations relevant to human chronic inflammatory disease, highlight recent advances in understanding how alterations in these pathways contribute to pathology in RA and SLE, and discuss new therapeutic strategies that may allow specific targeting of small GTPases in the clinic.
Collapse
Affiliation(s)
- Kris A Reedquist
- Division of Clinical Immunology and Rheumatology, Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | |
Collapse
|
19
|
Sustained Rap1 activation in autoantigen-specific T lymphocytes attenuates experimental autoimmune encephalomyelitis. J Neuroimmunol 2012; 250:35-43. [PMID: 22688423 DOI: 10.1016/j.jneuroim.2012.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/14/2012] [Accepted: 05/18/2012] [Indexed: 11/21/2022]
Abstract
Altered Ras superfamily guanine nucleotide triphosphatase signaling may contribute to the activation of autoreactive T cells in diseases such as rheumatoid arthritis and systemic lupus erythematosus. Here, we show that transgenic expression of activated Rap1, a Ras-related protein which is protective in murine arthritis, in both wildtype (WT) and 2D2 mice, enhances autoreactive T cell activation by myelin oligodendrocyte glycoprotein peptide in vitro and in vivo. However, RapV12 reduces the number of autoreactive T cells in both WT and 2D2 mice, and increases murine survival in experimental autoimmune encephalitis, suggesting Rap1 activation restricts autoimmune T cell-mediated pathology through enhancing tolerance.
Collapse
|
20
|
Role of CREM in systemic lupus erythematosus. Cell Immunol 2012; 276:10-5. [PMID: 22560675 DOI: 10.1016/j.cellimm.2012.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/23/2012] [Accepted: 04/10/2012] [Indexed: 12/22/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease. Immune complex, autoantibodies and autoreactive lymphocytes are involved in manifestations of SLE. Recently, investigations have indicated that expression of the transcription factor cAMP responsive element modulator (CREM) is abnormal in T cells and might play an important role in the pathogenesis of SLE. CREM has much influence on the promoters, such as IL-2, c-fos, TCR ζ, and SYK. Moreover, activity of CREM itself has been demonstrated, particularly with an auto-regulatory feedback mechanism. Therefore, we will discuss the association of CREM and SLE based on current knowledge to unravel the mechanism of CREM performance.
Collapse
|
21
|
Linker for activation of T cells is displaced from lipid rafts and decreases in lupus T cells after activation via the TCR/CD3 pathway. Clin Immunol 2011; 142:243-51. [PMID: 22285373 DOI: 10.1016/j.clim.2011.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/23/2022]
Abstract
Systemic lupus erythematosus (SLE) is characterized by abnormal signal transduction mechanisms in T lymphocytes. Linker for activation of T cells (LAT) couples TCR/CD3 activation with downstream signaling pathways. We reported diminished ERK 1/2 kinase activity in TCR/CD3 stimulated lupus T cells. In this study we evaluated the expression, phosphorylation, lipid raft and immunological synapse (IS) localization and colocalization of LAT with key signalosome molecules. We observed a diminished expression and an abnormal localization of LAT in lipid rafts and at the IS in activated lupus T cells. LAT phosphorylation, capture by GST-Grb2 fusion protein, and coupling to Grb2 and PLCγ1, was similar in healthy control and lupus T cells. Our results suggest that an abnormal localization of LAT within lipid rafts and its accelerated degradation after TCR/CD3 activation may compromise the assembly of the LAT signalosome and downstream signaling pathways required for full MAPK activation in lupus T cells.
Collapse
|
22
|
Hughes T, Sawalha AH. The role of epigenetic variation in the pathogenesis of systemic lupus erythematosus. Arthritis Res Ther 2011; 13:245. [PMID: 22044622 PMCID: PMC3308098 DOI: 10.1186/ar3484] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The focus of the present review is on the extent to which epigenetic alterations influence the development of systemic lupus erythematosus. Lupus is a systemic autoimmune disease characterized by the production of autoantibodies directed at nuclear self-antigens. A DNA methylation defect in CD4+ T cells has long been observed in idiopathic and drug-induced lupus. Recent studies utilizing high-throughput technologies have further characterized the nature of the DNA methylation defect in lupus CD4+ T cells. Emerging evidence in the literature is revealing an increasingly interconnected network of epigenetic dysregulation in lupus. Recent reports describe variable expression of a number of regulatory microRNAs in lupus CD4+ T cells, some of which govern the expression of DNA methyltransferase 1. While studies to date have revealed a significant role for epigenetic defects in the pathogenesis of lupus, the causal nature of epigenetic variation in lupus remains elusive. Future longitudinal epigenetic studies in lupus are therefore needed.
Collapse
Affiliation(s)
- Travis Hughes
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Amr H Sawalha
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- US Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- 825 NE 13th Street, MS#24, Oklahoma City, OK 73104, USA
| |
Collapse
|
23
|
Rapoport MJ, Bloch O, Amit-Vasina M, Yona E, Molad Y. Constitutive abnormal expression of RasGRP-1 isoforms and low expression of PARP-1 in patients with systemic lupus erythematosus. Lupus 2011; 20:1501-9. [PMID: 21976405 DOI: 10.1177/0961203311418790] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Defective expression of Ras guanil releasing protein-1 (RasGRP-1) and increased apoptosis have been reported in lymphocytes from SLE patients. Whether these aberrations are correlated and linked to disease activity has not been elucidated. METHODS Expression of normal 90 kDa RasGRP-1, its most prevalent 86 kDa isoform and full PARP-1 116 kDa and its cleavage fragment 84 kDa were determined in whole protein lysates of peripheral blood mononuclear cells (PBMC) in correlation with mitogen activated protein kinase (MAPK) activity and SLE clinical status in a large group of SLE patients during 1 year follow-up. RESULTS Expression of normal 90 kDa RasGRP-1 was comparable in patients and controls. However, SLE patients demonstrated a constitutively increased 86 kDa/90 kDA ratio (p < 0.01) and decreased full poly (ADP-ribose) polymerase protein-1 (PARP-1) expression (p < 0.002) compared with controls who were disease-independent. A remission in disease activity was associated with decreased RasGRP-1 expression. Expression of 84 kDa PARP-1 cleavage fragment was found in 15% of patients but in none of the controls. In addition, expression of PARP-1 correlated positively with normal 90 kDa RasGRP-1 expression and negatively with the RasGRP-1 86 kDa/90 kDA ratio. CONCLUSIONS These data suggest that constitutive aberrant expression of PARP-1 and RasGRP-1 ratio may act in concert to impair survival of lymphocytes in SLE patients.
Collapse
|
24
|
Hill L, Jeganathan V, Chinnasamy P, Grimaldi C, Diamond B. Differential roles of estrogen receptors α and β in control of B-cell maturation and selection. Mol Med 2010; 17:211-20. [PMID: 21107497 DOI: 10.2119/molmed.2010.00172] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 11/16/2010] [Indexed: 11/06/2022] Open
Abstract
It is clear that estrogen can accelerate and exacerbate disease in some lupus-prone mouse strains. It also appears that estrogen can contribute to disease onset or flare in a subset of patients with lupus. We have previously shown estrogen alters B-cell development to decrease lymphopoiesis and increase the frequency of marginal zone B cells. Furthermore, estrogen diminishes B-cell receptor signaling and allows for the increased survival of high-affinity DNA-reactive B cells. Here, we analyze the contribution of estrogen receptor α or β engagement to the altered B-cell maturation and selection mediated by increased exposure to estrogen. We demonstrate that engagement of either estrogen receptor α or β can alter B-cell maturation, but only engagement of estrogen receptor α is a trigger for autoimmunity. Thus, maturation and selection are regulated differentially by estrogen. These observations have therapeutic implications.
Collapse
Affiliation(s)
- Latia Hill
- Center for Autoimmune and Musculoskeletal Disease, The Feinstein Institute for Medical Research, Manhasset, New York 11030, United States of America
| | | | | | | | | |
Collapse
|
25
|
Mehta J, Genin A, Brunner M, Scalzi LV, Mishra N, Beukelman T, Cron RQ. Prolonged expression of CD154 on CD4 T cells from pediatric lupus patients correlates with increased CD154 transcription, increased nuclear factor of activated T cell activity, and glomerulonephritis. ACTA ACUST UNITED AC 2010; 62:2499-509. [PMID: 20506525 DOI: 10.1002/art.27554] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To assess CD154 expression in patients with pediatric systemic lupus erythematosus (SLE) and to explore a transcriptional mechanism that may explain dysregulated expression of CD154. METHODS Cell surface CD154 expression (pre- and postactivation) in peripheral blood CD4 T cells from 29 children with lupus and 29 controls matched for age, sex, and ethnicity was examined by flow cytometry. CD154 expression was correlated with clinical features, laboratory parameters, and treatments received. Increased CD154 expression on CD4 T cells from the SLE patients was correlated with CD154 message and transcription rates by real-time reverse transcription-polymerase chain reaction (RT-PCR) and nuclear run-on assays, respectively. Nuclear factor of activated T cell (NF-AT) transcription activity and mRNA levels in CD4 T cells from SLE patients were explored by reporter gene analysis and real-time RT-PCR, respectively. RESULTS CD154 surface protein levels were increased 1.44-fold in CD4 T cells from SLE patients as compared with controls in cells evaluated 1 day postactivation ex vivo. This increase correlated clinically with the presence of nephritis and an elevated erythrocyte sedimentation rate. Increased CD154 protein levels also correlated with increased CD154 mRNA levels and with CD154 transcription rates, particularly at later time points following T cell activation. Reporter gene analyses revealed a trend for increased NF-AT, but decreased activator protein 1 and similar NF-kappaB, activity in CD4 T cells from SLE patients as compared with controls. Moreover, NF-AT1 and, in particular, NF-AT2 mRNA levels were notably increased in CD4 T cells from SLE patients as compared with controls. CONCLUSION Following activation, cell surface CD154 is increased on CD4 T cells from pediatric lupus patients as compared with controls, and this increase correlates with the presence of nephritis, increased CD154 transcription rates, and increased NF-AT activity. These results suggest that NF-AT/calcineurin inhibitors, such as tacrolimus and cyclosporine, may be beneficial in the treatment of lupus nephritis.
Collapse
Affiliation(s)
- Jay Mehta
- Children's Hospital of Philadelphia, and University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
T cells contribute to the initiation and perpetuation of autoimmunity in systemic lupus erythematosus (SLE), and seem to be directly involved in the development of related organ pathology. Defects associated with CD8(+) and T-regulatory (T(REG)) cell function manifest in parallel with the expanded CD3(+)CD4(-)CD8(-) T cell lineage. The cytokine expression pattern is uniquely characterized by decreased expression of interleukin (IL)-2 and increased production of IL-17 and related cytokines. Therapeutic approaches that limit the cognate interaction between T cells and B cells, prevent inappropriate tissue homing and restore T(REG) cell function and the normal cytokine milieu have been entertained. Biochemical characterization of SLE T cells has revealed distinct early and late signaling aberrations, and has enabled the identification of novel molecular targets that can be corrected with small molecules, and biomarkers that may foretell disease activity and predict organ damage.
Collapse
|
27
|
Abstract
Systemic lupus erythematosus is a poorly understood autoimmune disease, characterized by autoantibodies to nuclear antigens and immune complex deposition in organs like the kidney. Current evidence indicates that a pathologic CD4+T cell subset, characterized by impaired extracellular signal-regulated kinase (ERK) pathway signaling, DNA hypomethylation, and consequent aberrant gene expression contributes to disease pathogenesis. Hydralazine is a lupus-inducing drug that also decreases T cell DNA methylation by inhibiting the ERK signaling pathway, replicating the defect found in lupus T cells. These observations suggest that defective ERK pathway signaling alters gene expression in T cells by inhibiting DNA methylation, contributing to lupus pathogenesis. The signaling defect in hydralazine-treated and lupus T cells has now been mapped to protein kinase C delta. Understanding the mechanism causing decreased ERK pathway signaling in lupus may shed light on mechanisms contributing to disease development in genetically predisposed people.
Collapse
Affiliation(s)
- Gabriela Gorelik
- Department of Medicine, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| | | |
Collapse
|
28
|
Wong CK, Wong PTY, Tam LS, Li EK, Chen DP, Lam CWK. Activation profile of intracellular mitogen-activated protein kinases in peripheral lymphocytes of patients with systemic lupus erythematosus. J Clin Immunol 2010; 29:738-46. [PMID: 19756990 DOI: 10.1007/s10875-009-9318-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 06/30/2009] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a systemic autoimmune disease associated with aberrant activation of T and B lymphocytes. Abnormal activation of intracellular signaling molecules in lymphocytes by inflammatory cytokines can instigate the inflammation in SLE. MATERIALS AND METHODS The activation of extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) in inflammatory cytokine IL-18-activated monocytes, CD4+ T helper (Th) lymphocytes, CD8+ T lymphocytes, and CD19+ B lymphocytes in 22 SLE patients and 20 sex- and age-matched control subjects were measured by flow cytometry. RESULTS AND DISCUSSION The basal expressions of phospho-p38 MAPK in CD4+ T lymphocytes, CD8+ T lymphocytes, and B lymphocytes were significantly higher in SLE patients than controls (all p<0.05). The expression of phospho-p38 MAPK in CD4+ T lymphocytes, CD8+ T lymphocytes and B lymphocytes, and phospho-JNK in CD8+ T lymphocytes and B lymphocytes was also significantly elevated in SLE patients upon the activation by IL-18, exhibiting significant correlation with the plasma concentrations of Th1 chemokine CXCL10 (all p<0.05). The expression of phospho-JNK in IL-18 activated CD8+ T lymphocytes and the relative % fold increase of the expression of phospho-JNK upon IL-18 activation in B lymphocytes were significantly correlated with SLE disease activity index (both p<0.05). CONCLUSION The inflammation-mediated activation of JNK and p38 MAPK signaling pathways in T and B lymphocytes can be the underlying intracellular mechanisms causing lymphocyte hyperactivity in SLE.
Collapse
Affiliation(s)
- Chun K Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
29
|
The Ras guanine nucleotide exchange factor RasGRF1 promotes matrix metalloproteinase-3 production in rheumatoid arthritis synovial tissue. Arthritis Res Ther 2009; 11:R121. [PMID: 19678938 PMCID: PMC2745805 DOI: 10.1186/ar2785] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/24/2009] [Accepted: 08/13/2009] [Indexed: 12/14/2022] Open
Abstract
Introduction Fibroblast-like synoviocytes (FLS) from rheumatoid arthritis (RA) patients share many similarities with transformed cancer cells, including spontaneous production of matrix metalloproteinases (MMPs). Altered or chronic activation of proto-oncogenic Ras family GTPases is thought to contribute to inflammation and joint destruction in RA, and abrogation of Ras family signaling is therapeutic in animal models of RA. Recently, expression and post-translational modification of Ras guanine nucleotide releasing factor 1 (RasGRF1) was found to contribute to spontaneous MMP production in melanoma cancer cells. Here, we examine the potential relationship between RasGRF1 expression and MMP production in RA, reactive arthritis, and inflammatory osteoarthritis synovial tissue and FLS. Methods Expression of RasGRF1, MMP-1, MMP-3, and IL-6 was detected in synovial tissue by immunohistochemistry and stained sections were evaluated by digital image analysis. Expression of RasGRF1 in FLS and synovial tissue was also assessed by immunoblotting. Double staining was performed to detect proteins in specific cell populations, and cells producing MMP-1 and MMP-3. RasGRF1 expression was manipulated in RA FLS by cDNA transfection and gene silencing, and effects on MMP-1, TIMP-1, MMP-3, IL-6, and IL-8 production measured by ELISA. Results Expression of RasGRF1 was significantly enhanced in RA synovial tissue, and detected in FLS and synovial macrophages in situ. In cultured FLS and synovial biopsies, RasGRF1 was detected by immunoblotting as a truncated fragment lacking its negative regulatory domain. Production of MMP-1 and MMP-3 in RA but not non-RA synovial tissue positively correlated with expression of RasGRF1 and co-localized in cells expressing RasGRF1. RasGRF1 overexpression in FLS induced production of MMP-3, and RasGRF1 silencing inhibited spontaneous MMP-3 production. Conclusions Enhanced expression and post-translational modification of RasGRF1 contributes to MMP-3 production in RA synovial tissue and the semi-transformed phenotype of RA FLS.
Collapse
|
30
|
BLASINI ANAM, RODRíGUEZ MARTA. ALTERED SIGNALING TRIGGERED BY LIGATION OF THE TCR/CD3 RECEPTOR IN T LYMPHOCYTES FROM PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOSUS: THE ROAD FROM ANERGY TO AUTOIMMUNITY. Int Rev Immunol 2009. [DOI: 10.1080/08830180490452594-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Abstract
T-cell abnormalities and aberrant T helper cytokine profiles have been implicated in the loss of immune tolerance to nuclear and cytoplasmic antigens and linked to a variety of clinical manifestations in systemic lupus erythematosus (SLE). Here, we review the role of T cells in promoting and maintaining SLE in relation to their cellular and molecular abnormalities and provide an update on recent T cell-targeted therapeutic approaches for the restoration of T cell homeostasis in the disease.
Collapse
Affiliation(s)
- A La Cava
- Division of Rheumatology, Department of Medicine, University of California, Los Angeles, California, USA.
| |
Collapse
|
32
|
Sunahori K, Juang YT, Tsokos GC. Methylation status of CpG islands flanking a cAMP response element motif on the protein phosphatase 2Ac alpha promoter determines CREB binding and activity. THE JOURNAL OF IMMUNOLOGY 2009; 182:1500-8. [PMID: 19155497 DOI: 10.4049/jimmunol.182.3.1500] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein phosphatase 2A (PP2A) is a major serine/threonine protein phosphatase in eukaryotic cells and is involved in many essential aspects of cell function. The catalytic subunit of the enzyme (PP2Ac), a part of the core enzyme, has two isoforms, alpha (PP2Ac alpha) and beta (PP2Ac beta), of which PP2Ac alpha is the major form expressed in vivo. Deregulation of PP2A expression has been linked to several diseases, but the mechanisms that control the expression of this enzyme are still unclear. We conducted experiments to decipher molecular mechanisms involved in the regulation of the PP2Ac alpha promoter in human primary T cells. After preparing serially truncated PP2Ac alpha promoter luciferase constructs, we found that the region stretching around 240 bases upstream from the translation initiation site was of functional significance and included a cAMP response element motif flanked by three GC boxes. Shift assays revealed that CREB/phosphorylated CREB and stable protein 1 could bind to the region. Furthermore, we demonstrated that methylation of deoxycytosine in the CpG islands limited binding of phosphorylated CREB and the activity of the PP2Ac alpha promoter. In contrast, the binding of stable protein 1 to a GC box within the core promoter region was not affected by DNA methylation. Primary T cells treated with 5-azacitidine, a DNA methyltransferase inhibitor, showed increased expression of PP2Ac alpha mRNA. We propose that conditions associated with hypomethylation of CpG islands, such as drug-induced lupus, permit increased PP2Ac expression.
Collapse
Affiliation(s)
- Katsue Sunahori
- Division of Rheumatology in Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
33
|
Kabouridis PS, Jury EC. Lipid rafts and T-lymphocyte function: implications for autoimmunity. FEBS Lett 2008; 582:3711-8. [PMID: 18930053 PMCID: PMC2596348 DOI: 10.1016/j.febslet.2008.10.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/06/2008] [Accepted: 10/07/2008] [Indexed: 12/11/2022]
Abstract
Experimental evidence indicates that the mammalian cell membrane is compartmentalized. A structural feature that supports membrane segmentation implicates assemblies of selected lipids broadly referred to as lipid rafts. In T-lymphocytes, lipid rafts are implicated in signalling from the T-cell antigen receptor (TCR) and in localization and function of proteins residing proximal to the receptor. This review summarizes the current literature that deals with lipid raft involvement in T-cell activation and places particular emphasis in recent studies investigating lipid rafts in autoimmunity. The potential of lipid rafts as targets for the development of a new class of immune-modulating compounds is discussed.
Collapse
Affiliation(s)
- Panagiotis S Kabouridis
- William Harvey Research Institute, Queen Mary's School of Medicine & Dentistry, University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| | | |
Collapse
|
34
|
Gorjestani S, Rider V, Kimler BF, Greenwell C, Abdou NI. Extracellular signal-regulated kinase 1/2 signalling in SLE T cells is influenced by oestrogen and disease activity. Lupus 2008; 17:548-54. [PMID: 18539708 DOI: 10.1177/0961203307087982] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that occurs primarily in women of reproductive age. The disease is characterized by exaggerated T-cell activity and abnormal T-cell signalling. The mitogen-activated protein kinase (MAPK) pathway is involved in the maintenance of T-cell tolerance that fails in patients with SLE. Oestrogen is a female sex hormone that binds to nuclear receptors and alters the rate of gene transcription. Oestrogen can also act through the plasma membrane and rapidly stimulate second messengers including calcium flux and kinase activation. In this study, we investigated whether oestrogen influences the activation of MAPK signalling through the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in activated SLE T cells. SLE and control T cells were cultured in serum-free medium without and with oestradiol (10(-7) M) for 18 h. The T cells were activated with phorbol 12 myristate 13-acetate and ionomycin for various time points (0-60 min), and the amount of phosphorylated ERK1/2 was measured by immunoblotting. There were no differences in ERK1/2 phosphorylation between SLE and control T cells at 5 and 15 min after the activation stimulus. However, comparison between the amount of phosphorylated ERK1/2 in SLE T cells from the same patients cultured without and with oestradiol showed a significant oestrogen-dependent suppression (P=0.48) of ERK1/2 in patients with inactive/mild systemic lupus erythematosus disease activity index (SLEDAI) (0-2) compared with patients with moderate (4-6) or active (8-12) SLEDAI scores. These results suggest that the suppression of MAPK through ERK1/2 phosphorylation is sensitive to oestradiol in patients with inactive or mild disease, but the sensitivity is not maintained when disease activity increases. Furthermore, studies are now necessary to understand the mechanisms by which oestrogen influences MAPK activation in SLE T cells.
Collapse
Affiliation(s)
- S Gorjestani
- Department of Biology, Pittsburg State University, Pittsburg, Kansas 66762, USA
| | | | | | | | | |
Collapse
|
35
|
Jury EC, Eldridge J, Isenberg DA, Kabouridis PS. Agrin signalling contributes to cell activation and is overexpressed in T lymphocytes from lupus patients. THE JOURNAL OF IMMUNOLOGY 2008; 179:7975-83. [PMID: 18025246 DOI: 10.4049/jimmunol.179.11.7975] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It is shown in this study that the heparan sulfate proteoglycan agrin is overexpressed in T cells isolated from patients with the autoimmune disease systemic lupus erythematosus (SLE). Freshly isolated CD4(+) and CD8(+) subpopulations both exhibited higher expression over healthy controls, which however, gradually declined when cells were cultured in vitro. Agrin expression was induced following in vitro activation of cells via their Ag receptor, or after treatment with IFN-alpha, a cytokine shown to be pathogenic in lupus. Furthermore, serum from SLE patients with active disease was able to induce agrin expression when added to T cells from healthy donors, an increase that was partially blocked by neutralizing anti-IFN-alpha Abs. Cross-linking agrin with mAbs resulted in rapid reorganization of the actin cytoskeleton, activation of the ERK MAPK cascade, and augmentation of anti-CD3-induced proliferation and IL-10 production, indicating that agrin is a functional receptor in T cells. These results demonstrate that agrin expression in human T cells is regulated by cell activation and IFN-alpha, and may have an important function during cell activation with potential implications for autoimmunity.
Collapse
Affiliation(s)
- Elizabeth C Jury
- Centre for Rheumatology, Royal Free and University College Medical School, University College London, London, UK.
| | | | | | | |
Collapse
|
36
|
Crispín JC, Kyttaris VC, Juang YT, Tsokos GC. How signaling and gene transcription aberrations dictate the systemic lupus erythematosus T cell phenotype. Trends Immunol 2008; 29:110-5. [PMID: 18249583 DOI: 10.1016/j.it.2007.12.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/04/2007] [Accepted: 12/05/2007] [Indexed: 02/02/2023]
Abstract
T cells from patients with systemic lupus erythematosus (SLE) exhibit several discrete and specific defects that alter signaling pathways and, thus, the gene expression pattern and behavior upon stimulation. Rewiring of the CD3 complex and aggregation of surface-membrane lipid rafts grant SLE T cells a lower activation threshold and distort the ensuing signaling events. Additionally, increased expression of adhesion molecules within aggregated lipid rafts guides them to target organs. Aberrant cell signaling causes altered transcription factor expression and abnormal DNA-methylation patterns that lead to skewed gene expression. The result is an abnormally functioning T cell that exhibits several molecular alterations that can be exploited as therapeutic or diagnostic markers.
Collapse
Affiliation(s)
- José C Crispín
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
37
|
Mor A, Philips MR, Pillinger MH. The role of Ras signaling in lupus T lymphocytes: biology and pathogenesis. Clin Immunol 2007; 125:215-23. [PMID: 17913587 DOI: 10.1016/j.clim.2007.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 08/11/2007] [Accepted: 08/13/2007] [Indexed: 12/17/2022]
Abstract
Ras is a GTP-binding protein that plays multiple important roles in cell activation, including proliferative and inflammatory responses. Ras regulation is complex and depends upon post-translational processing, organelle-specific localization and the activation/deactivation of Ras by a number of regulatory molecules. Ras activation in T lymphocytes demonstrates unique features, including its dependence on the T cell receptor and the ability of Ras to signal from both the plasma membrane and the Golgi. Abnormalities of Ras expression, activation and signaling pathways in T lymphocytes appear to play important roles in the development of autoimmunity in general, and systemic lupus erythematosus in particular. In this manuscript, we review the basic biology of Ras in T lymphocytes, and the ways in which T lymphocyte Ras abnormalities may contribute to the development of a lupus phenotype.
Collapse
Affiliation(s)
- Adam Mor
- Department of Medicine, Division of Rheumatology, New York University School of Medicine, the NYU Hospital for Joint Diseases, NY 10003, USA.
| | | | | |
Collapse
|
38
|
Jury EC, Flores-Borja F, Kabouridis PS. Lipid rafts in T cell signalling and disease. Semin Cell Dev Biol 2007; 18:608-15. [PMID: 17890113 PMCID: PMC2596300 DOI: 10.1016/j.semcdb.2007.08.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 07/24/2007] [Accepted: 08/16/2007] [Indexed: 11/18/2022]
Abstract
Lipid rafts is a blanket term used to describe distinct areas in the plasma membrane rich in certain lipids and proteins and which are thought to perform diverse functions. A large number of studies report on lipid rafts having a key role in receptor signalling and activation of lymphocytes. In T cells, lipid raft involvement was demonstrated in the early steps during T cell receptor (TCR) stimulation. Interestingly, recent evidence has shown that signalling in these domains differs in T cells isolated from patients with autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Here, we discuss these findings and explore the potential of lipid rafts as targets for the development of a new class of agents to downmodulate immune responses and for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Elizabeth C. Jury
- Centre for Rheumatology, Royal Free and University College Medical School, University College London, London W1P 4JF, United Kingdom
- Corresponding author at: Bone and Joint Research Unit, Queen Mary's School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom. Tel.: +44 207 679 9634; fax: +44 207 679 9143.
| | - Fabian Flores-Borja
- Centre for Rheumatology, Royal Free and University College Medical School, University College London, London W1P 4JF, United Kingdom
| | - Panagiotis S. Kabouridis
- Bone and Joint Research Unit, Queen Mary's School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom
- Corresponding author. Tel.: +44 207882 5664; fax: +44 207882 6121.
| |
Collapse
|
39
|
Mazari L, Ouarzane M, Zouali M. Subversion of B lymphocyte tolerance by hydralazine, a potential mechanism for drug-induced lupus. Proc Natl Acad Sci U S A 2007; 104:6317-22. [PMID: 17404230 PMCID: PMC1851062 DOI: 10.1073/pnas.0610434104] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence indicates that epigenetic alterations contribute to exacerbated activation or deregulation of the mechanisms that maintain tolerance to self-antigens in patients with lupus, a systemic autoimmune disease that can be triggered by medications taken to treat a variety of conditions. Here, we tested the effect of hydralazine, an antihypertensive drug that triggers lupus, on receptor editing, a chief mechanism of B lymphocyte tolerance to self-antigens. Using mice expressing transgenic human Igs, we found that hydralazine impairs up-regulation of RAG-2 gene expression and reduces secondary Ig gene rearrangements. Receptor editing was also partially abolished in a dose-dependent manner by a specific inhibitor of MEK1/2. Adoptive transfer of bone marrow B cells pretreated with hydralazine or with a MEK inhibitor to naïve syngeneic mice resulted in autoantibody production. We conclude that, by disrupting receptor editing, hydralazine subverts B lymphocyte tolerance to self and contributes to generation of pathogenic autoreactivity. We also postulate that inhibition of the Erk signaling pathway contributes to the pathogenesis of hydralazine-induced lupus and idiopathic human lupus.
Collapse
Affiliation(s)
- Lynda Mazari
- Institut National de la Santé et de la Recherche Médicale, U430, University of Paris 6, F-75674 Paris, France
| | - Meryem Ouarzane
- Institut National de la Santé et de la Recherche Médicale, U430, University of Paris 6, F-75674 Paris, France
| | - Moncef Zouali
- Institut National de la Santé et de la Recherche Médicale, U430, University of Paris 6, F-75674 Paris, France
- *To whom correspondence should be addressed at:
Institut National de la Santé et de la Recherche Médicale U606, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, 75475 Paris Cedex 10, France. E-mail:
| |
Collapse
|
40
|
Jury EC, Isenberg DA, Mauri C, Ehrenstein MR. Atorvastatin restores Lck expression and lipid raft-associated signaling in T cells from patients with systemic lupus erythematosus. THE JOURNAL OF IMMUNOLOGY 2007; 177:7416-22. [PMID: 17082661 DOI: 10.4049/jimmunol.177.10.7416] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Loss of tolerance to self-Ags in patients with systemic lupus erythematosus (SLE), a prototypic autoimmune disease, is associated with dysregulation of T cell signaling, including the depletion of total levels of lymphocyte-specific protein kinase (Lck) from sphingolipid-cholesterol-enriched membrane microdomains (lipid rafts). Inhibitors of 3-hyroxy-3-methylgluteryl CoA reductase (statins) can modify the composition of lipid rafts, resulting in alteration of T cell signaling. In this study, we show that atorvastatin targets the distribution of signaling molecules in T cells from SLE patients, by disrupting the colocalization of total Lck and CD45 within lipid rafts, leading to a reduction in the active form of Lck. Upon T cell activation using anti-CD3/anti-CD28 in vitro, the rapid recruitment of total Lck to the immunological synapse was inhibited by atorvastatin, whereas ERK phosphorylation, which is decreased in SLE T cells, was reconstituted. Furthermore, atorvastatin reduced the production of IL-10 and IL-6 by T cells, implicated in the pathogenesis of SLE. Thus, atorvastatin reversed many of the signaling defects characteristic of SLE T cells. These findings demonstrate the potential for atorvastatin to target lipid raft-associated signaling abnormalities in autoreactive T cells and provide a rationale for its use in therapy of autoimmune disease.
Collapse
Affiliation(s)
- Elizabeth C Jury
- Department of Medicine, Centre for Rheumatology, University College London, United Kingdom.
| | | | | | | |
Collapse
|
41
|
Abstract
Susceptibility to the autoimmune phenotype of systemic lupus erythematosus (SLE) is heritable. Linkage analysis and recent advances in the field of single nucleotide polymorphisms (SNPs) have resulted in the identification of several genetic loci and functional allelic variants of signaling proteins which have become the mainstay of understanding disease susceptibility and exploring the basis of autoimmunity in SLE. However, genetic heterogeneity and possible epistatic interactions among genetic elements have precluded replication of these findings in multiple population groups and thus complicated their interpretation. In this regard, the discovery that a plethora of normal signaling proteins are expressed in abnormal amounts in immune cells from patients with SLE has gained significance. Thus, the key to precise elucidation of the pathologic basis of autoimmunity in SLE lies in tying genetics and disease biology. This review highlights recent discoveries of important functional genetic variants and altered expression of normal signaling proteins that network together to disrupt peripheral tolerance and initiate the autoimmune process in SLE.
Collapse
Affiliation(s)
- Sandeep Krishnan
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | | | | |
Collapse
|
42
|
Rapoport MJ, Sharabi A, Aharoni D, Bloch O, Zinger H, Dayan M, Mozes E. Amelioration of SLE-like manifestations in (NZBxNZW)F1 mice following treatment with a peptide based on the complementarity determining region 1 of an autoantibody is associated with a down-regulation of apoptosis and of the pro-apoptotic factor JNK kinase. Clin Immunol 2005; 117:262-70. [PMID: 16257268 DOI: 10.1016/j.clim.2005.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 08/11/2005] [Accepted: 09/13/2005] [Indexed: 01/11/2023]
Abstract
Treatment with peptides based on the complementarity determining regions (CDR) of murine and human monoclonal anti-DNA antibodies that bear the common idiotype, 16/6 Id, ameliorates disease manifestations of mice with either induced or spontaneous SLE. Aberrant expression and function of the p21Ras/MAP kinase pathway are associated with active SLE. Therefore, we examined the effect of treatment with a CDR1-based peptide of a human autoantibody (hCDR1) on the p21Ras pathway and SLE manifestations of SLE-prone (NZBxNZW)F1 mice. Untreated SLE-afflicted mice demonstrated increased expression of p21Ras and the phosphorylated active form of its down-stream element JNK kinase in conjunction with reduced hSOS and unchanged p120GAP, as compared to healthy controls. Amelioration of SLE manifestations following treatment with hCDR1 was associated with a diminished expression of phosphorylated JNK kinase, mainly in the T cell population that also exhibited reduced rates of apoptosis. Thus, hCDR1 therapy ameliorates SLE, at least in part, via down-regulation of the activity of the pro-apoptotic JNK kinase.
Collapse
Affiliation(s)
- Micha J Rapoport
- Department C of Internal Medicine, Assaf Harofeh Medical Center, Zerifin 70300, Israel
| | | | | | | | | | | | | |
Collapse
|
43
|
Katsiari CG, Kyttaris VC, Juang YT, Tsokos GC. Protein phosphatase 2A is a negative regulator of IL-2 production in patients with systemic lupus erythematosus. J Clin Invest 2005; 115:3193-204. [PMID: 16224536 PMCID: PMC1253625 DOI: 10.1172/jci24895] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 08/09/2005] [Indexed: 02/05/2023] Open
Abstract
Decreased IL-2 production in systemic lupus erythematosus (SLE) represents a central component of the disease immunopathology. We report that the message, protein, and enzymatic activity of the catalytic subunit of protein phosphatase 2A (PP2Ac), but not PP1, are increased in patients with SLE regardless of disease activity and treatment and in a disease-specific manner. Treatment of SLE T cells with PP2Ac-siRNA decreased the protein levels and activity of PP2Ac in a specific manner and increased the levels of phosphorylated cAMP response element-binding protein and its binding to the IL2 and c-fos promoters, as well as increased activator protein 1 activity, causing normalization of IL-2 production. Our data document increased activity of PP2A as a novel SLE disease-specific abnormality and define a distinct mechanism whereby it represses IL-2 production. We propose the use of PP2Ac-siRNA as a novel tool to correct T cell IL-2 production in SLE patients.
Collapse
Affiliation(s)
- Christina G Katsiari
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA
| | | | | | | |
Collapse
|
44
|
Juang YT, Wang Y, Solomou EE, Li Y, Mawrin C, Tenbrock K, Kyttaris VC, Tsokos GC. Systemic lupus erythematosus serum IgG increases CREM binding to the IL-2 promoter and suppresses IL-2 production through CaMKIV. J Clin Invest 2005. [PMID: 15841182 DOI: 10.1172/jci200522854] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) T cells express high levels of cAMP response element modulator (CREM) that binds to the IL-2 promoter and represses the transcription of the IL-2 gene. This study was designed to identify pathways that lead to increased binding of CREM to the IL-2 promoter in SLE T cells. Ca(2+)/calmodulin-dependent kinase IV (CaMKIV) was found to be increased in the nucleus of SLE T cells and to be involved in the overexpression of CREM and its binding to the IL-2 promoter. Treatment of normal T cells with SLE serum resulted in increased expression of CREM protein, increased binding of CREM to the IL-2 promoter, and decreased IL-2 promoter activity and IL-2 production. This process was abolished when a dominant inactive form of CaMKIV was expressed in normal T cells. The effect of SLE serum resided within the IgG fraction and was specifically attributed to anti-TCR/CD3 autoantibodies. This study identifies CaMKIV as being responsible for the increased expression of CREM and the decreased production of IL-2 in SLE T cells and demonstrates that anti-TCR/CD3 antibodies present in SLE sera can account for the increased expression of CREM and the suppression of IL-2 production.
Collapse
Affiliation(s)
- Yuang-Taung Juang
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Juang YT, Wang Y, Solomou EE, Li Y, Mawrin C, Tenbrock K, Kyttaris VC, Tsokos GC. Systemic lupus erythematosus serum IgG increases CREM binding to the IL-2 promoter and suppresses IL-2 production through CaMKIV. J Clin Invest 2005; 115:996-1005. [PMID: 15841182 PMCID: PMC1070410 DOI: 10.1172/jci22854] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 01/05/2005] [Indexed: 01/16/2023] Open
Abstract
Systemic lupus erythematosus (SLE) T cells express high levels of cAMP response element modulator (CREM) that binds to the IL-2 promoter and represses the transcription of the IL-2 gene. This study was designed to identify pathways that lead to increased binding of CREM to the IL-2 promoter in SLE T cells. Ca(2+)/calmodulin-dependent kinase IV (CaMKIV) was found to be increased in the nucleus of SLE T cells and to be involved in the overexpression of CREM and its binding to the IL-2 promoter. Treatment of normal T cells with SLE serum resulted in increased expression of CREM protein, increased binding of CREM to the IL-2 promoter, and decreased IL-2 promoter activity and IL-2 production. This process was abolished when a dominant inactive form of CaMKIV was expressed in normal T cells. The effect of SLE serum resided within the IgG fraction and was specifically attributed to anti-TCR/CD3 autoantibodies. This study identifies CaMKIV as being responsible for the increased expression of CREM and the decreased production of IL-2 in SLE T cells and demonstrates that anti-TCR/CD3 antibodies present in SLE sera can account for the increased expression of CREM and the suppression of IL-2 production.
Collapse
Affiliation(s)
- Yuang-Taung Juang
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Datta SK, Zhang L, Xu L. T-helper cell intrinsic defects in lupus that break peripheral tolerance to nuclear autoantigens. J Mol Med (Berl) 2005; 83:267-78. [PMID: 15630591 DOI: 10.1007/s00109-004-0624-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 11/16/2004] [Indexed: 12/22/2022]
Abstract
Special populations of T helper cells drive B cells to produce IgG class switched, pathogenic autoantibodies in lupus. The major source of antigenic determinants (epitopes) that trigger interactions between lupus T and B cells is nucleosomes of apoptotic cells. These epitopes can be used for antigen-specific therapy of lupus. Secondly, the autoimmune T cells of lupus are sustained because they resist anergy and activation-induced programmed cell death by markedly upregulating cyclooxygenase (COX) 2 along with the antiapoptotic molecule c-FLIP. Only certain COX-2 inhibitors block pathogenic anti-DNA autoantibody production in lupus by causing death of autoimmune T helper cells. Hence COX-2 inhibitors may work independently of their ability to block the enzymatic function of COX-2, and structural peculiarities of these select inhibitors may lead to better drug discovery and design.
Collapse
Affiliation(s)
- Syamal K Datta
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 240 East Huron St., Chicago, IL 60611, USA.
| | | | | |
Collapse
|
47
|
Mannick EE, Bonomolo JC, Horswell R, Lentz JJ, Serrano MS, Zapata-Velandia A, Gastanaduy M, Himel JL, Rose SL, Udall JN, Hornick CA, Liu Z. Gene expression in mononuclear cells from patients with inflammatory bowel disease. Clin Immunol 2004; 112:247-57. [PMID: 15308118 DOI: 10.1016/j.clim.2004.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 03/17/2004] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Discovery of Nod2 as the inflammatory bowel disease 1 (IBD1) susceptibility gene has brought to light the significance of mononuclear cells in inflammatory bowel disease pathogenesis. The purpose of this study was to examine changes in gene expression in peripheral blood mononuclear cells in patients with untreated Crohn's disease (CD) and ulcerative colitis (UC) as compared to patients with other inflammatory gastrointestinal disorders and to healthy controls. METHODS We used a 2400 gene cDNA glass slide array (MICROMAX) to examine gene expression in peripheral blood mononuclear cells from seven patients with Crohn's disease, five patients with ulcerative colitis, 10 patients with other inflammatory gastrointestinal disorders, and 22 age- and sex-matched controls. Results. Novel categories of genes differentially expressed in Crohn's disease and ulcerative colitis patients included genes regulating hematopoietic cell differentiation and leukemogenesis, lipid raft-associated signaling, the actin cytoskeleton, and vesicular trafficking. CONCLUSIONS Altered gene expression in mononuclear cells may contribute to inflammatory bowel disease pathogenesis.
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW T cells from patients with systemic lupus erythematosus have been shown to be activated in vivo and provide cognate and noncognate help to autoreactive B cells. In particular, T cells exhibit aberrant responses to stimuli with increased calcium influx and decreased production of interferon-gamma and interleukin-2. An imbalance in the proapoptotic/antiapoptotic mechanisms also seems to contribute to the persistence of autoreactive clones and the lack of productive immune responses. The purpose of this review is to discuss recent studies that shed light into the pathogenetic mechanisms underlying T-cell dysfunction in systemic lupus erythematosus. RECENT FINDINGS Significant progress has been made in understanding the causes of the abnormal T-cell receptor and other surface molecule-mediated signaling. Furthermore, investigators have characterized better the intracellular and nuclear signaling pathways that lead to abnormal cytokine production in lupus. Finally, efforts to correct these abnormalities in vitro have yielded promising results. SUMMARY New findings in the pathophysiology of T cells in lupus and especially the application of novel techniques to correct immune cell aberrations on the transcriptional and translational levels give hope for the development of rational treatments in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Vasileios C Kyttaris
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | |
Collapse
|
49
|
Tsokos GC, Mitchell JP, Juang YT. T cell abnormalities in human and mouse lupus: intrinsic and extrinsic. Curr Opin Rheumatol 2003; 15:542-7. [PMID: 12960478 DOI: 10.1097/00002281-200309000-00004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The purpose of this review is to discuss recent developments in the biology and biochemistry of the T cells in mice and humans with systemic lupus erythematosus. T cells that recognize self-antigens are present in systemic lupus erythematosus and normal organisms. It is obvious, though, that an autoimmune environment should be present to disrupt anergy and instigate a response that might cause disease. The environment that lifts anergy is defined by distinct molecular aberrations that include rewiring of the T cells. Aberrant transcription of genes that encode proteins involved in autoimmunity can be traced to abnormal expression and activation of transcription factors and promoter methylation intensity. Only certain components of the autoimmune response can be linked to pathologic changes in the target organ that might be dictated by additional local factors. The works reviewed imply that self-peptides might be considered to reestablish lost tolerance, whereas correction of the aberrant biochemistry might normalize T cell function and limit disease.
Collapse
Affiliation(s)
- George C Tsokos
- Department of Medicine, Uniformed Services University, Bethesda, Maryland, USA.
| | | | | |
Collapse
|