1
|
Dresler J, Herzig V, Vilcinskas A, Lüddecke T. Enlightening the toxinological dark matter of spider venom enzymes. NPJ BIODIVERSITY 2024; 3:25. [PMID: 39271930 PMCID: PMC11399385 DOI: 10.1038/s44185-024-00058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
Spiders produce highly adapted venoms featuring a complex mixture of biomolecules used mainly for hunting and defense. The most prominent components are peptidic neurotoxins, a major focus of research and drug development, whereas venom enzymes have been largely neglected. Nevertheless, investigation of venom enzymes not only reveals insights into their biological functions, but also provides templates for future industrial applications. Here we compared spider venom enzymes validated at protein level contained in the VenomZone database and from all publicly available proteo-transcriptomic spider venom datasets. We assigned reported enzymes to cellular processes and known venom functions, including toxicity, prey pre-digestion, venom preservation, venom component activation, and spreading factors. Our study unveiled extensive discrepancy between public databases and publications with regard to enzyme coverage, which impedes the development of novel spider venom enzyme-based applications. Uncovering the previously unrecognized abundance and diversity of venom enzymes will open new avenues for spider venom biodiscovery.
Collapse
Affiliation(s)
- Josephine Dresler
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany.
| | - Volker Herzig
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Andreas Vilcinskas
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Gießen, Germany
| | - Tim Lüddecke
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany.
| |
Collapse
|
2
|
Bird TL, Moeti S, Hitchcock RK, Kelly MC, Chobolo LL, Gotcha N, Moatlhodi KK, Mukoka LD, Sekopo EK, Chaboo CS. Orb-web spider Argiope (Araneidae) as indigenous arrow poison of G/ui and G//ana San hunters in the Kalahari. PLoS One 2023; 18:e0276557. [PMID: 36630457 PMCID: PMC9833577 DOI: 10.1371/journal.pone.0276557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/08/2022] [Indexed: 01/12/2023] Open
Abstract
Hunting has been crucial in early human evolution. Some San (Bushmen) of southern Africa still practice their indigenous hunting. The use of poisons is one remarkable aspect of their bow-and-arrow hunting but the sources, taxonomic identifications of species used, and recipes, are not well documented. This study reports on fieldwork to investigate recent indigenous hunting practices of G/ui and G//ana San communities in the Central Kalahari Game Reserve (CKGR), Botswana. Here we discuss their use of spider poison. The hunters use the contents of the opisthosoma ('abdomen') of a spider as sole ingredient of the arrow poison and discard the prosoma that contains the venom-glands. Using taxonomic keys, we identified the spider as the garden orb-web spider Argiope australis (Walckenaer 1805) (Araneidae). The hunters' choice of this species is remarkable given the scientific perception that A. australis is of little medical importance. The species choice raises questions about how the spider fluids could kill game, particularly when the prosoma, which contains the venom glands, is not used. Possibilities include trauma, as a source of pathogens, or abdomen-containing toxins. Based on characteristics of Argiope Audouin 1826, we hypothesize that the choice of this species for arrow poisons might have evolved from the recognition of aposematic signalling or spiritual symbolism. Indigenous knowledge (IK) is an important source for advances in biotechnology but is in decline worldwide. The study contributes to the documentation of the San people, and their ancient IK, which is threatened by marginalization, political pressures, and climate change.
Collapse
Affiliation(s)
- Tharina L. Bird
- General Entomology, Ditsong National Museum of Natural History, Pretoria, South Africa
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
- * E-mail:
| | | | - Robert K. Hitchcock
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Kalahari Peoples Fund, Albuquerque, New Mexico, United States of America
| | - Melinda C. Kelly
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Kalahari Peoples Fund, Albuquerque, New Mexico, United States of America
| | - Lefang L. Chobolo
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| | - Nonofo Gotcha
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| | - Kgosi K. Moatlhodi
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| | - Leungo D. Mukoka
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| | - Emmanuel K. Sekopo
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| | - Caroline S. Chaboo
- Systematics Research Collections, University of Nebraska State Museum, Lincoln, Nebraska, United States of America
| |
Collapse
|
3
|
Walter A, Bechsgaard J, Scavenius C, Dyrlund TS, Sanggaard KW, Enghild JJ, Bilde T. Characterisation of protein families in spider digestive fluids and their role in extra-oral digestion. BMC Genomics 2017; 18:600. [PMID: 28797246 PMCID: PMC5553785 DOI: 10.1186/s12864-017-3987-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 08/01/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Spiders are predaceous arthropods that are capable of subduing and consuming relatively large prey items compared to their own body size. For this purpose, spiders have evolved potent venoms to immobilise prey and digestive fluids that break down nutrients inside the prey's body by means of extra-oral digestion (EOD). Both secretions contain an array of active proteins, and an overlap of some components has been anecdotally reported, but not quantified. We systematically investigated the extent of such protein overlap. As venom injection and EOD succeed each other, we further infer functional explanations, and, by comparing two spider species belonging to different clades, assess its adaptive significance for spider EOD in general. RESULTS We describe the protein composition of the digestive fluids of the mygalomorph Acanthoscurria geniculata and the araneomorph Stegodyphus mimosarum, in comparison with previously published data on a third spider species. We found a number of similar hydrolases being highly abundant in all three species. Among them, members of the family of astacin-like metalloproteases were particularly abundant. While the importance of these proteases in spider venom and digestive fluid was previously noted, we now highlight their widespread use across different spider taxa. Finally, we found species specific differences in the protein overlap between venom and digestive fluid, with the difference being significantly greater in S. mimosarum compared to A. geniculata. CONCLUSIONS The injection of venom precedes the injection with digestive fluid, and the overlap of proteins between venom and digestive fluid suggests an early involvement in EOD. Species specific differences in the overlap may reflect differences in ecology between our two study species. The protein composition of the digestive fluid of all the three species we compared is highly similar, suggesting that the cocktail of enzymes is highly conserved and adapted to spider EOD.
Collapse
Affiliation(s)
- André Walter
- Department of Bioscience, Aarhus University, Aarhus, Denmark.
| | | | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Thomas S Dyrlund
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kristian W Sanggaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Trine Bilde
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Fuzita FJ, Pinkse MWH, Patane JSL, Verhaert PDEM, Lopes AR. High throughput techniques to reveal the molecular physiology and evolution of digestion in spiders. BMC Genomics 2016; 17:716. [PMID: 27604083 PMCID: PMC5013568 DOI: 10.1186/s12864-016-3048-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 08/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spiders are known for their predatory efficiency and for their high capacity of digesting relatively large prey. They do this by combining both extracorporeal and intracellular digestion. Whereas many high throughput ("-omics") techniques focus on biomolecules in spider venom, so far this approach has not yet been applied to investigate the protein composition of spider midgut diverticula (MD) and digestive fluid (DF). RESULTS We here report on our investigations of both MD and DF of the spider Nephilingis (Nephilengys) cruentata through the use of next generation sequencing and shotgun proteomics. This shows that the DF is composed of a variety of hydrolases including peptidases, carbohydrases, lipases and nuclease, as well as of toxins and regulatory proteins. We detect 25 astacins in the DF. Phylogenetic analysis of the corresponding transcript(s) in Arachnida suggests that astacins have acquired an unprecedented role for extracorporeal digestion in Araneae, with different orthologs used by each family. The results of a comparative study of spiders in distinct physiological conditions allow us to propose some digestion mechanisms in this interesting animal taxon. CONCLUSION All the high throughput data allowed the demonstration that DF is a secretion originating from the MD. We identified enzymes involved in the extracellular and intracellular phases of digestion. Besides that, data analyses show a large gene duplication event in Araneae digestive process evolution, mainly of astacin genes. We were also able to identify proteins expressed and translated in the digestive system, which until now had been exclusively associated to venom glands.
Collapse
Affiliation(s)
- Felipe J Fuzita
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, 05503-000, Brazil.,Biotechnology Program, University of São Paulo, São Paulo, Brazil
| | - Martijn W H Pinkse
- Laboratory of Analytical Biotechnology and Innovative Peptide Biology, Delft University of Technology, Delft, The Netherlands
| | - José S L Patane
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Peter D E M Verhaert
- Laboratory of Analytical Biotechnology and Innovative Peptide Biology, Delft University of Technology, Delft, The Netherlands.,Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Adriana R Lopes
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, 05503-000, Brazil.
| |
Collapse
|
5
|
Fuzita FJ, Pinkse MWH, Verhaert PDEM, Lopes AR. Cysteine cathepsins as digestive enzymes in the spider Nephilengys cruentata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 60:47-58. [PMID: 25818482 DOI: 10.1016/j.ibmb.2015.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
Cysteine cathepsins are widely spread on living organisms associated to protein degradation in lysosomes, but some groups of Arthropoda (Heteroptera, Coleoptera, Crustacea and Acari) present these enzymes related to digestion of the meal proteins. Although spiders combine a mechanism of extra-oral with intracellular digestion, the sporadic studies on this subject were mainly concerned with the digestive fluid (DF) analysis. Thus, a more complete scenario of the digestive process in spiders is still lacking in the literature. In this paper we describe the identification and characterization of cysteine cathepsins in the midgut diverticula (MD) and DF of the spider Nephilengys cruentata by using enzymological assays. Furthermore, qualitative and quantitative data from transcriptomic followed by proteomic experiments were used together with biochemical assays for results interpretation. Five cathepsins L, one cathepsin F and one cathepsin B were identified by mass spectrometry, with cathepsins L1 (NcCTSL1) and 2 (NcCTSL2) as the most abundant enzymes. The native cysteine cathepsins presented acidic characteristics such as pH optima of 5.5, pH stability in acidic range and zymogen conversion to the mature form after in vitro acidification. NcCTSL1 seems to be a lysosomal enzyme with its recombinant form displaying acidic characteristics as the native ones and being inhibited by pepstatin. Evolutionarily, arachnid cathepsin L may have acquired different roles but its use for digestion is a common feature to studied taxa. Now a more elucidative picture of the digestive process in spiders can be depicted, with trypsins and astacins acting extra-orally under alkaline conditions whereas cysteine cathepsins will act in an acidic environment, likely in the digestive vacuoles or lysosome-like vesicles.
Collapse
Affiliation(s)
- Felipe J Fuzita
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, Brazil; Biotechnology Program, University of São Paulo, São Paulo, Brazil
| | - Martijn W H Pinkse
- Laboratory of Analytical Biotechnology & Innovative Peptide Biology, Delft University of Technology, Delft, The Netherlands
| | - Peter D E M Verhaert
- Laboratory of Analytical Biotechnology & Innovative Peptide Biology, Delft University of Technology, Delft, The Netherlands
| | - Adriana R Lopes
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, Brazil; Biotechnology Program, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
6
|
Biochemical and functional characterization of Parawixia bistriata spider venom with potential proteolytic and larvicidal activities. BIOMED RESEARCH INTERNATIONAL 2014; 2014:950538. [PMID: 24895632 PMCID: PMC4033418 DOI: 10.1155/2014/950538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 01/30/2023]
Abstract
Toxins purified from the venom of spiders have high potential to be studied pharmacologically and biochemically. These biomolecules may have biotechnological and therapeutic applications. This study aimed to evaluate the protein content of Parawixia bistriata venom and functionally characterize its proteins that have potential for biotechnological applications. The crude venom showed no phospholipase, hemorrhagic, or anti-Leishmania activities attesting to low genotoxicity and discrete antifungal activity for C. albicans. However the following activities were observed: anticoagulation, edema, myotoxicity and proteolysis on casein, azo-collagen, and fibrinogen. The chromatographic and electrophoretic profiles of the proteins revealed a predominance of acidic, neutral, and polar proteins, highlighting the presence of proteins with high molecular masses. Five fractions were collected using cation exchange chromatography, with the P4 fraction standing out as that of the highest purity. All fractions showed proteolytic activity. The crude venom and fractions P1, P2, and P3 showed larvicidal effects on A. aegypti. Fraction P4 showed the presence of a possible metalloprotease (60 kDa) that has high proteolytic activity on azo-collagen and was inhibited by EDTA. The results presented in this study demonstrate the presence of proteins in the venom of P. bistriata with potential for biotechnological applications.
Collapse
|
7
|
Duan ZG, Yan XJ, He XZ, Zhou H, Chen P, Cao R, Xiong JX, Hu WJ, Wang XC, Liang SP. Extraction and protein component analysis of venom from the dissected venom glands of Latrodectus tredecimguttatus. Comp Biochem Physiol B Biochem Mol Biol 2006; 145:350-7. [PMID: 17029995 DOI: 10.1016/j.cbpb.2006.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 08/14/2006] [Accepted: 08/24/2006] [Indexed: 11/28/2022]
Abstract
Black widow spiders (genus Latrodectus) have attracted increasing attention due to frequently reported human injuries caused by them and the potential applications of biologically active components in their venoms. Although a number of studies have described the biological properties and structures of several venomous proteins such as latrotoxins, a comprehensive analysis of protein component of the venom from the spider is not available. We used combinative proteomic strategies to assess the protein components of the crude venom collected from Latrodectus tredecimguttatus by extracting the dissected venom glands. The experiments demonstrated that the crude venom of L. tredecimguttatus has a high abundance of acidic proteins with molecular masses greater than 15 kDa, and the content of proteins and peptides of below 15 kDa is low. 86 unique proteins were identified, part of which were contaminations of cellular components during the extraction, determined in comparison with venom obtained by electrostimulation. Except for members of latrotoxin family that were commonly considered as the primary toxic components of the venom, several other special enzymes and proteins were detected such as protease, phosphatase, lysozyme, inhibitory protein, and so on. These protein components, particularly the proteases, were speculated to play important roles in the action of L. tredecimguttatus venom.
Collapse
Affiliation(s)
- Z G Duan
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Foradori MJ, Tillinghast EK, Smith JS, Townley MA, Mooney RE. Astacin family metallopeptidases and serine peptidase inhibitors in spider digestive fluid. Comp Biochem Physiol B Biochem Mol Biol 2006; 143:257-68. [PMID: 16458560 PMCID: PMC1484416 DOI: 10.1016/j.cbpb.2005.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 06/11/2005] [Accepted: 08/15/2005] [Indexed: 11/20/2022]
Abstract
Digestive fluid of the araneid spider Argiope aurantia is known to contain zinc metallopeptidases. Using anion-exchange chromatography, size-exclusion chromatography, sucrose density gradient centrifugation, and gel electrophoresis, we isolated two lower-molecular-mass peptidases, designated p16 and p18. The N-terminal amino acid sequences of p16 (37 residues) and p18 (20 residues) are 85% identical over the first 20 residues and are most similar to the N-terminal sequences of the fully active form of meprin (beta subunits) from several vertebrates (47-52% and 50-60% identical, respectively). Meprin is a peptidase in the astacin (M12A) subfamily of the astacin (M12) family. Additionally, a 66-residue internal sequence obtained from p16 aligns with the conserved astacin subfamily domain. Thus, at least some spider digestive peptidases appear related to astacin of decapod crustaceans. However, important differences between spider and crustacean metallopeptidases with regard to isoelectric point and their susceptibility to hemolymph-borne inhibitors are demonstrated. Anomalous behavior of the lower-molecular-mass Argiope peptidases during certain fractionation procedures indicates that these peptidases may take part in reversible associations with each other or with other proteins. A. aurantia digestive fluid also contains inhibitory activity effective against insect digestive peptidases. Here we present evidence for at least thirteen, heat-stable serine peptidase inhibitors ranging in molecular mass from about 15 to 32 kDa.
Collapse
Affiliation(s)
- Matthew J Foradori
- Department of Zoology, Rudman Hall, 46 College Rd., University of New Hampshire, Durham, 03824-2617, USA.
| | | | | | | | | |
Collapse
|
9
|
Foradori MJ, Smith SC, Smith E, Wells RE. Survey for potentially necrotizing spider venoms, with special emphasis on Cheiracanthium mildei. Comp Biochem Physiol C Toxicol Pharmacol 2005; 141:32-9. [PMID: 15979415 DOI: 10.1016/j.cca.2005.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2004] [Revised: 05/02/2005] [Accepted: 05/02/2005] [Indexed: 11/29/2022]
Abstract
It has proven difficult to identify those spiders which cause necrotic lesions. In an effort to design a simple, inexpensive screening method for identifying spiders with necrotizing venoms, we have examined the venom gland homogenates of a variety of spider species for their ability to cause red blood cell lysis. Those venoms which were positive were further examined for the presence of sphingomyelinase D, and their ability to evoke necrotic lesions in the skin of rabbits. Sphingomyelinase D is known to be the causative agent of necrosis and red blood cell lysis in the venom of the brown recluse spider (Loxosceles reclusa), and our assumption was that this would be the same agent in other spider venoms as well. This did not prove to be the case. Of 45 species examined, only the venom of L. reclusa and Cheiracanthium mildei lysed sheep red blood cells. Unlike L. reclusa venom, however, C. mildei venom did not possess sphingomyelinase D nor did it cause necrotic lesions in the skin of rabbits. We present evidence suggesting that a phospholipase A2 is the hemolytic agent in C. mildei venom.
Collapse
Affiliation(s)
- Matthew J Foradori
- Department of Zoology, University of New Hampshire, Durham, NH 03824, USA.
| | | | | | | |
Collapse
|
10
|
Abstract
Spider bite continues to be a controversial subject worldwide and attribution of clinical effects to different spiders is problematic because of poor case definition and paucity of clinical evidence. The effects of medically important spiders are sometimes underestimated and simultaneously there is misattribution of effects to harmless spider groups. The majority of suspected spider bites present as skin lesions or necrotic ulcers where the history of a spider bite must be confirmed. To be a definite spider bite, the patient must immediately observe the spider and there be evidence of the bite, such as pain. Important groups of spiders worldwide include the widow spiders (latrodectism), recluse spiders (loxoscelism) and some mygalomorph spiders including the Australian Funnel web spider. Most spiders only cause minor effects, including a large number of groups that have been implicated in necrotic arachnidism.
Collapse
Affiliation(s)
- Geoffrey K Isbister
- Emergency Department, Newcastle Mater Misericordiae Hospital and the University of Newcastle, Newcastle, NSW 2298, Australia.
| | | |
Collapse
|