1
|
Bollepogu Raja KK, Yeung K, Shim YK, Mardon G. Integrative genomic analyses reveal putative cell type-specific targets of the Drosophila ets transcription factor Pointed. BMC Genomics 2024; 25:103. [PMID: 38262913 PMCID: PMC10807358 DOI: 10.1186/s12864-024-10017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024] Open
Abstract
The Ets domain transcription factors direct diverse biological processes throughout all metazoans and are implicated in development as well as in tumor initiation, progression and metastasis. The Drosophila Ets transcription factor Pointed (Pnt) is the downstream effector of the Epidermal growth factor receptor (Egfr) pathway and is required for cell cycle progression, specification, and differentiation of most cell types in the larval eye disc. Despite its critical role in development, very few targets of Pnt have been reported previously. Here, we employed an integrated approach by combining genome-wide single cell and bulk data to identify putative cell type-specific Pnt targets. First, we used chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) to determine the genome-wide occupancy of Pnt in late larval eye discs. We identified enriched regions that mapped to an average of 6,941 genes, the vast majority of which are novel putative Pnt targets. Next, we integrated ChIP-seq data with two other larval eye single cell genomics datasets (scRNA-seq and snATAC-seq) to reveal 157 putative cell type-specific Pnt targets that may help mediate unique cell type responses upon Egfr-induced differentiation. Finally, our integrated data also predicts cell type-specific functional enhancers that were not reported previously. Together, our study provides a greatly expanded list of putative cell type-specific Pnt targets in the eye and is a resource for future studies that will allow mechanistic insights into complex developmental processes regulated by Egfr signaling.
Collapse
Affiliation(s)
- Komal Kumar Bollepogu Raja
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kelvin Yeung
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yoon-Kyung Shim
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Graeme Mardon
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Huang Y, Yu G, Yang Y. MIGGRI: A multi-instance graph neural network model for inferring gene regulatory networks for Drosophila from spatial expression images. PLoS Comput Biol 2023; 19:e1011623. [PMID: 37939200 PMCID: PMC10659162 DOI: 10.1371/journal.pcbi.1011623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 11/20/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Recent breakthrough in spatial transcriptomics has brought great opportunities for exploring gene regulatory networks (GRNs) from a brand-new perspective. Especially, the local expression patterns and spatio-temporal regulation mechanisms captured by spatial expression images allow more delicate delineation of the interplay between transcript factors and their target genes. However, the complexity and size of spatial image collections pose significant challenges to GRN inference using image-based methods. Extracting regulatory information from expression images is difficult due to the lack of supervision and the multi-instance nature of the problem, where a gene often corresponds to multiple images captured from different views. While graph models, particularly graph neural networks, have emerged as a promising method for leveraging underlying structure information from known GRNs, incorporating expression images into graphs is not straightforward. To address these challenges, we propose a two-stage approach, MIGGRI, for capturing comprehensive regulatory patterns from image collections for each gene and known interactions. Our approach involves a multi-instance graph neural network (GNN) model for GRN inference, which first extracts gene regulatory features from spatial expression images via contrastive learning, and then feeds them to a multi-instance GNN for semi-supervised learning. We apply our approach to a large set of Drosophila embryonic spatial gene expression images. MIGGRI achieves outstanding performance in the inference of GRNs for early eye development and mesoderm development of Drosophila, and shows robustness in the scenarios of missing image information. Additionally, we perform interpretable analysis on image reconstruction and functional subgraphs that may reveal potential pathways or coordinate regulations. By leveraging the power of graph neural networks and the information contained in spatial expression images, our approach has the potential to advance our understanding of gene regulation in complex biological systems.
Collapse
Affiliation(s)
- Yuyang Huang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, China
| | - Gufeng Yu
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, China
| | - Yang Yang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, China
| |
Collapse
|
3
|
Follmer M, Shrawder B, Eckert K, Heinly B, Vivekanand P. The effectiveness of EGFR knockdown by RNAi lines varies depending on the tissue. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000612. [PMID: 35903780 PMCID: PMC9315407 DOI: 10.17912/micropub.biology.000612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022]
Abstract
In Drosophila , the Epidermal growth factor receptor (EGFR) signaling pathway is known to be critically involved in multiple stages of development. We induced a loss of function phenotype in the eyes, wings, and somatic follicle cells using four EGFR RNAi lines: HMS05003 and JF02283, which produce short hairpin RNAs, as well as JF01368 and KK100051, which produce long hairpin RNAs. Using these four lines, we completed a systematic comparison of the ability of short hairpin vs long hairpin RNAi lines to produce loss-of-function phenotypes in the above-mentioned tissues. Tissue specific knockdown was achieved by using Gal4 drivers specific to the three tissues being studied. In the eyes and wings, the KK100051 line induced the most severe phenotype, while the JF01368 line was the least severe, but in the somatic follicle cells, the KK100051 line was the least effective, while the JF01368 and JF02283 lines were comparable with respect to phenotypic severity. We conclude that there is significant tissue specific variability exhibited by the different RNAi lines.
Collapse
|
4
|
Wu C, Boisclair Lachance JF, Ludwig MZ, Rebay I. A context-dependent bifurcation in the Pointed transcriptional effector network contributes specificity and robustness to retinal cell fate acquisition. PLoS Genet 2020; 16:e1009216. [PMID: 33253156 PMCID: PMC7728396 DOI: 10.1371/journal.pgen.1009216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/10/2020] [Accepted: 10/21/2020] [Indexed: 11/18/2022] Open
Abstract
Spatiotemporally precise and robust cell fate transitions, which depend on specific signaling cues, are fundamental to the development of appropriately patterned tissues. The fidelity and precision with which photoreceptor fates are recruited in the Drosophila eye exemplifies these principles. The fly eye consists of a highly ordered array of ~750 ommatidia, each of which contains eight distinct photoreceptors, R1-R8, specified sequentially in a precise spatial pattern. Recruitment of R1-R7 fates requires reiterative receptor tyrosine kinase / mitogen activated protein kinase (MAPK) signaling mediated by the transcriptional effector Pointed (Pnt). However the overall signaling levels experienced by R2-R5 cells are distinct from those experienced by R1, R6 and R7. A relay mechanism between two Pnt isoforms initiated by MAPK activation directs the universal transcriptional response. Here we ask how the generic Pnt response is tailored to these two rounds of photoreceptor fate transitions. We find that during R2-R5 specification PntP2 is coexpressed with a closely related but previously uncharacterized isoform, PntP3. Using CRISPR/Cas9-generated isoform specific null alleles we show that under otherwise wild type conditions, R2-R5 fate specification is robust to loss of either PntP2 or PntP3, and that the two activate pntP1 redundantly; however under conditions of reduced MAPK activity, both are required. Mechanistically, our data suggest that intrinsic activity differences between PntP2 and PntP3, combined with positive and unexpected negative transcriptional auto- and cross-regulation, buffer first-round fates against conditions of compromised RTK signaling. In contrast, in a mechanism that may be adaptive to the stronger signaling environment used to specify R1, R6 and R7 fates, the Pnt network resets to a simpler topology in which PntP2 uniquely activates pntP1 and auto-activates its own transcription. We propose that differences in expression patterns, transcriptional activities and regulatory interactions between Pnt isoforms together facilitate context-appropriate cell fate specification in different signaling environments.
Collapse
Affiliation(s)
- Chudong Wu
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | | | - Michael Z. Ludwig
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Ilaria Rebay
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
5
|
Chen YC, Desplan C. Gene regulatory networks during the development of the Drosophila visual system. Curr Top Dev Biol 2020; 139:89-125. [PMID: 32450970 DOI: 10.1016/bs.ctdb.2020.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Drosophila visual system integrates input from 800 ommatidia and extracts different features in stereotypically connected optic ganglia. The development of the Drosophila visual system is controlled by gene regulatory networks that control the number of precursor cells, generate neuronal diversity by integrating spatial and temporal information, coordinate the timing of retinal and optic lobe cell differentiation, and determine distinct synaptic targets of each cell type. In this chapter, we describe the known gene regulatory networks involved in the development of the different parts of the visual system and explore general components in these gene networks. Finally, we discuss the advantages of the fly visual system as a model for gene regulatory network discovery in the era of single-cell transcriptomics.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Biology, New York University, New York, NY, United States
| | - Claude Desplan
- Department of Biology, New York University, New York, NY, United States.
| |
Collapse
|
6
|
Moreno E, Valon L, Levillayer F, Levayer R. Competition for Space Induces Cell Elimination through Compaction-Driven ERK Downregulation. Curr Biol 2018; 29:23-34.e8. [PMID: 30554899 PMCID: PMC6331351 DOI: 10.1016/j.cub.2018.11.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/01/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022]
Abstract
The plasticity of developing tissues relies on the adjustment of cell survival and growth rate to environmental cues. This includes the effect of mechanical cues on cell survival. Accordingly, compaction of an epithelium can lead to cell extrusion and cell death. This process was proposed to contribute to tissue homeostasis but also to facilitate the expansion of pretumoral cells through the compaction and elimination of the neighboring healthy cells. However, we know very little about the pathways that can trigger apoptosis upon tissue deformation, and the contribution of compaction-driven death to clone expansion has never been assessed in vivo. Using the Drosophila pupal notum and a new live sensor of ERK, we show first that tissue compaction induces cell elimination through the downregulation of epidermal growth factor receptor/extracellular signal regulated kinase (EGFR/ERK) pathway and the upregulation of the pro-apoptotic protein Hid. Those results suggest that the sensitivity of EGFR/ERK pathway to mechanics could play a more general role in the fine tuning of cell elimination during morphogenesis and tissue homeostasis. Second, we assessed in vivo the contribution of compaction-driven death to pretumoral cell expansion. We found that the activation of the oncogene Ras in clones can downregulate ERK and activate apoptosis in the neighboring cells through their compaction, which eventually contributes to Ras clone expansion. The mechanical modulation of EGFR/ERK during growth-mediated competition for space may contribute to tumor progression. Caspase activity in Drosophila pupal notum is regulated by EGFR/ERK and hid EGFR/ERK can be activated or downregulated by tissue stretching or compaction Cell compaction near fast-growing clones downregulates ERK and triggers cell death Compaction-driven ERK downregulation promotes fast-growing clone expansion
Collapse
Affiliation(s)
- Eduardo Moreno
- Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Léo Valon
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Florence Levillayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
7
|
Courgeon M, He DQ, Liu HH, Legent K, Treisman JE. The Drosophila Epidermal Growth Factor Receptor does not act in the nucleus. J Cell Sci 2018; 131:jcs.220251. [PMID: 30158176 DOI: 10.1242/jcs.220251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/16/2018] [Indexed: 12/15/2022] Open
Abstract
Mammalian members of the ErbB family, including the epidermal growth factor receptor (EGFR), can regulate transcription, DNA replication and repair through nuclear entry of either the full-length proteins or their cleaved cytoplasmic domains. In cancer cells, these nuclear functions contribute to tumor progression and drug resistance. Here, we examined whether the single Drosophila EGFR can also localize to the nucleus. A chimeric EGFR protein fused at its cytoplasmic C-terminus to DNA-binding and transcriptional activation domains strongly activated transcriptional reporters when overexpressed in cultured cells or in vivo However, this activity was independent of cleavage and endocytosis. Without an exogenous activation domain, EGFR fused to a DNA-binding domain did not activate or repress transcription. Addition of the same DNA-binding and transcriptional activation domains to the endogenous Egfr locus through genome editing led to no detectable reporter expression in wild-type or oncogenic contexts. These results show that, when expressed at physiological levels, the cytoplasmic domain of the Drosophila EGFR does not have access to the nucleus. Therefore, nuclear EGFR functions are likely to have evolved after vertebrates and invertebrates diverged.
Collapse
Affiliation(s)
- Maximilien Courgeon
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Dan Qing He
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Hui Hua Liu
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Kevin Legent
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jessica E Treisman
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|
8
|
Bhattacharya A, Li K, Quiquand M, Rimesso G, Baker NE. The Notch pathway regulates the Second Mitotic Wave cell cycle independently of bHLH proteins. Dev Biol 2017; 431:309-320. [PMID: 28919436 DOI: 10.1016/j.ydbio.2017.08.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/08/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022]
Abstract
Notch regulates both neurogenesis and cell cycle activity to coordinate precursor cell generation in the differentiating Drosophila eye. Mosaic analysis with mitotic clones mutant for Notch components was used to identify the pathway of Notch signaling that regulates the cell cycle in the Second Mitotic Wave. Although S phase entry depends on Notch signaling and on the transcription factor Su(H), the transcriptional co-activator Mam and the bHLH repressor genes of the E(spl)-Complex were not essential, although these are Su(H) coactivators and targets during the regulation of neurogenesis. The Second Mitotic Wave showed little dependence on ubiquitin ligases neuralized or mindbomb, and although the ligand Delta is required non-autonomously, partial cell cycle activity occurred in the absence of known Notch ligands. We found that myc was not essential for the Second Mitotic Wave. The Second Mitotic Wave did not require the HLH protein Extra macrochaetae, and the bHLH protein Daughterless was required only cell-nonautonomously. Similar cell cycle phenotypes for Daughterless and Atonal were consistent with requirement for neuronal differentiation to stimulate Delta expression, affecting Notch activity in the Second Mitotic Wave indirectly. Therefore Notch signaling acts to regulate the Second Mitotic Wave without activating bHLH gene targets.
Collapse
Affiliation(s)
- Abhishek Bhattacharya
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ke Li
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Manon Quiquand
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Gerard Rimesso
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
9
|
Pascual J, Jacobs J, Sansores-Garcia L, Natarajan M, Zeitlinger J, Aerts S, Halder G, Hamaratoglu F. Hippo Reprograms the Transcriptional Response to Ras Signaling. Dev Cell 2017; 42:667-680.e4. [DOI: 10.1016/j.devcel.2017.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/04/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
|
10
|
Davis TL, Rebay I. Antagonistic regulation of the second mitotic wave by Eyes absent-Sine oculis and Combgap coordinates proliferation and specification in the Drosophila retina. Development 2017; 144:2640-2651. [PMID: 28619818 DOI: 10.1242/dev.147231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/08/2017] [Indexed: 12/12/2022]
Abstract
The transition from proliferation to specification is fundamental to the development of appropriately patterned tissues. In the developing Drosophila eye, Eyes absent (Eya) and Sine oculis (So) orchestrate the progression of progenitor cells from asynchronous cell division to G1 arrest and neuronal specification at the morphogenetic furrow. Here, we uncover a novel role for Eya and So in promoting cell cycle exit in the second mitotic wave (SMW), a synchronized, terminal cell division that occurs several hours after passage of the furrow. We show that Combgap (Cg), a zinc-finger transcription factor, antagonizes Eya-So function in the SMW. Based on the ability of Cg to attenuate Eya-So transcriptional output in vivo and in cultured cells and on meta analysis of their chromatin occupancy profiles, we speculate that Cg limits Eya-So activation of select target genes posterior to the furrow to ensure properly timed mitotic exit. Our work supports a model in which context-specific modulation of transcriptional activity enables Eya and So to promote both entry into and exit from the cell cycle in a distinct spatiotemporal sequence.
Collapse
Affiliation(s)
- Trevor L Davis
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA .,Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Suisse A, He D, Legent K, Treisman JE. COP9 signalosome subunits protect Capicua from MAPK-dependent and -independent mechanisms of degradation. Development 2017; 144:2673-2682. [PMID: 28619822 DOI: 10.1242/dev.148767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/08/2017] [Indexed: 11/20/2022]
Abstract
The COP9 signalosome removes Nedd8 modifications from the Cullin subunits of ubiquitin ligase complexes, reducing their activity. Here, we show that mutations in the Drosophila COP9 signalosome subunit 1b (CSN1b) gene increase the activity of ubiquitin ligases that contain Cullin 1. Analysis of CSN1b mutant phenotypes revealed a requirement for the COP9 signalosome to prevent ectopic expression of Epidermal growth factor receptor (EGFR) target genes. It does so by protecting Capicua, a transcriptional repressor of EGFR target genes, from EGFR pathway-dependent ubiquitylation by a Cullin 1/SKP1-related A/Archipelago E3 ligase and subsequent proteasomal degradation. The CSN1b subunit also maintains basal Capicua levels by protecting it from a separate mechanism of degradation that is independent of EGFR signaling. As a suppressor of tumor growth and metastasis, Capicua may be an important target of the COP9 signalosome in cancer.
Collapse
Affiliation(s)
- Annabelle Suisse
- Helen L. and Martin S. Kimmel Center at the Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - DanQing He
- Helen L. and Martin S. Kimmel Center at the Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Kevin Legent
- Helen L. and Martin S. Kimmel Center at the Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jessica E Treisman
- Helen L. and Martin S. Kimmel Center at the Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|
12
|
Kang M, Garg V, Hadjantonakis AK. Lineage Establishment and Progression within the Inner Cell Mass of the Mouse Blastocyst Requires FGFR1 and FGFR2. Dev Cell 2017; 41:496-510.e5. [PMID: 28552559 DOI: 10.1016/j.devcel.2017.05.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 04/17/2017] [Accepted: 04/30/2017] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factor 4 (FGF4) is the key signal driving specification of primitive endoderm (PrE) versus pluripotent epiblast (EPI) within the inner cell mass (ICM) of the mouse blastocyst. To gain insight into the receptor(s) responding to FGF4 within ICM cells, we combined single-cell-resolution quantitative imaging with single-cell transcriptomics of wild-type and Fgf receptor (Fgfr) mutant embryos. Despite the PrE-specific expression of FGFR2, it is FGFR1, expressed by all ICM cells, that is critical for establishment of a PrE identity. Signaling through FGFR1 is also required to constrain levels of the pluripotency-associated factor NANOG in EPI cells. However, the activity of both receptors is required for lineage establishment within the ICM. Gene expression profiling of 534 single ICM cells identified distinct downstream targets associated with each receptor. These data lead us to propose a model whereby unique and additive activities of FGFR1 and FGFR2 within the ICM coordinate establishment of two distinct lineages.
Collapse
Affiliation(s)
- Minjung Kang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
13
|
Liang R, Lin Y, Ye JZ, Yan XX, Liu ZH, Li YQ, Luo XL, Ye HH. High expression of RBM8A predicts poor patient prognosis and promotes tumor progression in hepatocellular carcinoma. Oncol Rep 2017; 37:2167-2176. [PMID: 28259942 DOI: 10.3892/or.2017.5457] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/30/2017] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a huge threat for human health worldwide. As a complicated tumor, the molecular basis for HCC development especially metastasis requires exploration. Although RNA binding motif (RBM) proteins are closely related to various cancers, the clinical importance and underlying mechanisms of RBM8A in HCC remain elusive. In this study, we found that RBM8A was highly expressed in HCC tumor tissues compared to normal liver tissues. Overexpression of RBM8A was associated with HbsAg and Edmondson pathological grading. Moreover, Kaplan-Meier survival analysis showed that high expression of RBM8A was related to the poor overall survival and progression-free survival of patients with HCC. Gain- and loss-of-function experiments further demonstrated that RBM8A promoted tumor cell migration and invasion in HCC via activation of epithelial-mesenchymal transition signaling pathway. It is also noteworthy that RBM8A is required for tumor cell proliferation and anti-apoptosis in HCC. Altogether, our results revealed a close relationship between RBM8A and HCC prognosis as well as a critical tumor-promoting function of RBM8A in HCC progression, suggesting that RBM8A might be a potential bio-marker and drug target in HCC therapy.
Collapse
Affiliation(s)
- Rong Liang
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 5300221, P.R. China
| | - Yan Lin
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 5300221, P.R. China
| | - Jia-Zhou Ye
- Department of Hepatobilliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530022, P.R. China
| | - Xue-Xin Yan
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 5300221, P.R. China
| | - Zhi-Hui Liu
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 5300221, P.R. China
| | - Yong-Qiang Li
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 5300221, P.R. China
| | - Xiao-Ling Luo
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 5300221, P.R. China
| | - Hai-Hong Ye
- Department of Hepatobilliary Surgery, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi 530001, P.R. China
| |
Collapse
|
14
|
Wedeken L, Luo A, Tremblay JR, Rawson J, Jin L, Gao D, Quijano J, Ku HT. Adult Murine Pancreatic Progenitors Require Epidermal Growth Factor and Nicotinamide for Self-Renewal and Differentiation in a Serum- and Conditioned Medium-Free Culture. Stem Cells Dev 2017; 26:599-607. [PMID: 28095743 DOI: 10.1089/scd.2016.0328] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adult pancreatic stem and progenitor cells may serve as an alternative source of insulin-secreting endocrine cells in cell replacement therapy for type 1 diabetes, but much remained unknown about these cells. We previously identified adult murine pancreatic progenitor-like cells that displayed in vitro self-renewal and tri-lineage differentiation activities in a three-dimensional colony/organoid assay containing 1% methylcellulose and 5% Matrigel. However, the presence of other undefined culture components, such as serum and conditioned medium, has prevented a complete understanding of the signals required for progenitor cell growth. Here, we have established a serum-free, conditioned medium-free colony assay with the inclusion of seven defined factors: epidermal growth factor (EGF), R-Spondin 1 (RSPO1), Noggin, nicotinamide, exendin-4, activin B, and vascular endothelial growth factor (VEGF)-A. The requirements for colony growth were characterized and we found that EGF and nicotinamide were necessary and sufficient for the colony growth and long-term self-renewal of these progenitors. However, the seven factor (7F) culture medium better induced colony size and self-renewal in long-term culture than EGF plus nicotinamide alone. Individual 3-week-old colonies grown in the 7F culture medium expressed ductal, acinar, and endocrine lineage markers, suggesting that tri-lineage differentiation of the tri-potent progenitors was occurring without genetic manipulation. A delayed inhibition of Notch signaling using small molecules in 2-week-old cultures enhanced endocrine gene expression in 3-week-old colonies. This better-defined colony assay system will enable our and other laboratories for in-depth mechanistic studies on the biology of these progenitor cells.
Collapse
Affiliation(s)
- Lena Wedeken
- 1 Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute , Beckman Research Institute of City of Hope, Duarte, California
| | - Angela Luo
- 1 Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute , Beckman Research Institute of City of Hope, Duarte, California
| | - Jacob R Tremblay
- 1 Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute , Beckman Research Institute of City of Hope, Duarte, California.,2 Irell & Manella Graduate School of Biological Sciences , Duarte, California
| | - Jeffrey Rawson
- 1 Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute , Beckman Research Institute of City of Hope, Duarte, California
| | - Liang Jin
- 1 Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute , Beckman Research Institute of City of Hope, Duarte, California
| | - Dan Gao
- 1 Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute , Beckman Research Institute of City of Hope, Duarte, California
| | - Janine Quijano
- 1 Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute , Beckman Research Institute of City of Hope, Duarte, California
| | - Hsun Teresa Ku
- 1 Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute , Beckman Research Institute of City of Hope, Duarte, California.,2 Irell & Manella Graduate School of Biological Sciences , Duarte, California
| |
Collapse
|
15
|
Investigating the Interplay between Sister Chromatid Cohesion and Homolog Pairing in Drosophila Nuclei. PLoS Genet 2016; 12:e1006169. [PMID: 27541002 PMCID: PMC4991795 DOI: 10.1371/journal.pgen.1006169] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/14/2016] [Indexed: 11/19/2022] Open
Abstract
Following DNA replication, sister chromatids must stay connected for the remainder of the cell cycle in order to ensure accurate segregation in the subsequent cell division. This important function involves an evolutionarily conserved protein complex known as cohesin; any loss of cohesin causes premature sister chromatid separation in mitosis. Here, we examined the role of cohesin in sister chromatid cohesion prior to mitosis, using fluorescence in situ hybridization (FISH) to assay the alignment of sister chromatids in interphase Drosophila cells. Surprisingly, we found that sister chromatid cohesion can be maintained in G2 with little to no cohesin. This capacity to maintain cohesion is widespread in Drosophila, unlike in other systems where a reduced dependence on cohesin for sister chromatid segregation has been observed only at specific chromosomal regions, such as the rDNA locus in budding yeast. Additionally, we show that condensin II antagonizes the alignment of sister chromatids in interphase, supporting a model wherein cohesin and condensin II oppose each other’s functions in the alignment of sister chromatids. Finally, because the maternal and paternal homologs are paired in the somatic cells of Drosophila, and because condensin II has been shown to antagonize this pairing, we consider the possibility that condensin II-regulated mechanisms for aligning homologous chromosomes may also contribute to sister chromatid cohesion. As cells grow, they replicate their DNA to give rise to two copies of each chromosome, known as sister chromatids, which separate from each other once the cell divides. To ensure that sister chromatids end up in different daughter cells, they are kept together from DNA replication until mitosis via a connection known as cohesion. A protein complex known as cohesin is essential for this process. Our work in Drosophila cells suggests that factors other than cohesin also contribute to sister chromatid cohesion in interphase. Additionally, we observed that the alignment of sister chromatids is regulated by condensin II, a protein complex involved in the compaction of chromosomes prior to division as well as the regulation of inter-chromosomal associations. These findings highlight that, in addition to their important individual functions, cohesin and condensin II proteins may interact to organize chromosomes over the course of the cell cycle. Finally, building on prior observations that condensin II is involved in the regulation of somatic homolog pairing in Drosophila, our work suggests that the mechanisms underlying homolog pairing may also contribute to sister chromatid cohesion.
Collapse
|
16
|
Bandyopadhyay M, Bishop CP, Bidwai AP. The Conserved MAPK Site in E(spl)-M8, an Effector of Drosophila Notch Signaling, Controls Repressor Activity during Eye Development. PLoS One 2016; 11:e0159508. [PMID: 27428327 PMCID: PMC4948772 DOI: 10.1371/journal.pone.0159508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/05/2016] [Indexed: 12/12/2022] Open
Abstract
The specification of patterned R8 photoreceptors at the onset of eye development depends on timely inhibition of Atonal (Ato) by the Enhancer of split (E(spl) repressors. Repression of Ato by E(spl)-M8 requires the kinase CK2 and is inhibited by the phosphatase PP2A. The region targeted by CK2 harbors additional conserved Ser residues, raising the prospect of regulation via multi-site phosphorylation. Here we investigate one such motif that meets the consensus for modification by MAPK, a well-known effector of Epidermal Growth Factor Receptor (EGFR) signaling. Our studies reveal an important role for the predicted MAPK site of M8 during R8 birth. Ala/Asp mutations reveal that the CK2 and MAPK sites ensure that M8 repression of Ato and the R8 fate occurs in a timely manner and at a specific stage (stage-2/3) of the morphogenetic furrow (MF). M8 repression of Ato is mitigated by halved EGFR dosage, and this effect requires an intact MAPK site. Accordingly, variants with a phosphomimetic Asp at the MAPK site exhibit earlier (inappropriate) activity against Ato even at stage-1 of the MF, where a positive feedback-loop is necessary to raise Ato levels to a threshold sufficient for the R8 fate. Analysis of deletion variants reveals that both kinase sites (CK2 and MAPK) contribute to ‘cis’-inhibition of M8. This key regulation by CK2 and MAPK is bypassed by the E(spl)D mutation encoding the truncated protein M8*, which potently inhibits Ato at stage-1 of R8 birth. We also provide evidence that PP2A likely targets the MAPK site. Thus multi-site phosphorylation controls timely onset of M8 repressor activity in the eye, a regulation that appears to be dispensable in the bristle. The high conservation of the CK2 and MAPK sites in the insect E(spl) proteins M7, M5 and Mγ, and their mammalian homologue HES6, suggest that this mode of regulation may enable E(spl)/HES proteins to orchestrate repression by distinct tissue-specific mechanisms, and is likely to have broader applicability than has been previously recognized.
Collapse
Affiliation(s)
- Mohna Bandyopadhyay
- Department of Biology, West Virginia University, Morgantown, West Virginia, United States of America
| | - Clifton P. Bishop
- Department of Biology, West Virginia University, Morgantown, West Virginia, United States of America
| | - Ashok P. Bidwai
- Department of Biology, West Virginia University, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
17
|
Malartre M. Regulatory mechanisms of EGFR signalling during Drosophila eye development. Cell Mol Life Sci 2016; 73:1825-43. [PMID: 26935860 PMCID: PMC11108404 DOI: 10.1007/s00018-016-2153-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 02/01/2016] [Indexed: 01/14/2023]
Abstract
EGFR signalling is a well-conserved signalling pathway playing major roles during development and cancers. This review explores what studying the EGFR pathway during Drosophila eye development has taught us in terms of the diversity of its regulatory mechanisms. This model system has allowed the identification of numerous positive and negative regulators acting at specific time and place, thus participating to the tight control of signalling. EGFR signalling regulation is achieved by a variety of mechanisms, including the control of ligand processing, the availability of the receptor itself and the transduction of the cascade in the cytoplasm. Ultimately, the transcriptional responses contribute to the establishment of positive and negative feedback loops. The combination of these multiple mechanisms employed to regulate the EGFR pathway leads to specific cellular outcomes involved in functions as diverse as the acquisition of cell fate, proliferation, survival, adherens junction remodelling and morphogenesis.
Collapse
Affiliation(s)
- Marianne Malartre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
18
|
|
19
|
Spratford CM, Kumar JP. Inhibition of Daughterless by Extramacrochaetae mediates Notch-induced cell proliferation. Development 2015; 142:2058-68. [PMID: 25977368 DOI: 10.1242/dev.121855] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/16/2015] [Indexed: 12/30/2022]
Abstract
During development, the rate of cell proliferation must be constantly monitored so that an individual tissue achieves its correct size. Mutations in genes that normally promote tissue growth often result in undersized, disorganized and non-functional organs. However, mutations in genes that encode growth inhibitors can trigger the onset of tumorigenesis and cancer. The developing eye of the fruit fly, Drosophila melanogaster, has become a premier model system for studies that are focused on identifying the molecular mechanisms that underpin growth control. Here, we examine the mechanism by which the Notch pathway, a major contributor to growth, promotes cell proliferation in the developing eye. Current models propose that the Notch pathway directly influences cell proliferation by regulating growth-promoting genes such as four-jointed, cyclin D1 and E2f1. Here, we show that, in addition to these mechanisms, some Notch signaling is devoted to blocking the growth-suppressing activity of the bHLH DNA-binding protein Daughterless (Da). We demonstrate that Notch signaling activates the expression of extramacrochaetae (emc), which encodes a helix-loop-helix (HLH) transcription factor. Emc, in turn, then forms a biochemical complex with Da. As Emc lacks a basic DNA-binding domain, the Emc-Da heterodimer cannot bind to and regulate genomic targets. One effect of Da sequestration is to relieve the repression on growth. Here, we present data supporting our model that Notch-induced cell proliferation in the developing eye is mediated in part by the activity of Emc.
Collapse
Affiliation(s)
- Carrie M Spratford
- Department of Biology, Indiana University, Bloomington, IN 47405, USA Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
20
|
Bennett D, Lyulcheva E, Cobbe N. Drosophila as a Potential Model for Ocular Tumors. Ocul Oncol Pathol 2015; 1:190-9. [PMID: 27172095 DOI: 10.1159/000370155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/26/2014] [Indexed: 01/14/2023] Open
Abstract
Drosophila has made many contributions to our understanding of cancer genes and mechanisms that have subsequently been validated in mammals. Despite anatomical differences between fly and human eyes, flies offer a tractable genetic model in which to dissect the functional importance of genetic lesions found to be affected in human ocular tumors. Here, we discuss different approaches for using Drosophila as a model for ocular cancer and how studies on ocular cancer genes in flies have begun to reveal potential strategies for therapeutic intervention. We also discuss recent developments in the use of Drosophila for drug discovery, which is coming to the fore as Drosophila models are becoming tailored to study tumor types found in the clinic.
Collapse
Affiliation(s)
- Daimark Bennett
- Institute of Integrative Biology, University of Liverpool, Liverpool, Salford, UK
| | - Ekaterina Lyulcheva
- Institute of Integrative Biology, University of Liverpool, Liverpool, Salford, UK; North Western Deanery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Neville Cobbe
- Institute of Integrative Biology, University of Liverpool, Liverpool, Salford, UK
| |
Collapse
|
21
|
Fernandes VM, Pradhan-Sundd T, Blaquiere JA, Verheyen EM. Ras/MEK/MAPK-mediated regulation of heparin sulphate proteoglycans promotes retinal fate in the Drosophila eye-antennal disc. Dev Biol 2015; 402:109-18. [PMID: 25848695 DOI: 10.1016/j.ydbio.2015.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 01/22/2015] [Accepted: 03/25/2015] [Indexed: 12/29/2022]
Abstract
Generating cellular heterogeneity is crucial to the development of complex organs. Organ-fate selector genes and signalling pathways generate cellular diversity by subdividing and patterning naïve tissues to assign them regional identities. The Drosophila eye-antennal imaginal disc is a well-characterised system in which to study regional specification; it is first divided into antennal and eye fates and subsequently retinal differentiation occurs within only the eye field. During development, signalling pathways and selector genes compete with and mutually antagonise each other to subdivide the tissue. Wingless (Wg) signalling is the main inhibitor of retinal differentiation; it does so by promoting antennal/head-fate via selector factors and by antagonising Hedgehog (Hh), the principal differentiation-initiating signal. Wg signalling must be suppressed by JAK/STAT at the disc posterior in order to initiate retinal differentiation. Ras/MEK/MAPK signalling has also been implicated in initiating retinal differentiation but its mode of action is not known. We find that compromising Ras/MEK/MAPK signalling in the early larval disc results in expanded antennal/head cuticle at the expense of the compound eye. These phenotypes correspond both to perturbations in selector factor expression, and to de-repressed wg. Indeed, STAT activity is reduced due to decreased mobility of the ligand Unpaired (Upd) along with a corresponding loss in Dally-like protein (Dlp), a heparan sulphate proteoglycan (HSPG) that aids Upd diffusion. Strikingly, blocking HSPG biogenesis phenocopies compromised Ras/MEK/MAPK, while restoring HSPG expression rescues the adult phenotype significantly. This study identifies a novel mode by which the Ras/MEK/MAPK pathway regulates regional-fate specification via HSPGs during development.
Collapse
Affiliation(s)
- Vilaiwan M Fernandes
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Tirthadipa Pradhan-Sundd
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Jessica A Blaquiere
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6.
| |
Collapse
|
22
|
Legent K, Liu HH, Treisman JE. Drosophila Vps4 promotes Epidermal growth factor receptor signaling independently of its role in receptor degradation. Development 2015; 142:1480-91. [PMID: 25790850 DOI: 10.1242/dev.117960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/20/2015] [Indexed: 12/12/2022]
Abstract
Endocytic trafficking of signaling receptors is an important mechanism for limiting signal duration. Components of the Endosomal Sorting Complexes Required for Transport (ESCRT), which target ubiquitylated receptors to intra-lumenal vesicles (ILVs) of multivesicular bodies, are thought to terminate signaling by the epidermal growth factor receptor (EGFR) and direct it for lysosomal degradation. In a genetic screen for mutations that affect Drosophila eye development, we identified an allele of Vacuolar protein sorting 4 (Vps4), which encodes an AAA ATPase that interacts with the ESCRT-III complex to drive the final step of ILV formation. Photoreceptors are largely absent from Vps4 mutant clones in the eye disc, and even when cell death is genetically prevented, the mutant R8 photoreceptors that develop fail to recruit surrounding cells to differentiate as R1-R7 photoreceptors. This recruitment requires EGFR signaling, suggesting that loss of Vps4 disrupts the EGFR pathway. In imaginal disc cells mutant for Vps4, EGFR and other receptors accumulate in endosomes and EGFR target genes are not expressed; epistasis experiments place the function of Vps4 at the level of the receptor. Surprisingly, Vps4 is required for EGFR signaling even in the absence of Shibire, the Dynamin that internalizes EGFR from the plasma membrane. In ovarian follicle cells, in contrast, Vps4 does not affect EGFR signaling, although it is still essential for receptor degradation. Taken together, these findings indicate that Vps4 can promote EGFR activity through an endocytosis-independent mechanism.
Collapse
Affiliation(s)
- Kevin Legent
- Kimmel Center for Biology and Medicine of the Skirball Institute and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Hui Hua Liu
- Kimmel Center for Biology and Medicine of the Skirball Institute and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jessica E Treisman
- Kimmel Center for Biology and Medicine of the Skirball Institute and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|
23
|
Austin CL, Manivannan SN, Simcox A. TGF-α ligands can substitute for the neuregulin Vein in Drosophila development. Development 2014; 141:4110-4. [PMID: 25336739 DOI: 10.1242/dev.110171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ErbB receptors, including the epidermal growth factor receptor (Egfr), are activated by EGF ligands to govern cell proliferation, survival, migration and differentiation. The different EGF-induced cell responses in development are regulated by deployment of multiple ligands. These inputs, however, engage only a limited number of intracellular pathways and are thought to elicit specific responses by regulating the amplitude or duration of the intracellular signal. The single Drosophila Egfr has four ligands: three of the TGF-α-type and a single neuregulin-like called vein (vn). Here, we used mutant combinations and gene replacement to determine the constraints of ligand specificity in development. Mutant analysis revealed extensive ligand redundancy in embryogenesis and wing development. Surprisingly, we found that the essential role of vn in development could be largely replaced by expression of any TGF-α ligand, including spitz (spi), in the endogenous vn pattern. vn mutants die as white undifferentiated pupae, but the rescued individuals showed global differentiation of adult body parts. Spi is more potent than Vn, and the best morphological rescue occurred when Spi expression was reduced to achieve an intracellular signaling level comparable to that produced by Vn. Our results show that the developmental repertoire of a strong ligand like Spi is flexible and at the appropriate level can emulate the activity of a weak ligand like Vn. These findings align with a model whereby cells respond similarly to an equivalent quantitative level of an intracellular signal generated by two distinct ligands regardless of ligand identity.
Collapse
Affiliation(s)
- Christina L Austin
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Sathiya N Manivannan
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Amanda Simcox
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
24
|
Zhang T, Liao Y, Hsu FN, Zhang R, Searle JS, Pei X, Li X, Ryoo HD, Ji JY, Du W. Hyperactivated Wnt signaling induces synthetic lethal interaction with Rb inactivation by elevating TORC1 activities. PLoS Genet 2014; 10:e1004357. [PMID: 24809668 PMCID: PMC4014429 DOI: 10.1371/journal.pgen.1004357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/24/2014] [Indexed: 12/31/2022] Open
Abstract
Inactivation of the Rb tumor suppressor can lead to increased cell proliferation or cell death depending on specific cellular context. Therefore, identification of the interacting pathways that modulate the effect of Rb loss will provide novel insights into the roles of Rb in cancer development and promote new therapeutic strategies. Here, we identify a novel synthetic lethal interaction between Rb inactivation and deregulated Wg/Wnt signaling through unbiased genetic screens. We show that a weak allele of axin, which deregulates Wg signaling and increases cell proliferation without obvious effects on cell fate specification, significantly alters metabolic gene expression, causes hypersensitivity to metabolic stress induced by fasting, and induces synergistic apoptosis with mutation of fly Rb ortholog, rbf. Furthermore, hyperactivation of Wg signaling by other components of the Wg pathway also induces synergistic apoptosis with rbf. We show that hyperactivated Wg signaling significantly increases TORC1 activity and induces excessive energy stress with rbf mutation. Inhibition of TORC1 activity significantly suppressed synergistic cell death induced by hyperactivated Wg signaling and rbf inactivation, which is correlated with decreased energy stress and decreased induction of apoptotic regulator expression. Finally the synthetic lethality between Rb and deregulated Wnt signaling is conserved in mammalian cells and that inactivation of Rb and APC induces synergistic cell death through a similar mechanism. These results suggest that elevated TORC1 activity and metabolic stress underpin the evolutionarily conserved synthetic lethal interaction between hyperactivated Wnt signaling and inactivated Rb tumor suppressor. Inactivation of Rb tumor suppressor is common in cancers. Therefore, identification of genes and pathways that are synthetic lethal with Rb will provide new insights into the role of Rb in cancer development and promote the development of novel therapeutic approaches. Here we identified a novel synthetic lethal interaction between Rb inactivation and hyperactivated Wnt signaling and showed that this synthetic lethal interaction is conserved in mammalian systems. We demonstrate that hyperactivated Wnt signaling activate TORC1 activity and induce excessive energy stress with inactivated Rb tumor suppressor, which underpins the evolutionarily conserved synthetic lethal interaction. This study provides novel insights into the interactions between the Rb, Wnt, and mTOR pathways in regulating cellular energy balance, cell growth, and survival.
Collapse
Affiliation(s)
- Tianyi Zhang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Yang Liao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Fu-Ning Hsu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Robin Zhang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Jennifer S Searle
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Xun Pei
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Xuan Li
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Wei Du
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
25
|
Abstract
A conventional view of development is that cells cooperate to build an organism. However, based on studies of Drosophila, it has been known for years that viable cells can be eliminated by their neighbours through a process termed cell competition. New studies in mammals have revealed that this process is universal and that many factors and mechanisms are conserved. During cell competition, cells with lower translation rates or those with lower levels of proteins involved in signal transduction, polarity and cellular growth can survive in a homogenous environment but are killed when surrounded by cells of higher fitness. Here, we discuss recent advances in the field as well as the mechanistic steps involved in this phenomenon, which have shed light on how and why cell competition exists in developing and adult organisms.
Collapse
Affiliation(s)
- Marc Amoyel
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, MSB 497B, New York, NY 10016, USA
| | | |
Collapse
|
26
|
Shwartz A, Yogev S, Schejter ED, Shilo BZ. Sequential activation of ETS proteins provides a sustained transcriptional response to EGFR signaling. Development 2013; 140:2746-54. [PMID: 23757412 DOI: 10.1242/dev.093138] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
How signal transduction, which is dynamic and fluctuating by nature, is converted into a stable trancriptional response, is an unanswered question in developmental biology. Two ETS-domain transcription factors encoded by the pointed (pnt) locus, PntP1 and PntP2, are universal downstream mediators of EGFR-based signaling in Drosophila. Full disruption of pnt function in developing eye imaginal discs reveals a photoreceptor recruitment phenotype, in which only the R8 photoreceptor cell type is specified within ommatidia. Specific disruption of either pntP1 or pntP2 resulted in the same R8-only phenotype, demonstrating that both Pnt isoforms are essential for photoreceptor recruitment. We show that the two Pnt protein forms are activated in a sequential manner within the EGFR signaling pathway: MAPK phosphorylates and activates PntP2, which in turn induces pntP1 transcription. Once expressed, PntP1 is constitutively active and sufficient to induce target genes essential for photoreceptor development. Pulse-chase experiments indicate that PntP1 is stable for several hours in the eye disc. Sequential ETS-protein recruitment therefore allows sustained induction of target genes, beyond the transient activation of EGFR.
Collapse
Affiliation(s)
- Arkadi Shwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
27
|
Blocking apoptotic signaling rescues axon guidance in Netrin mutants. Cell Rep 2013; 3:595-606. [PMID: 23499445 DOI: 10.1016/j.celrep.2013.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 01/14/2013] [Accepted: 02/14/2013] [Indexed: 11/21/2022] Open
Abstract
Netrins are guidance cues that form gradients to guide growing axons. We uncover a mechanism for axon guidance by demonstrating that axons can accurately navigate in the absence of a Netrin gradient if apoptotic signaling is blocked. Deletion of the two Drosophila NetA and NetB genes leads to guidance defects and increased apoptosis, and expression of either gene at the midline is sufficient to rescue the connectivity defects and cell death. Surprisingly, pan-neuronal expression of NetB rescues equally well, even though no Netrin gradient has been established. Furthermore, NetB expression blocks apoptosis, suggesting that NetB acts as a neurotrophic factor. In contrast, neuronal expression of NetA increases axon defects. Simply blocking apoptosis in NetAB mutants is sufficient to rescue connectivity, and inhibition of caspase activity in subsets of neurons rescues guidance independently of survival. In contrast to the traditional role of Netrin as simply a guidance cue, our results demonstrate that guidance and survival activities may be functionally related.
Collapse
|
28
|
Gordon GM, Zhang T, Zhao J, Du W. Deregulated G1-S control and energy stress contribute to the synthetic-lethal interactions between inactivation of RB and TSC1 or TSC2. J Cell Sci 2013; 126:2004-13. [PMID: 23447678 DOI: 10.1242/jcs.121301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Synthetic lethality is a potential strategy for cancer treatment by specifically promoting the death of cancer cells with particular defects such as the loss of the RB (RB1) tumor suppressor. We previously showed that inactivation of both RB and TSC2 induces synergistic apoptosis during the development of Drosophila melanogaster and in cancer cells. However, the in vivo mechanism of this synthetic-lethal interaction is not clear. Here, we show that synergistic cell death in tissues that have lost the RB and TSC orthologs rbf and dtsc1/gig, respectively, or overexpress Rheb and dE2F1, are correlated with synergistic defects in G1-S control, which causes cells to accumulate DNA damage. Coexpression of the G1-S inhibitor Dap, but not the G2-M inhibitor dWee1, decreases DNA damage and reduces cell death. In addition, we show that rbf and dtsc1 mutant cells are under energy stress, are sensitive to decreased energy levels and depend on the cellular energy stress-response pathway for survival. Decreasing mitochondrial ATP synthesis by inactivating cova or abrogating the energy-stress response by removing the metabolic regulator LKB1 both enhance the elimination of cells lacking either rbf or dtsc1. These observations, in conjunction with the finding that deregulation of TORC1 induces activation of JNK, indicate that multiple cellular stresses are induced and contribute to the synthetic-lethal interactions between RB and TSC1/TSC2 inactivation. The insights gained from this study suggest new approaches for targeting RB-deficient cancers.
Collapse
Affiliation(s)
- Gabriel M Gordon
- Ben May Department for Cancer Research, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
29
|
Ectopic antenna induction by overexpression of CG17836/Xrp1 encoding an AT-hook DNA binding motif protein in Drosophila. Biosci Biotechnol Biochem 2013; 77:339-44. [PMID: 23391928 DOI: 10.1271/bbb.120756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Drosophila imaginal discs are an excellent model system for studies of developmental plasticity. In imaginal discs, most cells adhere strictly to their specific identity, but some cells undergo transdetermination, a process wherein the determined identity switches to another disc-specific identity. In this study, we performed gain-of-function screening and identified a gene, CG17836/Xrp1, that induces ectopic antennae in the eye field upon overexpression at the early eye disc stage. An essential factor in the distalization process, Distalles, and its upstream regulators Wingless, Hedgehog, and Decapentaplegic, are ectopically induced by CG17836/Xrp1 overexpression in eye discs, and this provides molecular evidence of the formation of ectopic antennae. Further, forced expression of CG17836/Xrp1 induced severe cell-proliferation defects. These findings suggest that CG17836/Xrp1 is involved in the regulation of cell proliferation in eye discs and affects disc identity specification.
Collapse
|
30
|
Mutual repression by bantam miRNA and Capicua links the EGFR/MAPK and Hippo pathways in growth control. Curr Biol 2012; 22:651-7. [PMID: 22445297 DOI: 10.1016/j.cub.2012.02.050] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/07/2012] [Accepted: 02/17/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) and Hippo signaling pathways control cell proliferation and apoptosis to promote tissue growth during development. Misregulation of these pathways is implicated in cancer. Our understanding of the mechanisms that integrate the activity of these pathways remains fragmentary. This study identifies bantam microRNA as a common target of these pathways and suggests a mechanistic link between them. RESULTS The EGFR pathway acts through bantam to control tissue growth. bantam expression is regulated by the EGFR pathway, acting via repression of the transcriptional repressor Capicua. Thus EGFR signaling induces bantam expression by alleviating the effects of a repressor. bantam in turn acts in a negative feedback loop to limit Capicua expression. CONCLUSIONS bantam appears to be a transcriptional target of both the EGFR and Hippo growth control pathways. Feedback regulation by bantam on Capicua provides a means to link signal propagation by the EGFR pathway to activity of the Hippo pathway and may play an important role in integration of these two pathways in growth control.
Collapse
|
31
|
Abstract
The compound eye of the fruit fly, Drosophila melanogaster, has for decades been used extensively to study a number of critical developmental processes including tissue development, pattern formation, cell fate specification, and planar cell polarity. To a lesser degree it has been used to examine the cell cycle and tissue proliferation. Discovering the mechanisms that balance tissue growth and cell death in developing epithelia has traditionally been the realm of those using the wing disc. However, over the last decade a series of observations has demonstrated that the eye is a suitable and maybe even preferable tissue for studying tissue growth. This review will focus on how growth of the retina is controlled by the genes and pathways that govern the specification of tissue fate, the division of the epithelium into dorsal-ventral compartments, the initiation, and progression of the morphogenetic furrow and the second mitotic wave.
Collapse
Affiliation(s)
- Justin P Kumar
- Department of Biology, Indiana University, Bloomington, USA.
| |
Collapse
|
32
|
RBF and Rno promote photoreceptor differentiation onset through modulating EGFR signaling in the Drosophila developing eye. Dev Biol 2011; 359:190-8. [PMID: 21920355 DOI: 10.1016/j.ydbio.2011.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/21/2011] [Accepted: 08/28/2011] [Indexed: 01/13/2023]
Abstract
The retinoblastoma gene Rb is the prototype tumor suppressor and is conserved in Drosophila. We use the developing fly retina as a model system to investigate the role of Drosophila Rb (rbf) during differentiation. This report shows that mutation of rbf and rhinoceros (rno), which encodes a PHD domain protein, leads to a synergistic delay in photoreceptor cell differentiation in the developing eye disc. We show that this differentiation delay phenotype is caused by decreased levels of different components of the Epidermal Growth Factor Receptor (EGFR) signaling pathway in the absence of rbf and rno. We show that rbf is required for normal expression of Rhomboid proteins and activation of MAP kinase in the morphogenetic furrow (MF), while rno is required for the expression of Pointed (Pnt) and Ebi proteins, which are key factors that mediate EGFR signaling output in the nucleus. Interestingly, while removing the transcription activation function of dE2F1 is sufficient to suppress the synergistic differentiation delay, a mutant form of de2f1 that disrupts the binding with RBF but retains the transcription activation function does not mimic the effect of rbf loss. These observations suggest that RBF has additional functions besides dE2F1 binding that regulates EGFR signaling and photoreceptor differentiation.
Collapse
|
33
|
Gafuik C, Steller H. A gain-of-function germline mutation in Drosophila ras1 affects apoptosis and cell fate during development. PLoS One 2011; 6:e23535. [PMID: 21858158 PMCID: PMC3155559 DOI: 10.1371/journal.pone.0023535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 07/19/2011] [Indexed: 12/30/2022] Open
Abstract
The RAS/MAPK signal transduction pathway is an intracellular signaling cascade that transmits environmental signals from activated receptor tyrosine kinases (RTKs) on the cell surface and other endomembranes to transcription factors in the nucleus, thereby linking extracellular stimuli to changes in gene expression. Largely as a consequence of its role in oncogenesis, RAS signaling has been the subject of intense research efforts for many years. More recently, it has been shown that milder perturbations in Ras signaling during embryogenesis also contribute to the etiology of a group of human diseases. Here we report the identification and characterization of the first gain-of-function germline mutation in Drosophila ras1 (ras85D), the Drosophila homolog of human K-ras, N-ras and H-ras. A single amino acid substitution (R68Q) in the highly conserved switch II region of Ras causes a defective protein with reduced intrinsic GTPase activity, but with normal sensitivity to GAP stimulation. The ras1R68Q mutant is homozygous viable but causes various developmental defects associated with elevated Ras signaling, including cell fate changes and ectopic survival of cells in the nervous system. These biochemical and functional properties are reminiscent of germline Ras mutants found in patients afflicted with Noonan, Costello or cardio-facio-cutaneous syndromes. Finally, we used ras1R68Q to identify novel genes that interact with Ras and suppress cell death.
Collapse
Affiliation(s)
- Christopher Gafuik
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Hermann Steller
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Hwang HJ, Rulifson E. Serial specification of diverse neuroblast identities from a neurogenic placode by Notch and Egfr signaling. Development 2011; 138:2883-93. [PMID: 21653613 PMCID: PMC3119302 DOI: 10.1242/dev.055681] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used the brain insulin-producing cell (IPC) lineage and its identified neuroblast (IPC NB) as a model to understand a novel example of serial specification of NB identities in the Drosophila dorsomedial protocerebral neuroectoderm. The IPC NB was specified from a small, molecularly identified group of cells comprising an invaginated epithelial placode. By progressive delamination of cells, the placode generated a series of NB identities, including the single IPC NB, a number of other canonical Type I NBs, and a single Type II NB that generates large lineages by transient amplification of neural progenitor cells. Loss of Notch function caused all cells of the placode to form as supernumerary IPC NBs, indicating that the placode is initially a fate equivalence group for the IPC NB fate. Loss of Egfr function caused all placodal cells to apoptose, except for the IPC NB, indicating a requirement of Egfr signaling for specification of alternative NB identities. Indeed, both derepressed Egfr activity in yan mutants and ectopic EGF activity produced supernumerary Type II NBs from the placode. Loss of both Notch and Egfr function caused all placode cells to become IPC NBs and survive, indicating that commitment to NB fate nullified the requirement of Egfr activity for placode cell survival. We discuss the surprising parallels between the serial specification of neural fates from this neurogenic placode and the fly retina.
Collapse
Affiliation(s)
- Helen J Hwang
- Biomedical Sciences Graduate Program, University of California-San Francisco, CA 94143, USA
| | | |
Collapse
|
35
|
Exon junction complex subunits are required to splice Drosophila MAP kinase, a large heterochromatic gene. Cell 2010; 143:238-50. [PMID: 20946982 DOI: 10.1016/j.cell.2010.09.036] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 08/04/2010] [Accepted: 09/02/2010] [Indexed: 02/04/2023]
Abstract
The exon junction complex (EJC) is assembled on spliced mRNAs upstream of exon-exon junctions and can regulate their subsequent translation, localization, or degradation. We isolated mutations in Drosophila mago nashi (mago), which encodes a core EJC subunit, based on their unexpectedly specific effects on photoreceptor differentiation. Loss of Mago prevents epidermal growth factor receptor signaling, due to a large reduction in MAPK mRNA levels. MAPK expression also requires the EJC subunits Y14 and eIF4AIII and EJC-associated splicing factors. Mago depletion does not affect the transcription or stability of MAPK mRNA but alters its splicing pattern. MAPK expression from an exogenous promoter requires Mago only when the template includes introns. MAPK is the primary functional target of mago in eye development; in cultured cells, Mago knockdown disproportionately affects other large genes located in heterochromatin. These data support a nuclear role for EJC components in splicing a specific subset of introns.
Collapse
|
36
|
Jun and JunD-dependent functions in cell proliferation and stress response. Cell Death Differ 2010; 17:1409-19. [PMID: 20300111 DOI: 10.1038/cdd.2010.22] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Jun is essential for fetal development, as fetuses lacking Jun die at mid-gestation with multiple cellular defects in liver and heart. Embryos expressing JunD in place of Jun (Jun(d/d)) can develop to term with normal fetal livers, but display cardiac defects as observed in fetuses lacking Jun. Jun(d/d) mouse embryonic fibroblasts (MEFs) exhibit early senescence, which can be rescued by EGF and HB-EGF stimulation, probably through activation of Akt signaling. Thus, JunD cannot functionally replace Jun in regulating fibroblast proliferation. In Jun(-/-) fetal livers, increased hydrogen peroxide levels are detected and expression of Nrf1 and Nrf2 (nuclear erythroid 2-related transcription factors) is downregulated. Importantly, increased oxidative stress as well as expression of Nrf1 and Nrf2 is rescued by JunD in Jun(d/d) fetal livers. These data show that Jun is of critical importance for cellular protection against oxidative stress in fetal livers and fibroblasts, and Jun-dependent cellular senescence can be restored by activation of the epidermal growth factor receptor pathway.
Collapse
|
37
|
Baker NE, Bhattacharya A, Firth LC. Regulation of Hh signal transduction as Drosophila eye differentiation progresses. Dev Biol 2009; 335:356-66. [PMID: 19761763 DOI: 10.1016/j.ydbio.2009.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 09/01/2009] [Accepted: 09/07/2009] [Indexed: 11/16/2022]
Abstract
Differentiation of the Drosophila retina occurs as a morphogenetic furrow sweeps anteriorly across the eye imaginal disc, driven by Hedgehog secretion from photoreceptor precursors differentiating behind the furrow. A BTB protein, Roadkill, is expressed posterior to the furrow and targets the Hedgehog signal transduction component Cubitus interruptus for degradation by Cullin-3 and the proteosome. Clonal analysis and conditional mutant studies establish that roadkill transcription is activated by the EGF receptor and Ras pathway in most differentiating retinal cells, and by both EGF receptor/Ras and by Hedgehog signaling in cells that remain unspecified. These findings outline a circuit by which Hedgehog signal transduction is modified as Hedgehog signaling initiates retinal differentiation. A model is presented for regulation of the Cullin-3 and Cullin-1 pathways that modifies Hedgehog signaling as the morphogenetic furrow moves and the responses of retinal cells change.
Collapse
Affiliation(s)
- Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
38
|
Yan H, Chin ML, Horvath EA, Kane EA, Pfleger CM. Impairment of ubiquitylation by mutation in Drosophila E1 promotes both cell-autonomous and non-cell-autonomous Ras-ERK activation in vivo. J Cell Sci 2009; 122:1461-70. [PMID: 19366732 PMCID: PMC2721006 DOI: 10.1242/jcs.042267] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2009] [Indexed: 12/31/2022] Open
Abstract
Ras signaling can promote proliferation, cell survival and differentiation. Mutations in components of the Ras pathway are found in many solid tumors and are associated with developmental disorders. We demonstrate here that Drosophila tissues containing hypomorphic mutations in E1, the most upstream enzyme in the ubiquitin pathway, display cell-autonomous upregulation of Ras-ERK activity and Ras-dependent ectopic proliferation. Ubiquitylation is widely accepted to regulate receptor tyrosine kinase (RTK) endocytosis upstream of Ras. However, although the ectopic proliferation of E1 hypomorphs is dramatically suppressed by removing one copy of Ras, removal of the more upstream components Egfr, Grb2 or sos shows no suppression. Thus, decreased ubiquitylation may lead to growth-relevant Ras-ERK activation by failing to regulate a step downstream of RTK endocytosis. We further demonstrate that Drosophila Ras is ubiquitylated. Our findings suggest that Ras ubiquitylation restricts growth and proliferation in vivo. We also report our intriguing observation that complete inactivation of E1 causes non-autonomous activation of Ras-ERK in adjacent tissue, mimicking oncogenic Ras overexpression. We demonstrate that maintaining sufficient E1 function is required both cell autonomously and non-cell autonomously to prevent inappropriate Ras-ERK-dependent growth and proliferation in vivo and may implicate loss of Ras ubiquitylation in developmental disorders and cancer.
Collapse
Affiliation(s)
- Hua Yan
- Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
The Drosophila eye is one of nature's most beautiful structures and one of its most useful. It has emerged as a favored model for understanding the processes that direct cell fate specification, patterning, and morphogenesis. Though composed of thousands of cells, each fly eye is a simple repeating pattern of perhaps a dozen cell types arranged in a hexagonal array that optimizes coverage of the visual field. This simple structure combined with powerful genetic tools make the fly eye an ideal model to explore the relationships between local cell fate specification and global tissue patterning. In this chapter, I discuss the basic principles that have emerged from three decades of close study. We now understand at a useful level some of the basic principles of cell fate selection and the importance of local cell-cell communication. We understand less of the processes by which signaling combines with morphogenesis and basic cell biology to create a correctly patterned neuroepithelium. Progress is being made on these fundamental issues, and in this chapter I discuss some of the principles that are beginning to emerge.
Collapse
Affiliation(s)
- Ross Cagan
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
40
|
Takahashi S, Pryciak PM. Membrane localization of scaffold proteins promotes graded signaling in the yeast MAP kinase cascade. Curr Biol 2008; 18:1184-91. [PMID: 18722124 DOI: 10.1016/j.cub.2008.07.050] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/14/2008] [Accepted: 07/16/2008] [Indexed: 01/18/2023]
Abstract
BACKGROUND Signaling through mitogen-activated protein kinase (MAPK) cascade pathways can show various input-output behaviors, including either switch-like or graded responses to increasing levels of stimulus. Prior studies suggest that switch-like behavior is promoted by positive feedback loops and nonprocessive phosphorylation reactions, but it is unclear whether graded signaling is a default behavior or whether it must be enforced by separate mechanisms. It has been hypothesized that scaffold proteins promote graded behavior. RESULTS Here, we experimentally probe the determinants of graded signaling in the yeast mating MAPK pathway. We find that graded behavior is robust in that it resists perturbation by loss of several negative-feedback regulators. However, the pathway becomes switch-like when activated by a crosstalk stimulus that bypasses multiple upstream components. To dissect the contributing factors, we developed a method for gradually varying the signal input at different pathway steps in vivo. Input at the beginning of the kinase cascade produced a sharp, threshold-like response. Surprisingly, the scaffold protein Ste5 increased this threshold behavior when limited to the cytosol. However, signaling remained graded whenever Ste5 was allowed to function at the plasma membrane. CONCLUSIONS The results suggest that the MAPK cascade module is inherently ultrasensitive but is converted to a graded system by the pathway-specific activation mechanism. Scaffold-mediated assembly of signaling complexes at the plasma membrane allows faithful propagation of weak signals, which consequently reduces pathway ultrasensitivity. These properties help shape the input-output properties of the system to fit the physiological context.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
41
|
Regulation of neurogenesis and epidermal growth factor receptor signaling by the insulin receptor/target of rapamycin pathway in Drosophila. Genetics 2008; 179:843-53. [PMID: 18505882 DOI: 10.1534/genetics.107.083097] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Determining how growth and differentiation are coordinated is key to understanding normal development, as well as disease states such as cancer, where that control is lost. We have previously shown that growth and neuronal differentiation are coordinated by the insulin receptor/target of rapamycin (TOR) kinase (InR/TOR) pathway. Here we show that the control of growth and differentiation diverge downstream of TOR. TOR regulates growth by controlling the activity of S6 kinase (S6K) and eIF4E. Loss of s6k delays differentiation, and is epistatic to the loss of tsc2, indicating that S6K acts downstream or in parallel to TOR in differentiation as in growth. However, loss of eIF4E inhibits growth but does not affect the timing of differentiation. We also show, for the first time in Drosophila, that there is crosstalk between the InR/TOR pathway and epidermal growth factor receptor (EGFR) signaling. InR/TOR signaling regulates the expression of several EGFR pathway components including pointedP2 (pntP2). In addition, reduction of EGFR signaling levels phenocopies inhibition of the InR/TOR pathway in the regulation of differentiation. Together these data suggest that InR/TOR signaling regulates the timing of differentiation through modulation of EGFR target genes in developing photoreceptors.
Collapse
|
42
|
Miura GI, Roignant JY, Wassef M, Treisman JE. Myopic acts in the endocytic pathway to enhance signaling by the Drosophila EGF receptor. Development 2008; 135:1913-22. [PMID: 18434417 DOI: 10.1242/dev.017202] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Endocytosis of activated receptors can control signaling levels by exposing the receptors to novel downstream molecules or by instigating their degradation. Epidermal growth factor receptor (EGFR) signaling has crucial roles in development and is misregulated in many cancers. We report here that Myopic, the Drosophila homolog of the Bro1-domain tyrosine phosphatase HD-PTP, promotes EGFR signaling in vivo and in cultured cells. myopic is not required in the presence of activated Ras or in the absence of the ubiquitin ligase Cbl, indicating that it acts on internalized EGFR, and its overexpression enhances the activity of an activated form of EGFR. Myopic is localized to intracellular vesicles adjacent to Rab5-containing early endosomes, and its absence results in the enlargement of endosomal compartments. Loss of Myopic prevents cleavage of the EGFR cytoplasmic domain, a process controlled by the endocytic regulators Cbl and Sprouty. We suggest that Myopic promotes EGFR signaling by mediating its progression through the endocytic pathway.
Collapse
Affiliation(s)
- Grant I Miura
- Kimmel Center for Biology and Medicine of the Skirball Institute, NYU School of Medicine, Department of Cell Biology, 540 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
43
|
Abstract
This review explores possible mechanisms by which the neurofibromatosis type-2 tumour suppressor Merlin regulates contact-dependent inhibition of proliferation. Starting from an evolutionary perspective, the concurrent emergence of intercellular contacts and proliferation control in multicellular organisms is first considered. Following a brief survey of the molecular and subcellular milieus in which merlin performs its function, the importance of different cellular and biological contexts in defining the function of merlin is discussed. Finally, an integrated model for merlin and the Ezrin, Radixin, and Moesin (ERM) proteins functioning in the regulation of cellular interfaces is proposed.
Collapse
|
44
|
Abstract
How cell numbers are controlled during organ development is a problem that is still in need of answers. Recent studies in Drosophila melanogaster have delineated a novel signalling pathway, the Hippo pathway, which has an important role in restraining cell proliferation and promoting apoptosis in differentiating epithelial cells. Much like cancer cells, cells that contain mutations for components of the Hippo pathway proliferate inappropriately and have a competitive edge in genetically mosaic tissues. Although poorly characterized in mammals, several components of the Hippo pathway seem to be tumour suppressors in humans.
Collapse
Affiliation(s)
- Leslie J Saucedo
- Department of Biology, University of Puget Sound, 1500 North Warner Street, Tacoma, Washington 98416, USA.
| | | |
Collapse
|
45
|
Doroquez DB, Orr-Weaver TL, Rebay I. Split ends antagonizes the Notch and potentiates the EGFR signaling pathways during Drosophila eye development. Mech Dev 2007; 124:792-806. [PMID: 17588724 PMCID: PMC2231642 DOI: 10.1016/j.mod.2007.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Revised: 04/03/2007] [Accepted: 05/14/2007] [Indexed: 01/08/2023]
Abstract
The Notch and Epidermal Growth Factor Receptor (EGFR) signaling pathways interact cooperatively and antagonistically to regulate many aspects of Drosophila development, including the eye. How output from these two signaling networks is fine-tuned to achieve the precise balance needed for specific inductive interactions and patterning events remains an open and important question. Previously, we reported that the gene split ends (spen) functions within or parallel to the EGFR pathway during midline glial cell development in the embryonic central nervous system. Here, we report that the cellular defects caused by loss of spen function in the developing eye imaginal disc place spen as both an antagonist of the Notch pathway and a positive contributor to EGFR signaling during retinal cell differentiation. Specifically, loss of spen results in broadened expression of Scabrous, ectopic activation of Notch signaling, and a corresponding reduction in Atonal expression at the morphogenetic furrow. Consistent with Spen's role in antagonizing Notch signaling, reduction of spen levels is sufficient to suppress Notch-dependent phenotypes. At least in part due to loss of Spen-dependent down-regulation of Notch signaling, loss of spen also dampens EGFR signaling as evidenced by reduced activity of MAP kinase (MAPK). This reduced MAPK activity in turn leads to a failure to limit expression of the EGFR pathway antagonist and the ETS-domain transcriptional repressor Yan and to a corresponding loss of cell fate specification in spen mutant ommatidia. We propose that Spen plays a role in modulating output from the Notch and EGFR pathways to ensure appropriate patterning during eye development.
Collapse
Affiliation(s)
- David B. Doroquez
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142 USA
| | - Terry L. Orr-Weaver
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142 USA
| | - Ilaria Rebay
- Ben May Institute for Cancer Research, University of Chicago, 929 E. 57 St., Chicago, IL 60637 USA
| |
Collapse
|
46
|
Baker NE. Patterning signals and proliferation in Drosophila imaginal discs. Curr Opin Genet Dev 2007; 17:287-93. [PMID: 17624759 DOI: 10.1016/j.gde.2007.05.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/15/2007] [Accepted: 05/15/2007] [Indexed: 01/12/2023]
Abstract
Recent studies indicate that signaling pathways with well-known roles in patterning also directly regulate cell proliferation. During the differentiation of the retina, Hedgehog, Decapentaplegic, Notch and the EGF receptor regulate proliferation spatially through transcriptional regulation of string, dacapo, and as yet unidentified regulators of Retinoblastoma and Cyclin E/Cdk2 activities. In the developing wing, a novel response to discontinuities in Decapentaplegic signaling combines with concentration-dependent effects to achieve a uniform proliferation pattern in response to a Decapentaplegic gradient. Damage to growing tissues is repaired by transient Decapentaplegic and Wingless secretion from dying cells to induce compensatory proliferation. Diverse spatial patterns of fate specification and of proliferation can arise through distinct combinations of signaling pathways. Reminiscent of pattern formation, cell cycle effects of each signaling pathway differ in distinct developmental fields, making use of a variety of target genes.
Collapse
Affiliation(s)
- Nicholas E Baker
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
47
|
Morante J, Desplan C, Celik A. Generating patterned arrays of photoreceptors. Curr Opin Genet Dev 2007; 17:314-9. [PMID: 17616388 PMCID: PMC2713430 DOI: 10.1016/j.gde.2007.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/15/2007] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
One of the most fascinating topics in biology is to understand the development of highly differentiated cells such as photoreceptors (PRs). This process involves successive steps, starting with the generation of the eye primordium, recruitment and specification of PRs and finally, expression of the proper rhodopsin, the photopigment that initiates the signaling cascade underlying light input excitation. In this review, we describe the sequential steps that take place in the Drosophila eye, from the initial neuronal specification of PRs through their full maturation, focusing specifically on the transcription factors and signaling pathways involved in controlling the precise expression of different rhodopsins in specialized PRs.
Collapse
Affiliation(s)
- Javier Morante
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | | | |
Collapse
|
48
|
Ou CY, Wang CH, Jiang J, Chien CT. Suppression of Hedgehog signaling by Cul3 ligases in proliferation control of retinal precursors. Dev Biol 2007; 308:106-19. [PMID: 17559828 DOI: 10.1016/j.ydbio.2007.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 05/08/2007] [Accepted: 05/10/2007] [Indexed: 02/04/2023]
Abstract
Cullin-RING ubiquitin ligases ubiquitinate protein substrates and control their levels through degradation. Here we show that cullin3 (Cul3) suppresses Hedgehog (Hh) signaling through downregulating the level of the signaling pathway effector cubitus interruptus (Ci). High-level Hh signaling promotes Cul3-dependent Ci degradation, leading to the downregulation of Hh signaling. This process is manifested in controlling cell proliferation during Drosophila retinal development. In Cul3 mutants, the population of interommatidial cells is increased, which can be mimicked by overexpression of Ci and suppressed by depleting endogenous Ci. Hh also regulates the population of interommatidial cells in the pupal stage. Alterations in the interommatidial cell population correlate with alterations in precursor proliferation in the second mitotic wave of larval eye discs. Taken together, these results suggest that Cul3 downregulates Ci levels to modulate Hh signaling activity, thus ensuring proper cell proliferation during retinal development.
Collapse
Affiliation(s)
- Chan-Yen Ou
- Taiwan International Graduate Program, Graduate Institute of Life Science, National Defense Medical Center and Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
49
|
Brown KE, Kerr M, Freeman M. The EGFR ligands Spitz and Keren act cooperatively in the Drosophila eye. Dev Biol 2007; 307:105-13. [PMID: 17512517 DOI: 10.1016/j.ydbio.2007.04.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 04/19/2007] [Accepted: 04/20/2007] [Indexed: 01/24/2023]
Abstract
The EGFR signalling cascade is responsible for coordinating a wide variety of events during Drosophila eye development. It remains something of a mystery how it is that cells are able to interpret the signal so as to choose the appropriate response from the battery of possibilities: division, differentiation, cell shape change and so on. Since the cascade is essentially linear below the receptor, different cellular responses cannot be regulated by alternative signal transduction pathways. The main diversity lies upstream, in the multiple activating ligands. Spitz, Gurken and Vein have been long studied, but little is known about the physiological functions of the fourth ligand, Keren, although various roles have been predicted based on the differences between mutants in the known ligands and those of the receptor. Here, we have isolated a mutant in the keren gene, and demonstrate that Keren does indeed participate in EGFR signalling in the eye, where it acts redundantly with Spitz to control R8 spacing, cell clustering and survival. Thus, specificity cannot be determined by ligand choice, and must instead be a consequence of cell-intrinsic factors, although we speculate that there may be some quantitative differences in signalling elicited by the two ligands.
Collapse
Affiliation(s)
- Katherine E Brown
- MRC-Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | | | | |
Collapse
|
50
|
Firth LC, Baker NE. Spitz from the retina regulates genes transcribed in the second mitotic wave, peripodial epithelium, glia and plasmatocytes of the Drosophila eye imaginal disc. Dev Biol 2007; 307:521-38. [PMID: 17553483 PMCID: PMC2140239 DOI: 10.1016/j.ydbio.2007.04.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 04/24/2007] [Accepted: 04/27/2007] [Indexed: 01/23/2023]
Abstract
Proliferation, differentiation, and other processes must be coordinated during the development of multi-cellular animals. A discrete and regulated cell division, the Second Mitotic Wave (SMW), occurs concomitantly with early cell fate decisions in the Drosophila developing retina. Signals from the Epidermal Growth Factor Receptor (EGFR) are required to promote cell cycle arrest of specified cells and antagonize S-phase entry in the SMW. Cells that do not receive any EGFR activity enter S-phase in the SMW in response to the Notch pathway. To identify genes with potential roles in the SMW, we used microarrays and genetic manipulation of the EGFR pathway to seek transcripts regulated during the SMW. RNA in situ hybridization of 126 differentially transcribed genes revealed genes that have novel expression patterns in cells closely associated with the SMW. In addition, other genes' transcripts were regulated in the differentiating photoreceptor cells, retinal basal glia, the peripodial epithelium and blood cells (plasmatocytes) associated with the developing retina. These novel targets suggest that during eye development, EGFR activity coordinates transcriptional programs in other tissues with retinal differentiation.
Collapse
Affiliation(s)
- Lucy C. Firth
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Nicholas E. Baker
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Corresponding Author: , Tel: 718-430-2854, Fax: 718-430-8778
| |
Collapse
|