1
|
Ge W, Niu YL, Li YK, Li L, Wang H, Li WW, Qiao T, Feng YN, Feng YQ, Liu J, Wang JJ, Sun XF, Cheng SF, Li L, Shen W. Spatiotemporal dynamics of early oogenesis in pigs. Genome Biol 2025; 26:2. [PMID: 39748324 PMCID: PMC11694410 DOI: 10.1186/s13059-024-03464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND In humans and other mammals, the process of oogenesis initiates asynchronously in specific ovarian regions, leading to the localization of dormant and growing follicles in the cortex and medulla, respectively; however, the current understanding of this process remains insufficient. RESULTS Here, we integrate single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to comprehend spatial-temporal gene expression profiles and explore the spatial organization of ovarian microenvironments during early oogenesis in pigs. Projection of the germ cell clusters at different stages of oogenesis into the spatial atlas unveils a "cortical to medullary (C-M)" distribution of germ cells in the developing porcine ovaries. Cross-species analysis between pigs and humans unveils a conserved C-M distribution pattern of germ cells during oogenesis, highlighting the utility of pigs as valuable models for studying human oogenesis in a spatial context. RNA velocity analysis with ST identifies the molecular characteristics and spatial dynamics of granulosa cell lineages originating from the cortical and medullary regions in pig ovaries. Spatial co-occurrence analysis and intercellular communication analysis unveils a distinct cell-cell communication pattern between germ cells and somatic cells in the cortex and medulla regions. Notably, in vitro culture of ovarian tissues verifies that intercellular NOTCH signaling and extracellular matrix (ECM) proteins played crucial roles in initiating meiotic and oogenic programs, highlighting an underappreciated role of ovarian microenvironments in orchestrating germ cell fates. CONCLUSIONS Overall, our work provides insight into the spatial characteristics of early oogenesis and the regulatory role of ovarian microenvironments in germ cell fate within a spatial context.
Collapse
Affiliation(s)
- Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Yi-Lin Niu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu-Kang Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Li Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Han Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wen-Wen Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tian Qiao
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yan-Ni Feng
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu-Qing Feng
- School Hospital, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Liu
- Central Laboratory of Qingdao Agricultural University, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun-Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao-Feng Sun
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun-Feng Cheng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
Suen HC, Ou F, Miu KK, Wang Z, Chan WY, Liao J. The single-cell chromatin landscape in gonadal cell lineage specification. BMC Genomics 2024; 25:464. [PMID: 38741085 DOI: 10.1186/s12864-024-10376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Gonad development includes sex determination and divergent maturation of the testes and ovaries. Recent advances in measuring gene expression in single cells are providing new insights into this complex process. However, the underlying epigenetic regulatory mechanisms remain unclear. Here, we profiled chromatin accessibility in mouse gonadal cells of both sexes from embryonic day 11.5 to 14.5 using single-cell assay for transposase accessible chromatin by sequencing (scATAC-seq). Our results showed that individual cell types can be inferred by the chromatin landscape, and that cells can be temporally ordered along developmental trajectories. Integrative analysis of transcriptomic and chromatin-accessibility maps identified multiple putative regulatory elements proximal to key gonadal genes Nr5a1, Sox9 and Wt1. We also uncover cell type-specific regulatory factors underlying cell type specification. Overall, our results provide a better understanding of the epigenetic landscape associated with the progressive restriction of cell fates in the gonad.
Collapse
Affiliation(s)
- Hoi Ching Suen
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Fanghong Ou
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kai-Kei Miu
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhangting Wang
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wai-Yee Chan
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jinyue Liao
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
3
|
Wilson CA, Batzel P, Postlethwait JH. Direct male development in chromosomally ZZ zebrafish. Front Cell Dev Biol 2024; 12:1362228. [PMID: 38529407 PMCID: PMC10961373 DOI: 10.3389/fcell.2024.1362228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish (Danio rerio), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome, or fewer than two Z chromosomes, is essential to initiate oocyte development; and without the W factor, or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.
Collapse
|
4
|
Wilson CA, Batzel P, Postlethwait JH. Direct Male Development in Chromosomally ZZ Zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573483. [PMID: 38234788 PMCID: PMC10793451 DOI: 10.1101/2023.12.27.573483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish ( Danio rerio ), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB strain fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome or fewer than two Z chromosomes is essential to initiate oocyte development; and without the W factor or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.
Collapse
|
5
|
Workman S, Wilson MJ. RNA sequencing and expression analysis reveal a role for Lhx9 in the haploinsufficient adult mouse ovary. Mol Reprod Dev 2023; 90:295-309. [PMID: 37084273 DOI: 10.1002/mrd.23686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/26/2023] [Accepted: 04/05/2023] [Indexed: 04/23/2023]
Abstract
Understanding the molecular pathways that underpin ovarian development and function is vital for improving the research approaches to investigating fertility. Despite a significant improvement in our knowledge of molecular activity in the ovary, many questions remain unanswered in the quest to understand factors influencing fertility and ovarian pathologies such as cancer. Here, we present an investigation into the expression and function of the developmental transcription factor LIM Homeobox 9 (LHX9) in the adult mouse ovary. We have characterized Lhx9 expression in several cell types of the mature ovary across follicle stages. To evaluate possible LHX9 function in the adult ovary, we investigated ovarian anatomy and transcription in an Lhx9+/- knockout mouse model displaying subfertility. Despite a lack of gross anatomical differences between genotypes, RNA-sequencing found that 90 differentially expressed genes between Lhx9+/ - and Lhx9+/+ mice. Gene ontology analyses revealed a reduced expression of genes with major roles in ovarian steroidogenesis and an increased expression of genes associated with ovarian cancer. Analysis of the ovarian epithelium revealed Lhx9+/ - mice have a disorganized epithelial phenotype, corresponding to a significant increase in epithelial marker gene expression. These results provide an analysis of Lhx9 in the adult mouse ovary, suggesting a role in fertility and ovarian epithelial cancer.
Collapse
Affiliation(s)
- Stephanie Workman
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Megan J Wilson
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Gatto KP, Timoshevskaya N, Smith JJ, Lourenço LB. Sequencing of laser captured Z and W chromosomes of the tocantins paradoxical frog (Pseudis tocantins) provides insights on repeatome and chromosomal homology. J Evol Biol 2022; 35:1659-1674. [PMID: 35642451 DOI: 10.1111/jeb.14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/06/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Pseudis tocantins is the only frog species of the hylid genus Pseudis that possesses highly heteromorphic sex chromosomes. Z and W chromosomes of Ps. tocantins differ in size, morphology, position of the nucleolar organizer region (NOR) and the amount and distribution of heterochromatin. A chromosomal inversion and heterochromatin amplification on the W chromosome were previously inferred to be involved in the evolution of this sex chromosome pair. Despite these findings, knowledge related to the molecular composition of the large heterochromatic band of this W chromosome is restricted to the PcP190 satellite DNA, and no data are available regarding the gene content of either the W or the Z chromosome of Ps. tocantins. Here, we sequenced microdissected Z and W chromosomes of this species to further resolve their molecular composition. Comparative genomic analysis suggests that Ps. tocantins sex chromosomes are likely homologous to chromosomes 4 and 10 of Xenopus tropicalis. Analyses of the repetitive DNA landscape in the Z and W assemblies allowed for the identification of several transposable elements and putative satellite DNA sequences. Finally, some transposable elements from the W assembly were found to be highly diverse and divergent from elements found elsewhere in the genome, suggesting a rapid amplification of these elements on the W chromosome.
Collapse
Affiliation(s)
- Kaleb Pretto Gatto
- Laboratory of Chromosome Studies, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil.,Laboratory of Herpetology and Aquaculture Center, Department of Zoology, Institute of Biosciences, São Paulo State University, Rio Claro, Brazil
| | - Nataliya Timoshevskaya
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Jeramiah J Smith
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Luciana Bolsoni Lourenço
- Laboratory of Chromosome Studies, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
7
|
Xie M, Hu X, Li L, Xiong Z, Zhang H, Zhuang Y, Huang Z, Liu J, Lian J, Huang C, Xie Q, Kang X, Fan Y, Bai X, Chen Z. Loss of Raptor induces Sertoli cells into an undifferentiated state in mice. Biol Reprod 2022; 107:1125-1138. [PMID: 35594452 PMCID: PMC9562113 DOI: 10.1093/biolre/ioac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
In mammals, testis development is triggered by the expression of the sex-determining Y-chromosome gene SRY to commit the Sertoli cell (SC) fate at gonadal sex determination in the fetus. Several genes have been identified to be required to promote the testis pathway following SRY activation (i.e., SRY box 9 (SOX9)) in an embryo; however, it largely remains unknown about the genes and the mechanisms involved in stabilizing the testis pathway after birth and throughout adulthood. Herein, we report postnatal males with SC-specific deletion of Raptor demonstrated the absence of SC unique identity and adversely acquired granulosa cell-like characteristics, along with loss of tubular architecture and scattered distribution of SCs and germ cells. Subsequent genome-wide analysis by RNA sequencing revealed a profound decrease in the transcripts of testis genes (i.e., Sox9, Sox8, and anti-Mullerian hormone (Amh)) and, conversely, an increase in ovary genes (i.e., LIM/Homeobox gene 9 (Lhx9), Forkhead box L2 (Foxl2) and Follistatin (Fst)); these changes were further confirmed by immunofluorescence and quantitative reverse-transcription polymerase chain reaction. Importantly, co-immunofluorescence demonstrated that Raptor deficiency induced SCs dedifferentiation into a progenitor state; the Raptor-mutant gonads showed some ovarian somatic cell features, accompanied by enhanced female steroidogenesis and elevated estrogen levels, yet the zona pellucida 3 (ZP3)-positive terminally feminized oocytes were not observed. In vitro experiments with primary SCs suggested that Raptor is likely involved in the fibroblast growth factor 9 (FGF9)-induced formation of cell junctions among SCs. Our results established that Raptor is required to maintain SC identity, stabilize the male pathway, and promote testis development.
Collapse
Affiliation(s)
| | | | | | - Zhi Xiong
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Hanbin Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuge Zhuang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zicong Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinsheng Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingyao Lian
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chuyu Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiang Xie
- Center for Reproduction, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong, China
| | - Xiangjin Kang
- Correspondence: Xiangjin Kang, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Yong Fan, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Xiaochun Bai, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: ; Zhenguo Chen, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: (Lead Contact)
| | - Yong Fan
- Correspondence: Xiangjin Kang, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Yong Fan, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Xiaochun Bai, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: ; Zhenguo Chen, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: (Lead Contact)
| | - Xiaochun Bai
- Correspondence: Xiangjin Kang, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Yong Fan, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Xiaochun Bai, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: ; Zhenguo Chen, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: (Lead Contact)
| | - Zhenguo Chen
- Correspondence: Xiangjin Kang, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Yong Fan, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. E-mail: ; Xiaochun Bai, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: ; Zhenguo Chen, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. E-mail: (Lead Contact)
| |
Collapse
|
8
|
Luo X, Ge J, Chen T, Liu J, Liu Z, Bi C, Lan S. LHX9, a p53-binding protein, inhibits the progression of glioma by suppressing glycolysis. Aging (Albany NY) 2021; 13:22109-22119. [PMID: 34536269 PMCID: PMC8507291 DOI: 10.18632/aging.203436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/11/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE LHX9 methylation has been reported in many tumors, but its functions and related mechanisms in glioma are still unknown and need to be verified. METHODS The protein level of LHX9 in glioma tissues was examined using western blotting and immunohistochemistry, and the functions of LHX9 in glioma cell lines were investigated using MTT and colony formation assays. In addition, the interaction between LHX9 and P53 was analyzed by immunoprecipitation, and the roles of LHX9 in cancer metabolism were explored by measuring metabolites. RESULTS In this study, we found that the LHX9 expression level was decreased in glioma specimens, and the upregulation of LHX9 expression inhibited the growth of glioma cells in liquid medium and on soft agar. Regarding the molecular mechanism, we found that LHX9 interacted with p53, and downregulation of LHX9 promoted the expression of the glycolysis-related enzyme PGK1 and increased the lactic acid content. By interfering with the expression of LHX9, the tumorigenicity of glioma cells was promoted, an outcome blocked by further interference with PGK1 expression. CONCLUSION In summary, the decreased expression of LHX9 in gliomas activates the expression of the glycolysis-related enzyme PGK1, thereby promoting the development of gliomas, suggesting that the LHX9-PGK1 signaling axis can be used as a target for the treatment of glioma.
Collapse
Affiliation(s)
- Xiangying Luo
- Department of Neurosurgery, XiangYa Hospital of Central South University, Changsha 410078, P.R. China
| | - Jianwei Ge
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P.R. China
| | - Tao Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, P.R. China
| | - Jinfang Liu
- Department of Neurosurgery, XiangYa Hospital of Central South University, Changsha 410078, P.R. China
| | - Ziyuan Liu
- Department of Neurosurgery, XiangYa Hospital of Central South University, Changsha 410078, P.R. China
| | - Changlong Bi
- Department of Neurosurgery, XiangYa Hospital of Central South University, Changsha 410078, P.R. China
| | - Song Lan
- Department of Neurosurgery, XiangYa Hospital of Central South University, Changsha 410078, P.R. China
| |
Collapse
|
9
|
Singh N, Singh D, Modi D. LIM Homeodomain (LIM-HD) Genes and Their Co-Regulators in Developing Reproductive System and Disorders of Sex Development. Sex Dev 2021; 16:147-161. [PMID: 34518474 DOI: 10.1159/000518323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 11/19/2022] Open
Abstract
LIM homeodomain (LIM-HD) family genes are transcription factors that play crucial roles in a variety of functions during embryonic development. The activities of the LIM-HD proteins are regulated by the co-regulators LIM only (LMO) and LIM domain-binding (LDB). In the mouse genome, there are 13 LIM-HD genes (Lhx1-Lhx9, Isl1-2, Lmx1a-1b), 4 Lmo genes (Lmo1-4), and 2 Ldb genes (Ldb1-2). Amongst these, Lhx1 is required for the development of the müllerian duct epithelium and the timing of the primordial germ cell migration. Lhx8 is necessary for oocyte differentiation and Lhx9 for somatic cell proliferation in the genital ridges and control of testosterone production in the Leydig cells. Lmo4 is involved in Sertoli cell differentiation. Mutations in LHX1 are associated with müllerian agenesis or Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome. LHX9 gene variants are reported in cases with disorders of sex development (DSD). Mutations in LHX3 and LHX4 are reported in patients with combined pituitary hormone deficiency having absent or delayed puberty. A transcript map of the Lhx, Lmo, and Ldb genes reveal that multiple LIM-HD genes and their co-regulators are expressed in a sexually dimorphic pattern in the developing mouse gonads. Unraveling the roles of LIM-HD genes during development will aid in our understanding of the causes of DSD.
Collapse
Affiliation(s)
- Neha Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR-NIRRH), Mumbai, India
| | - Domdatt Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR-NIRRH), Mumbai, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR-NIRRH), Mumbai, India
| |
Collapse
|
10
|
Ge W, Wang JJ, Zhang RQ, Tan SJ, Zhang FL, Liu WX, Li L, Sun XF, Cheng SF, Dyce PW, De Felici M, Shen W. Dissecting the initiation of female meiosis in the mouse at single-cell resolution. Cell Mol Life Sci 2021; 78:695-713. [PMID: 32367190 PMCID: PMC11072979 DOI: 10.1007/s00018-020-03533-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/22/2020] [Accepted: 04/17/2020] [Indexed: 01/22/2023]
Abstract
Meiosis is one of the most finely orchestrated events during gametogenesis with distinct developmental patterns in males and females. However, the molecular mechanisms involved in this process remain not well known. Here, we report detailed transcriptome analyses of cell populations present in the mouse female gonadal ridges (E11.5) and the embryonic ovaries from E12.5 to E14.5 using single-cell RNA sequencing (scRNA seq). These periods correspond with the initiation and progression of meiosis throughout the first stage of prophase I. We identified 13 transcriptionally distinct cell populations and 7 transcriptionally distinct germ cell subclusters that correspond to mitotic (3 clusters) and meiotic (4 clusters) germ cells. By analysing cluster-specific gene expression profiles, we found four cell clusters correspond to different cell stages en route to meiosis and characterized their detailed transcriptome dynamics. Our scRNA seq analysis here represents a new important resource for deciphering the molecular pathways driving female meiosis initiation.
Collapse
Affiliation(s)
- Wei Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun-Jie Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Rui-Qian Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shao-Jing Tan
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fa-Li Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wen-Xiang Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao-Feng Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun-Feng Cheng
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
11
|
Deciphering Cell Lineage Specification during Male Sex Determination with Single-Cell RNA Sequencing. Cell Rep 2019; 22:1589-1599. [PMID: 29425512 DOI: 10.1016/j.celrep.2018.01.043] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/21/2017] [Accepted: 01/12/2018] [Indexed: 11/20/2022] Open
Abstract
The gonad is a unique biological system for studying cell-fate decisions. However, major questions remain regarding the identity of somatic progenitor cells and the transcriptional events driving cell differentiation. Using time-series single-cell RNA sequencing on XY mouse gonads during sex determination, we identified a single population of somatic progenitor cells prior to sex determination. A subset of these progenitors differentiates into Sertoli cells, a process characterized by a highly dynamic genetic program consisting of sequential waves of gene expression. Another subset of multipotent cells maintains their progenitor state but undergoes significant transcriptional changes restricting their competence toward a steroidogenic fate required for the differentiation of fetal Leydig cells. Our findings confirm the presence of a unique multipotent progenitor population in the gonadal primordium that gives rise to both supporting and interstitial lineages. These also provide the most granular analysis of the transcriptional events occurring during testicular cell-fate commitment.
Collapse
|
12
|
Zhu Y, Xu W, Wang S, Gan T, Shao C, Li M, Wang N, Chen S. Cloning, tissue distribution and methylation analyses of Lhx9 in Chinese tongue sole (Cynoglossus semilaevis). Gene 2018; 691:176-184. [PMID: 30580070 DOI: 10.1016/j.gene.2018.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
Abstract
Lhx9 is a LIM-homeodomain protein related to gonad development and sex reversal. In this study, we cloned and characterized CS-Lhx9 in the gonads of the Chinese tongue sole (Cynoglossus semilaevis). The full-length cDNA of CS-Lhx9 was 3123 bp, including an ORF of 1149 bp encoding 383 amino acids which contains two LIM domains and a homeobox domain. CS-Lhx9 transcripts were primarily observed in the testis of male and neomale at 1 yah, but nearly undetectable in the ovary. During the development of gonad, CS-Lhx9 exhibited an increasing trend and appeared to reach its peak value of expression in testis at 1 yah. In situ hybridization was performed in male and neomale gonads at 210 dah and 1 yah. The results showed strong CS-Lhx9 signals in the spermatids and spermatozoa (germ cells). Methylation level of CS-Lhx9 promoter was higher in female and lower in male and neomale gonads, showing a negative correlation with CS-Lhx9 expression.
Collapse
Affiliation(s)
- Ying Zhu
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wenteng Xu
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Shuangyan Wang
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Tian Gan
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Changwei Shao
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ming Li
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Na Wang
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
13
|
Zhou Y, Mao F, He Z, Li J, Zhang Y, Xiang Z, Xiao S, Ma H, Zhang Y, Yu Z. The Molecular Mechanism Underlying Pro-apoptotic Role of Hemocytes Specific Transcriptional Factor Lhx9 in Crassostrea hongkongensis. Front Physiol 2018; 9:612. [PMID: 29892231 PMCID: PMC5985316 DOI: 10.3389/fphys.2018.00612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
Hemocytes are the central organ of immune defense against pathogens by means of inflammation, phagocytosis, and encapsulation in mollusks. The well-functioning of the host immune system relies on the hemocytes’ task exertion and frequent renewal, but the underlying renewal mechanism remains elusive at the gene level. Here, we identified one transcription factor, LIM homeobox 9, in Crassostrea hongkongensis (ChLhx9) that could be involved in hemocyte apoptosis or renewal. ChLhx9 contains a homeodomain and two LIM domains. The expression profile of ChLhx9 showed that it was specific and had high expression in hemocytes, and it significantly increased under the bacterial challenge. RNA interference of ChLhx9 dramatically decreased the apoptosis rate of hemocytes when compared with a control group, which strongly implies its pro-apoptotic role in hemocytes. Furthermore, the genomic responses to the knockdown of ChLhx9 were examined through RNA-seq, which showed that multiple pathways associated with cell apoptosis, including the apoptosis pathway, hippo signal pathway and p53 signaling pathway, were significantly down-regulated. Meanwhile, seven of the key apoptotic genes were confirmed to be upregulated by ChLhx9, among which ChASPP1 (apoptosis stimulating protein of p53) was confirmed to induce hemocyte apoptosis strongly, which demonstrates that ChASPP1 was a downstream target mediated by ChLhx9 that caused apoptosis. In conclusion, tissue-specific transcription factor ChLhx9 induces hemocyte apoptosis through activating apoptotic genes or pathways, which could contribute to hemocyte renewal and immune defense in oysters.
Collapse
Affiliation(s)
- Yingli Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fan Mao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiying He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yuehuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiming Xiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Shu Xiao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Haitao Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Ziniu Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
14
|
Hu F, Zhu Q, Sun B, Cui C, Li C, Zhang L. Smad ubiquitylation regulatory factor 1 promotes LIM‐homeobox gene 9 degradation and represses testosterone production in Leydig cells. FASEB J 2018; 32:4627-4640. [DOI: 10.1096/fj.201701480r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fan Hu
- Department of Geriatric EndocrinologyChinese People's Liberation Army General HospitalNational Clinical Research Center for Geriatric DiseasesBeijingChina
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center of Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Qiong Zhu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center of Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Banruo Sun
- Department of Geriatric EndocrinologyChinese People's Liberation Army General HospitalNational Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Chunping Cui
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center of Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Chunlin Li
- Department of Geriatric EndocrinologyChinese People's Liberation Army General HospitalNational Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Lingqiang Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center of Protein SciencesBeijing Institute of LifeomicsBeijingChina
| |
Collapse
|
15
|
Putative Independent Evolutionary Reversals from Genotypic to Temperature-Dependent Sex Determination are Associated with Accelerated Evolution of Sex-Determining Genes in Turtles. J Mol Evol 2017; 86:11-26. [DOI: 10.1007/s00239-017-9820-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/18/2017] [Indexed: 12/14/2022]
|
16
|
Wan Z, Lu Y, Rui L, Yu X, Yang F, Tu C, Li Z. Gene Expression Profiling Reveals Potential Players of Left-Right Asymmetry in Female Chicken Gonads. Int J Mol Sci 2017; 18:E1299. [PMID: 28632173 PMCID: PMC5486120 DOI: 10.3390/ijms18061299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 12/16/2022] Open
Abstract
Most female birds develop only a left ovary, whereas males develop bilateral testes. The mechanism underlying this process is still not completely understood. Here, we provide a comprehensive transcriptional analysis of female chicken gonads and identify novel candidate side-biased genes. RNA-Seq analysis was carried out on total RNA harvested from the left and right gonads on embryonic day 6 (E6), E12, and post-hatching day 1 (D1). By comparing the gene expression profiles between the left and right gonads, 347 differentially expressed genes (DEGs) were obtained on E6, 3730 were obtained on E12, and 2787 were obtained on D1. Side-specific genes were primarily derived from the autosome rather than the sex chromosome. Gene ontology and pathway analysis showed that the DEGs were most enriched in the Piwi-interactiing RNA (piRNA) metabolic process, germ plasm, chromatoid body, P granule, neuroactive ligand-receptor interaction, microbial metabolism in diverse environments, and methane metabolism. A total of 111 DEGs, five gene ontology (GO) terms, and three pathways were significantly different between the left and right gonads among all the development stages. We also present the gene number and the percentage within eight development-dependent expression patterns of DEGs in the left and right gonads of female chicken.
Collapse
Affiliation(s)
- Zhiyi Wan
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Yanan Lu
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Lei Rui
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Xiaoxue Yu
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Fang Yang
- College of Life Sciences, Peking University, Beijing 100871, China.
| | - Chengfang Tu
- Annoroad Gene Technology Co., Ltd., Beijing 100176, China.
| | - Zandong Li
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
17
|
Lin YT, Barske L, DeFalco T, Capel B. Numb regulates somatic cell lineage commitment during early gonadogenesis in mice. Development 2017; 144:1607-1618. [PMID: 28360133 DOI: 10.1242/dev.149203] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022]
Abstract
During early gonadogenesis, proliferating cells in the coelomic epithelium (CE) give rise to most of the somatic cells in both XX and XY gonads. Previous dye-labeling experiments showed that a single CE cell could give rise to additional CE cells and to both supporting and interstitial cell lineages, implying that cells in the CE domain are multipotent progenitors, and suggesting that an asymmetric division is involved in the acquisition of gonadal cell fates. We found that NUMB is asymmetrically localized in CE cells, suggesting that it might be involved. To test this hypothesis, we conditionally deleted Numb on a Numbl mutant background just prior to gonadogenesis. Mutant gonads showed a loss of cell polarity in the surface epithelial layers, large interior cell patches expressing the undifferentiated cell marker LHX9, and a loss of differentiated cells in somatic cell lineages. These results indicate that NUMB is necessary for establishing polarity in CE cells, and that asymmetric divisions resulting from CE polarity are required for commitment to differentiated somatic cell fates. Surprisingly, germ cells, which do not arise from the CE, were also affected in mutants, which may be a direct or indirect effect of loss of Numb.
Collapse
Affiliation(s)
- Yi-Tzu Lin
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lindsey Barske
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
18
|
Martin LJ. Cell interactions and genetic regulation that contribute to testicular Leydig cell development and differentiation. Mol Reprod Dev 2016; 83:470-87. [DOI: 10.1002/mrd.22648] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/10/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Luc J. Martin
- Department of Biology; Université de Moncton; Moncton New-Brunswick Canada
| |
Collapse
|
19
|
Piprek RP, Kloc M, Kubiak JZ. Early Development of the Gonads: Origin and Differentiation of the Somatic Cells of the Genital Ridges. Results Probl Cell Differ 2016; 58:1-22. [PMID: 27300173 DOI: 10.1007/978-3-319-31973-5_1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The earliest manifestation of gonadogenesis in vertebrates is the formation of the genital ridges. The genital ridges form through the transformation of monolayer coelomic epithelium into a cluster of somatic cells. This process depends on increased proliferation of coelomic epithelium and disintegration of its basement membrane, which is foreshadowed by the expression of series of regulatory genes. The earliest expressed gene is Gata4, followed by Sf1, Lhx9, Emx2, and Cbx2. The early genital ridge is a mass of somatic SF1-positive cells (gonadal precursor cells) that derive from proliferating coelomic epithelium. Primordial germ cells (PGCs) immigrate to the coelomic epithelium even in the absence of genital ridges, e.g., in mouse null mutants for Gata4. And conversely, the PGCs are not required for the formation of the genital ridges. After reaching genital ridges, the PGCs become enclosed by somatic cells derived from coelomic epithelium. Subsequently, the expression of sex-determining genes begins and the bipotential gonads differentiate into either testes or ovaries. Gonadal precursor cells, derived from coelomic epithelium, give rise to the somatic supporting cells such as Sertoli cells, follicular cells, and probably also peritubular myoid and steroidogenic cells.
Collapse
Affiliation(s)
- Rafal P Piprek
- Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Malgorzata Kloc
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
- The Houston Methodist Research Institute, Houston, TX, USA
| | - Jacek Z Kubiak
- CNRS, UMR 6290, Institute of Genetics and Development of Rennes, Cell Cycle Group, 35043, Rennes, France
- Université Rennes 1, UEB, UMS Biosit, Faculty of Medicine, 35043, Rennes, France
| |
Collapse
|
20
|
Yu M, Xu Y, Yu D, Yu D, DU W. Comparative analysis of temporal gene expression patterns in the developing ovary of the embryonic chicken. J Reprod Dev 2015; 61:123-33. [PMID: 25736178 PMCID: PMC4410310 DOI: 10.1262/jrd.2014-084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Many genes participate in the process of ovarian germ cell development, while the combined action mechanisms of these molecular regulators still need clarification. The present study was focused on determination of differentially expressed genes and gene functions at four critical time points in chicken ovarian development. Comparative transcriptional profiling of ovaries from embryonic day 5.5 (E5.5), E12.5, E15.5 and E18.5 was performed using an Affymetrix GeneChip chicken genome microarray. Differential expression patterns for genes specifically depleted and enriched in each stage were identified. The results showed that most of the up- and downregulated genes were involved in the metabolism of retinoic acid (RA) and synthesis of hormones. Among them, a higher number of up- and downregulated genes in the E15.5 ovary were identified as being involved in steroid biosynthesis and retinol metabolism, respectively. To validate gene changes, expressions of twelve candidate genes related to germ cell development were examined by real-time PCR and found to be consistent with the of GeneChip data. Moreover, the immunostaining results suggested that ovarian development during different stages was regulated by different genes. Furthermore, a Raldh2 knockdown chicken model was produced to investigate the fundamental role of Raldh2 in meiosis initiation. It was found that meiosis occurred abnormally in Raldh2 knockdown ovaries, but the inhibitory effect on meiosis was reversed by the addition of exogenous RA. This study offers insights into the profile of gene expression and mechanisms regulating ovarian development, especially the notable role of Raldh2 in meiosis initiation in the chicken.
Collapse
Affiliation(s)
- Minli Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095 Jiangsu Province, PR China
| | | | | | | | | |
Collapse
|
21
|
Bieser KL, Wibbels T. Chronology, magnitude and duration of expression of putative sex-determining/differentiation genes in a turtle with temperature-dependent sex determination. Sex Dev 2014; 8:364-75. [PMID: 25427533 DOI: 10.1159/000369116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2014] [Indexed: 11/19/2022] Open
Abstract
The red-eared slider turtle (Trachemys scripta) possesses temperature-dependent sex determination (TSD) in which the incubation temperature determines gonadal sex. Although a number of mammalian gene homologues have been identified in reptiles with TSD, the exact sex-determining trigger(s) is not known. To date, the current study represents the most comprehensive simultaneous evaluation of the chronology of mRNA expression profiles of putative sex-determining/differentiation genes (Dmrt1, Sox9, Amh, Lhx9, and Foxl2) from gonads incubated at male- and female-producing temperatures in T. scripta. Additionally, sex-reversing treatments with 17β-estradiol and letrozole were examined. At a male-producing temperature, Dmrt1 expression was sexually dimorphic by stage 17, Sox9 by 19 and Amh by 21. In contrast, Foxl2 did not significantly increase until after the thermosensitive period at a female-producing temperature. Treatment with 17β-estradiol resulted in reduced gonad size and/or inhibited gonadal development and differentiation. Gene expression was subsequently low in this group. Sex reversal utilizing letrozole failed to produce testes at a female-producing temperature and as such, gene expression was comparable to ovary. These results indicate that Dmrt1 and Sox9 are potential triggers for testis differentiation and Amh, Lhx9 and Foxl2 represent a conserved core set of genes in the sex-determining/differentiation pathway of TSD species.
Collapse
Affiliation(s)
- Kayla L Bieser
- Department of Biology, University of Alabama at Birmingham, Birmingham, Ala., USA
| | | |
Collapse
|
22
|
Mazaud-Guittot S, Prud'homme B, Bouchard MF, Bergeron F, Daems C, Tevosian SG, Viger RS. GATA4 autoregulates its own expression in mouse gonadal cells via its distal 1b promoter. Biol Reprod 2014; 90:25. [PMID: 24352556 DOI: 10.1095/biolreprod.113.113290] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Transcription factor GATA4 is required for the development and function of the mammalian gonads. We first reported that the GATA4 gene in both human and rodents is expressed as two major alternative transcripts that differ solely in their first untranslated exon (exon 1a vs. exon 1b). We had also showed by quantitative PCR that in mouse tissues, both Gata4 exon 1a- and 1b-containing transcripts are present in all sites that are normally positive for GATA4 protein. In adult tissues, exon 1a-containing transcripts generally predominate. A notable exception, however, is the testis where the Gata4 exon 1a and 1b transcripts exhibit a similar level of expression. We now confirm by in situ hybridization analysis that each transcript is also strongly expressed during gonad differentiation in both sexes in the rat. To gain further insights into how Gata4 gene expression is controlled, we characterized the mouse Gata4 promoter sequence located upstream of exon 1b. In vitro studies revealed that the Gata4 1b promoter is less active than the 1a promoter in several gonadal cell lines tested. Whereas we have previously shown that endogenous Gata4 transcription driven by the 1a promoter is dependent on a proximally located Ebox motif, we now show using complementary in vitro and in vivo approaches that Gata4 promoter 1b-directed expression is regulated by GATA4 itself. Thus, Gata4 transcription in the gonads and other tissues is ensured by distinct promoters that are regulated differentially and independently.
Collapse
Affiliation(s)
- Séverine Mazaud-Guittot
- Reproduction, Mother and Child Health, Centre de recherche du CHU de Québec and Centre de recherche en biologie de la reproduction (CRBR), Quebec City, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Brown RM, Davis MG, Hayashi K, MacLean JA. Regulated expression of Rhox8 in the mouse ovary: evidence for the role of progesterone and RHOX5 in granulosa cells. Biol Reprod 2013; 88:126. [PMID: 23536368 DOI: 10.1095/biolreprod.112.103267] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The gonadotropin surge is the essential trigger to stimulate ovulation and luteinization of ovarian follicles. While the hormone signals from the brain that initiate ovulation are known, the specific targets which regulate this process are not well known. In this study, we assessed the suitability of the Rhox homeobox gene cluster to serve as the master regulators of folliculogenesis. In superovulated (equine chorionic gonadotropin [eCG]/human chorionic gonadotropin [hCG]) mice, the Rhox genes exhibited four distinct windows of peak expression, suggesting that these genes may regulate specific events during the ovulatory cycle. Like many members of the cluster, Rhox8 mRNA and protein were induced by follicle stimulating hormone [FSH]/eCG in granulosa cells. However, Rhox8 displayed unique peak expression at 8 h post-hCG administration, implying it might be the lone member of the cluster regulated by progesterone. Subsequent promoter analysis in granulosa cells revealed relevant homeobox binding and progesterone response elements within Rhox8's 5'-flanking region. In superovulated mice, progesterone receptor (PGR) is recruited to the Rhox8 promoter, as assessed by chromatin immunoprecipitation. In Rhox5-null mice, Rhox8 mRNA was reduced at 2 h and 4 h post-hCG administration but recovered once the follicles passed the antral stage of development. Conversely, in progesterone receptor knockout mice, Rhox8 exhibited normal stimulation by eCG but failed to reach its peak mRNA level at 8 h post-hCG found in wild-type mice. This suggests a model in which Rhox8 transcription is dependent upon RHOX5 during early folliculogenesis and upon progesterone during the periovulatory window when RHOX5 normally wanes. In support of this model, transfection of RHOX5 and PGR expression plasmids stimulated, whereas dominant negative and mutant constructs inhibited, Rhox8 promoter activity.
Collapse
Affiliation(s)
- Raquel M Brown
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | | | | | | |
Collapse
|
24
|
BIESER KAYLAL, WIBBELS THANE, MOURAD GEORGE, PALADINO FRANK. The Cloning and Expression Analysis ofLhx9During Gonadal Sex Differentiation in the Red-Eared Slider Turtle,Trachemys scripta, a Species With Temperature-Dependent Sex Determination. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:238-46. [DOI: 10.1002/jez.b.22497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/14/2013] [Accepted: 03/01/2012] [Indexed: 11/08/2022]
Affiliation(s)
- KAYLA L. BIESER
- Department of Biology; University of Alabama at Birmingham; Birmingham, Alabama
| | - THANE WIBBELS
- Department of Biology; University of Alabama at Birmingham; Birmingham, Alabama
| | - GEORGE MOURAD
- Department of Biology; Indiana University-Purdue University Fort Wayne; Fort Wayne, Indiana
| | - FRANK PALADINO
- Department of Biology; Indiana University-Purdue University Fort Wayne; Fort Wayne, Indiana
| |
Collapse
|
25
|
Manosalva I, González A, Kageyama R. Hes1 in the somatic cells of the murine ovary is necessary for oocyte survival and maturation. Dev Biol 2013; 375:140-51. [DOI: 10.1016/j.ydbio.2012.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 01/06/2023]
|
26
|
Pérez-Montarelo D, Hudson NJ, Fernández AI, Ramayo-Caldas Y, Dalrymple BP, Reverter A. Porcine tissue-specific regulatory networks derived from meta-analysis of the transcriptome. PLoS One 2012; 7:e46159. [PMID: 23049964 PMCID: PMC3458843 DOI: 10.1371/journal.pone.0046159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/28/2012] [Indexed: 11/19/2022] Open
Abstract
The processes that drive tissue identity and differentiation remain unclear for most tissue types. So are the gene networks and transcription factors (TF) responsible for the differential structure and function of each particular tissue, and this is particularly true for non model species with incomplete genomic resources. To better understand the regulation of genes responsible for tissue identity in pigs, we have inferred regulatory networks from a meta-analysis of 20 gene expression studies spanning 480 Porcine Affymetrix chips for 134 experimental conditions on 27 distinct tissues. We developed a mixed-model normalization approach with a covariance structure that accommodated the disparity in the origin of the individual studies, and obtained the normalized expression of 12,320 genes across the 27 tissues. Using this resource, we constructed a network, based on the co-expression patterns of 1,072 TF and 1,232 tissue specific genes. The resulting network is consistent with the known biology of tissue development. Within the network, genes clustered by tissue and tissues clustered by site of embryonic origin. These clusters were significantly enriched for genes annotated in key relevant biological processes and confirm gene functions and interactions from the literature. We implemented a Regulatory Impact Factor (RIF) metric to identify the key regulators in skeletal muscle and tissues from the central nervous systems. The normalization of the meta-analysis, the inference of the gene co-expression network and the RIF metric, operated synergistically towards a successful search for tissue-specific regulators. Novel among these findings are evidence suggesting a novel key role of ERCC3 as a muscle regulator. Together, our results recapitulate the known biology behind tissue specificity and provide new valuable insights in a less studied but valuable model species.
Collapse
Affiliation(s)
- Dafne Pérez-Montarelo
- Computational and Systems Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Animal, Food and Health Sciences, Queensland Bioscience Precinct, St. Lucia, Brisbane, Queensland, Australia
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Nicholas J. Hudson
- Computational and Systems Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Animal, Food and Health Sciences, Queensland Bioscience Precinct, St. Lucia, Brisbane, Queensland, Australia
| | - Ana I. Fernández
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Yuliaxis Ramayo-Caldas
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Brian P. Dalrymple
- Computational and Systems Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Animal, Food and Health Sciences, Queensland Bioscience Precinct, St. Lucia, Brisbane, Queensland, Australia
| | - Antonio Reverter
- Computational and Systems Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Animal, Food and Health Sciences, Queensland Bioscience Precinct, St. Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
27
|
Jagarlamudi K, Rajkovic A. Oogenesis: transcriptional regulators and mouse models. Mol Cell Endocrinol 2012; 356:31-9. [PMID: 21856374 DOI: 10.1016/j.mce.2011.07.049] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/19/2011] [Accepted: 07/27/2011] [Indexed: 11/21/2022]
Abstract
Oocyte differentiation into a totipotent cell requires initial germ cell cyst breakdown to form primordial follicles, recruitment of primordial follicles for development into primary follicles and remarkable growth of the ovarian follicle which culminates in ovulation. During oogenesis, the oocyte undergoes dynamic alterations in gene expression which are regulated by a set of well-coordinated transcription factors active in the germ line and soma. A number of germ cell specific as well as somatic expressed transcriptional regulators are critical in ovarian formation and folliculogenesis. These transcriptional regulators include: Foxo3, Foxl2, Figla, Lhx8, Nobox, Sohlh1 and Sohlh2. A subset of these transcriptional regulators is mutated in women with ovarian insufficiency and infertility. Studies on transcriptional regulators preferentially expressed in the ovary are important to develop a better understanding of the mechanisms of activation and survival of ovarian follicles, as well as an understanding of ovary specific pathways that can be modulated in the future to regulate fertility and protect against external insults such as chemotherapy.
Collapse
Affiliation(s)
- Krishna Jagarlamudi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
28
|
Guigon CJ, Cohen-Tannoudji M. [Reconsidering the roles of female germ cells in ovarian development and folliculogenesis]. Biol Aujourdhui 2012; 205:223-33. [PMID: 22251857 DOI: 10.1051/jbio/2011022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Indexed: 11/15/2022]
Abstract
The production of fertilizable ova is the consequence of multiple events that start as soon as ovarian development and culminate at the time of ovulation. Throughout their development, germ cells are associated with companion somatic cells, which ensure germ cell survival, growth and maturation. Data obtained in vitro and in vivo on several animal models of germ cell depletion have led to uncover the many roles of germ cells on both ovarian development and folliculogenesis. During ovarian development, germ cells become progressively enclosed within epithelial structures called "ovigerous cords" constituted by pregranulosa cells, lined by a basement membrane. At the end of ovarian development, ovigerous cords fragment into primordial follicles, which are epithelial units constituted by an oocyte surrounded by a single layer of granulosa cells. Germ cells are necessary for the fragmentation of ovigerous cords into follicles, since in their absence, no follicle will form. Germ cells also ensure the differentiation of the ovarian somatic lineage, and they may inhibit the testis-differentiating pathway by preventing the conversion of pregranulosa cells into Sertoli cells, their counterpart in the testis. Regularly, primordial follicles are recruited into the growing follicle pool and initiate their growth. They develop through primary, preantral, antral and preovulatory stages before being ovulated. Interestingly, the action of the oocyte on companion somatic cells tightly depends on the follicular stage. In primordial follicles, the oocyte prevents the transdifferentiation of granulosa cells into cells resembling Sertoli cells. By contrast, as soon as the follicle enters growth, the oocyte regulates the functional differentiation of granulosa cells and at the latest stages, it prevents their premature maturation into luteal cells. Overall, these data demonstrate that the female germ cell act on companion somatic cells to regulate ovarian development and folliculogenesis, thereby actively supporting its own maturation.
Collapse
Affiliation(s)
- Céline J Guigon
- Université Paris Diderot, Sorbonne Paris Cité, Équipe Physiologie de l'Axe Gonadotrope, Unité Biologie Fonctionnelle et Adaptative, Paris, France.
| | | |
Collapse
|
29
|
Díaz-Hernández V, Marmolejo-Valencia A, Harfush M, Merchant-Larios H. Formation of the genital ridges is preceded by a domain of ectopic Sox9-expressing cells in Lepidochelys olivacea. Dev Biol 2011; 361:156-66. [PMID: 22008791 DOI: 10.1016/j.ydbio.2011.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 09/22/2011] [Accepted: 10/01/2011] [Indexed: 11/16/2022]
Abstract
Bipotential gonads represent the structural framework from which alternative molecular sex determination networks have evolved. Maintenance of Sox9 expression in Sertoli cells is required for the structural and functional integrity of male gonads in mammals and probably in most amniote vertebrates. However, spatial and temporal patterns of Sox9 expression have diversified along evolution. Species with temperature sex determination are an interesting predictive model since one of two alternative developmental outcomes, either ovary or testis occurs under controlled laboratory conditions. In the sea turtle Lepidochelys olivacea, Sox9 is expressed in the medullary cords of bipotential gonads when incubated at both female- or male-promoting temperature (FT or MT). Sox9 is then turned off in presumptive ovaries, while it remains turned on in testes. In the current study, Sox9 was used as a marker of the medullary cell lineage to investigate if the medullary cords originate from mesothelial cells at the genital ridges where Sox9 is upregulated, or, if they derive from a cell population specified at an earlier developmental stage, which maintains Sox9 expression. Using immunofluorescence and in situ hybridization, embryos were analyzed prior to, during and after gonadal sex determination. A T-shaped domain (T-Dom) formed by cytokeratin (CK), N-cadherin (Ncad) and SOX9-expressing cells was found at the upper part of the hindgut dorsal mesentery. The arms of the T-Dom were extended to both sides towards the ventromedial mesonephric ridge before the thickening of the genital ridges, indicating that they contained gonadal epithelial cell precursors. Thereafter, expression of Sox9 was maintained in medullary cords while it was downregulated at the surface epithelium of bipotential gonads in both FT and MT. This result contrasts with observations in mammals and birds, in which Sox9 upregulation starts at a later stage in the inner cells underlying the Sox9-negative surface epithelium, suggesting that the establishment of a self-regulatory Sox9 loop required for Sertoli cell determination has evolved. The T-shaped domain at the upper part of the hindgut dorsal mesentery found in the current study may represent the earliest precursor of the genital ridges, previously unnoticed in amniote vertebrates.
Collapse
|
30
|
DeFalco T, Takahashi S, Capel B. Two distinct origins for Leydig cell progenitors in the fetal testis. Dev Biol 2011; 352:14-26. [PMID: 21255566 DOI: 10.1016/j.ydbio.2011.01.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/17/2010] [Accepted: 01/07/2011] [Indexed: 12/27/2022]
Abstract
During the differentiation of the mammalian embryonic testis, two compartments are defined: the testis cords and the interstitium. The testis cords give rise to the adult seminiferous tubules, whereas steroidogenic Leydig cells and other less well characterized cell types differentiate in the interstitium (the space between testis cords). Although the process of testis cord formation is essential for male development, it is not entirely understood. It has been viewed as a Sertoli-cell driven process, but growing evidence suggests that interstitial cells play an essential role during testis formation. However, little is known about the origin of the interstitium or the molecular and cellular diversity within this early stromal compartment. To better understand the process of mammalian gonad differentiation, we have undertaken an analysis of developing interstitial/stromal cells in the early mouse testis and ovary. We have discovered molecular heterogeneity in the interstitium and have characterized new markers of distinct cell types in the gonad: MAFB, C-MAF, and VCAM1. Our results show that at least two distinct progenitor lineages give rise to the interstitial/stromal compartment of the gonad: the coelomic epithelium and specialized cells along the gonad-mesonephros border. We demonstrate that both these populations give rise to interstitial precursors that can differentiate into fetal Leydig cells. Our analysis also reveals that perivascular cells migrate into the gonad from the mesonephric border along with endothelial cells and that these vessel-associated cells likely represent an interstitial precursor lineage. This study highlights the cellular diversity of the interstitial cell population and suggests that complex cell-cell interactions among cells in the interstitium are involved in testis morphogenesis.
Collapse
Affiliation(s)
- Tony DeFalco
- The Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
31
|
Paibomesai MI, Moghadam HK, Ferguson MM, Danzmann RG. Clock genes and their genomic distributions in three species of salmonid fishes: Associations with genes regulating sexual maturation and cell cycling. BMC Res Notes 2010; 3:215. [PMID: 20670436 PMCID: PMC3161366 DOI: 10.1186/1756-0500-3-215] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/29/2010] [Indexed: 12/12/2022] Open
Abstract
Background Clock family genes encode transcription factors that regulate clock-controlled genes and thus regulate many physiological mechanisms/processes in a circadian fashion. Clock1 duplicates and copies of Clock3 and NPAS2-like genes were partially characterized (genomic sequencing) and mapped using family-based indels/SNPs in rainbow trout (RT)(Oncorhynchus mykiss), Arctic charr (AC)(Salvelinus alpinus), and Atlantic salmon (AS)(Salmo salar) mapping panels. Results Clock1 duplicates mapped to linkage groups RT-8/-24, AC-16/-13 and AS-2/-18. Clock3/NPAS2-like genes mapped to RT-9/-20, AC-20/-43, and AS-5. Most of these linkage group regions containing the Clock gene duplicates were derived from the most recent 4R whole genome duplication event specific to the salmonids. These linkage groups contain quantitative trait loci (QTL) for life history and growth traits (i.e., reproduction and cell cycling). Comparative synteny analyses with other model teleost species reveal a high degree of conservation for genes in these chromosomal regions suggesting that functionally related or co-regulated genes are clustered in syntenic blocks. For example, anti-müllerian hormone (amh), regulating sexual maturation, and ornithine decarboxylase antizymes (oaz1 and oaz2), regulating cell cycling, are contained within these syntenic blocks. Conclusions Synteny analyses indicate that regions homologous to major life-history QTL regions in salmonids contain many candidate genes that are likely to influence reproduction and cell cycling. The order of these genes is highly conserved across the vertebrate species examined, and as such, these genes may make up a functional cluster of genes that are likely co-regulated. CLOCK, as a transcription factor, is found within this block and therefore has the potential to cis-regulate the processes influenced by these genes. Additionally, clock-controlled genes (CCGs) are located in other life-history QTL regions within salmonids suggesting that at least in part, trans-regulation of these QTL regions may also occur via Clock expression.
Collapse
Affiliation(s)
- Marion I Paibomesai
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | | | | | | |
Collapse
|
32
|
Barske LA, Capel B. Estrogen represses SOX9 during sex determination in the red-eared slider turtle Trachemys scripta. Dev Biol 2010; 341:305-14. [PMID: 20153744 DOI: 10.1016/j.ydbio.2010.02.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/05/2010] [Accepted: 02/05/2010] [Indexed: 11/24/2022]
Abstract
Production of male offspring in viviparous eutherian mammals requires a sex-determining mechanism resistant to maternal hormones. This constraint is relaxed in egg-laying species, which are sensitive to hormones during sex determination and often use an increase in aromatase, the estrogen-synthesizing enzyme, as a key feminizing signal. In the turtle Trachemys scripta, sex is normally determined by temperature, but estrogen treatment overrides this cue and leads exclusively to female development. We assessed whether the expression of SOX9, a central male sex-determining gene in mammals, or three other conserved transcription factors (WT1, GATA4, and LHX9) was regulated by estrogen signaling in the turtle. As in mice, all somatic cell types in the immature turtle gonad initially expressed WT1 and GATA4, whereas SOX9 was restricted to the Sertoli precursors and LHX9 to the coelomic epithelium and interstitium. After the bipotential period, SOX9 was abruptly down-regulated at the female temperature. Strikingly, embryos treated with beta-estradiol at the male temperature lost SOX9 expression more than two stages earlier than controls, though WT1, GATA4, and LHX9 were unaffected. Conversely, inhibition of estrogen synthesis and signaling prevented or delayed SOX9 down-regulation at the female temperature. These results suggest that endogenous estrogen feminizes the medulla of the bipotential turtle gonad by inhibiting SOX9 expression. This mechanism may be involved in the male-to-female sex reversal in wild populations exposed to environmental estrogens, and is consistent with results showing that the estrogen receptor represses Sox9 to block transdifferentiation of granulosa cells into Sertoli-like cells in the adult mouse ovary.
Collapse
Affiliation(s)
- Lindsey A Barske
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
33
|
Barsoum IB, Yao HHC. Fetal Leydig cells: progenitor cell maintenance and differentiation. ACTA ACUST UNITED AC 2009; 31:11-5. [PMID: 19875489 DOI: 10.2164/jandrol.109.008318] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In most eutherian mammals, sexually dimorphic masculinization is established by androgen-producing fetal Leydig cells in the embryonic testis. Fetal Leydig cells, which lack expression of the testis-determining gene SRY, arise after the appearance of SRY-expressing Sertoli cells. Therefore, the appearance and differentiation of fetal Leydig cells are probably regulated by factors derived from Sertoli cells. Results from mouse genetic models have revealed that maintenance and differentiation of fetal Leydig cell population depends upon a balance between differentiation-promoting and differentiation-suppressing mechanisms. Although paracrine signaling via Sertoli cell-derived Hedgehog ligands is necessary and sufficient for fetal Leydig cell formation, cell-cell interaction via Notch signaling and intracellular transcription factors such as POD1 are implicated as suppressors of fetal Leydig cell differentiation. This review provides a model that summarizes the recent findings in fetal Leydig cell development.
Collapse
Affiliation(s)
- Ivraym B Barsoum
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61802, USA
| | | |
Collapse
|
34
|
Aberrant methylation and reduced expression of LHX9 in malignant gliomas of childhood. Neoplasia 2009; 11:700-11. [PMID: 19568415 DOI: 10.1593/neo.09406] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 11/18/2022] Open
Abstract
High-grade gliomas (HGGs) of childhood represent approximately 7% of pediatric brain tumors. They are highly invasive tumors and respond poorly to conventional treatments in contrast to pilocytic astrocytomas, which usually are well demarcated and frequently can be cured by surgery. The molecular events for this clinical relevant finding are only partially understood. In the current study, to identify aberrantly methylated genes that may be involved in the tumorigenesis of pediatric HGGs, we performed a microarray-based differential methylation hybridization approach and found frequent hypermethylation of the LHX9 (human Lim-homebox 9) gene encoding a transcription factor involved in brain development. Bisulfite genomic sequencing and combined bisulfite restriction analysis showed that HGGs were frequently methylated at two CpG-rich LHX9 regions in comparison to benign, nondiffuse pilocytic astrocytomas and normal brain tissues. The LHX9 hypermethylation was associated with reduced messenger RNA expression in pediatric HGG samples and corresponding cell lines. This epigenetic modification was reversible by pharmacological inhibition (5-aza-2'-deoxycytidine), and reexpression of LHX9 transcript was induced in pediatric glioma cell lines. Exogenous expression of LHX9 in glioma cell lines did not directly affect cell proliferation and apoptosis but specifically inhibited glioma cell migration and invasion in vitro, suggesting a possible implication of LHX9 in the migratory phenotype of HGGs. Our results demonstrate that the LHX9 gene is frequently silenced in pediatric malignant astrocytomas by hypermethylation and that this epigenetic alteration is involved in glioma cell migration and invasiveness.
Collapse
|
35
|
Carré-Eusèbe D, Coudouel N, Magre S. OVEX1, a novel chicken endogenous retrovirus with sex-specific and left-right asymmetrical expression in gonads. Retrovirology 2009; 6:59. [PMID: 19534790 PMCID: PMC2717909 DOI: 10.1186/1742-4690-6-59] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 06/17/2009] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In chickens, as in most birds, female gonad morphogenesis is asymmetrical. Gonads appear first rather similarly, but only the left one undergoes full differentiation and gives rise to a functional ovary. The right gonad, in which the cortex does not develop, remains restricted to the medulla and finally regresses. Opportunity was taken of this left-right asymmetry to perform a suppression subtractive hybridization screening to select for transcripts preferentially expressed in the developing left ovary as compared to the right one, and thus identify genes that are potentially involved in the process of ovarian differentiation. RESULTS One of these transcripts, named Ovex1 according to its expression profile, corresponds to an endogenous retrovirus that has not been previously characterized. It is transcribed as full-length and singly spliced mRNAs and contains three uninterrupted open reading frames coding potentially for proteins with homology to Gag and Pro-Pol retroviral polyproteins and a third protein showing only a weak similarity with Env glycoproteins. Ovex1 is severely degenerated; it is devoid of typical long terminal repeats and displays some evidence of recombination. An orthologous Ovex1 locus was identified in the genome of zebra finch, a member of a different bird order, and similar sequences were detected in turkey, guinea fowl, and duck DNA. The relationship between these sequences follows the bird phylogeny, suggesting vertical transmission of the endogenous retrovirus for more than 100 million years. Ovex1 is transcribed in chicken gonads with a sex-dependent and left-right asymmetrical pattern. It is first expressed in the cortex of the left indifferent gonads of both sexes. Expression is transient in the left testis and absent in the right one. In developing ovaries, Ovex1 transcription increases sharply in the left cortex and is weakly detected in the medulla. After folliculogenesis, Ovex1-expressing cells constitute the follicular granulosa cell layer. Ovex1 expression highlights a striking desquamation process that leads to profound cortical remodeling associated with follicle morphogenesis. CONCLUSION Evidence for a selection pressure at the protein level suggests that this endogenous retrovirus, expressed in the ovarian supporting cell lineage, might play an active role in bird ovarian physiology.
Collapse
Affiliation(s)
- Danièle Carré-Eusèbe
- Endocrinologie et Génétique de la Reproduction et du Développement, INSERM, U782, 32 rue des Carnets, F-92140, Clamart – France
- Univ. Paris-Sud, UMR-S0782, Clamart, F-92140
| | - Noëlline Coudouel
- Physiologie de l'Axe Gonadotrope, Unité de Biologie Fonctionnelle et Adaptative (BFA), Univ. PARIS 7 – CNRS, 4 rue MA Lagroua Weill-Hallé, 75205 Paris CEDEX 13 – France
| | - Solange Magre
- Physiologie de l'Axe Gonadotrope, Unité de Biologie Fonctionnelle et Adaptative (BFA), Univ. PARIS 7 – CNRS, 4 rue MA Lagroua Weill-Hallé, 75205 Paris CEDEX 13 – France
| |
Collapse
|
36
|
Tang H, Brennan J, Karl J, Hamada Y, Raetzman L, Capel B. Notch signaling maintains Leydig progenitor cells in the mouse testis. Development 2008; 135:3745-53. [PMID: 18927153 DOI: 10.1242/dev.024786] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During testis development, fetal Leydig cells increase their population from a pool of progenitor cells rather than from proliferation of a differentiated cell population. However, the mechanism that regulates Leydig stem cell self-renewal and differentiation is unknown. Here, we show that blocking Notch signaling, by inhibiting gamma-secretase activity or deleting the downstream target gene Hairy/Enhancer-of-split 1, results in an increase in Leydig cells in the testis. By contrast, constitutively active Notch signaling in gonadal somatic progenitor cells causes a dramatic Leydig cell loss, associated with an increase in undifferentiated mesenchymal cells. These results indicate that active Notch signaling restricts fetal Leydig cell differentiation by promoting a progenitor cell fate. Germ cell loss and abnormal testis cord formation were observed in both gain- and loss-of-function gonads, suggesting that regulation of the Leydig/interstitial cell population is important for male germ cell survival and testis cord formation.
Collapse
Affiliation(s)
- Hao Tang
- The Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
37
|
Guioli S, Lovell-Badge R. PITX2 controls asymmetric gonadal development in both sexes of the chick and can rescue the degeneration of the right ovary. Development 2007; 134:4199-208. [PMID: 17959721 DOI: 10.1242/dev.010249] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The gonads arise on the ventromedial surface of each mesonephros. In most birds, female gonadal development is unusual in that only the left ovary becomes functional, whereas that on the right degenerates during embryogenesis. Males develop a pair of equally functional testes. We show that the chick gonads already have distinct morphological and molecular left-right (L-R) characteristics in both sexes at indifferent (genital ridge) stages and that these persist, becoming more elaborate during sex determination and differentiation, but have no consequences for testis differentiation. We find that these L-R differences depend on the L-R asymmetry pathway that controls the situs of organs such as the heart and gut. Moreover, a key determinant of this, Pitx2, is expressed asymmetrically, such that it is found only in the left gonad in both sexes from the start of their development. Misexpression of Pitx2 on the right side before and during gonadogenesis is sufficient to transform the right gonad into a left-like gonad. In ZW embryos, this transformation rescues the degenerative fate of the right ovary, allowing for the differentiation of left-like cortex containing meiotic germ cells. There is therefore a mechanism in females that actively promotes the underlying L-R asymmetry initiated by Pitx2 and the degeneration of the right gonad, and a mechanism in males that allows it to be ignored or overridden.
Collapse
Affiliation(s)
- Silvana Guioli
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | |
Collapse
|
38
|
Feng Y, Zhang S, Peng X, Yuan J, Yang Y, Zhan H, Gong Y. Expression analysis of genes putatively involved in chicken gonadal development. ACTA BIOLOGICA HUNGARICA 2007; 58:163-72. [PMID: 17585506 DOI: 10.1556/abiol.58.2007.2.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In mammals, testis development is initiated by the expression of the sex-determining gene, SRY whereas the genetic trigger for sex determination in birds remains unknown. In the present study, the expression of seven genes implicated in vertebrate sex determination and differentiation were studied in chicken embryonic gonads from day 4 to day 12 of incubation using reverse transcription and the polymerase chain reaction (RT-PCR). Results showed transcription of cLhx9, cGATA4, cVnnl, cPptl, cBrd3 were sexually dimorphic during chicken gonadal development, whereas cEki2, cFog2 were expressed at similar levels in both sexes. Results of comparative studies between mammals and chickens show that vertebrate sex-determining pathways comprise both conserved and divergent elements: expression profiles of cGATA4/cFog2 and cVnnl are similar to those in mammals, while others appear some differences. Possible functions of these genes on chicken gonadal development were analyzed based on their expression profiles.
Collapse
Affiliation(s)
- Y Feng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | | | | | | | | | | |
Collapse
|
39
|
Kim Y, Capel B. Balancing the bipotential gonad between alternative organ fates: a new perspective on an old problem. Dev Dyn 2006; 235:2292-300. [PMID: 16881057 DOI: 10.1002/dvdy.20894] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The embryonic gonads give rise to one of two morphologically and functionally different organs, a testis or an ovary. Sex determination is the embryonic process that determines the developmental fate of the gonad. In mammals, sex determination is regulated by a DNA binding protein encoded on the Y chromosome, Sry, and it's downstream mediator, Sox9, which trigger testis determination in the bipotential gonad. However, evidence suggests that the extracellular signals. Fgf9 and Wnt4, are also required to establish divergent organogenesis of the gonad. In this review, we discuss how these extracellular signals interface with cell-autonomous factors to determine the fate of the mammalian gonad, and we derive a model that could provide a molecular explanation for testis determination in vertebrates where Sry is absent.
Collapse
Affiliation(s)
- Yuna Kim
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
40
|
Mazaud Guittot S, Guigon CJ, Coudouel N, Magre S. Consequences of Fetal Irradiation on Follicle Histogenesis and Early Follicle Development in Rat Ovaries1. Biol Reprod 2006; 75:749-59. [PMID: 16855212 DOI: 10.1095/biolreprod.105.050633] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Follicle histogenesis, in which follicles arise from fragmenting ovigerous cords, is a poorly understood mechanism that is strictly dependent upon the presence of germ cells. Our previous studies have shown that severely germ cell-depleted rat ovaries after fetal gamma-irradiation display modifications of follicular endowment and dynamics during the immature period. The primordial follicle stock was absent and the follicles with primary appearance remained quiescent longer than in control ovaries during the neonatal period. The aim of the present work was to analyze the initial steps of follicle histogenesis, and to investigate the etiology of the alterations observed in the development of irradiated ovaries. Just after birth, we observed, in addition to sterile ovigerous cords, the emergence of the first follicles which exhibited several abnormal features as compared to those of control ovaries. Most of the follicles appeared as primary follicles, as they were composed of a layer of cuboidal-shaped granulosa cells surrounding an enlarged oocyte. Interestingly, the granulosa cells of these primary-like follicles did not proliferate and did not express the genes for anti-Müllerian hormone (Amh) or bone morphogenetic protein receptor type II (Bmpr2), both of which are normally expressed from the primary stage onwards. In contrast, the oocytes strongly expressed the gene for growth and differentiation factor 9 (Gdf9), which is normally upregulated from the primary follicle stage onwards, which suggests an uncoupling of granulosa cell development from oocyte development. In addition, irradiated ovaries displayed a higher frequency of follicles that contained 2 or 3 oocytes, which are also referred to as multi-oocyte follicles (MOFs). Examination at the time of follicle histogenesis indicated that MOFs arise from incomplete ovigerous cord breakdown. Taken together, the results of this study indicate that severe perturbations of follicular histogenesis take place following irradiation and massive germ cell depletion during fetal life. In addition to the classically described sterile cords, we have pointed out the differentiation of MOFs and primary-like quiescent follicles, which finally evolve into growing follicles and participate in ovarian function. We propose that these phenotypes are closely correlated to the proportion of granulosa cells to oocytes at the time of neonatal follicle histogenesis.
Collapse
Affiliation(s)
- Séverine Mazaud Guittot
- Laboratoire de Physiologie et Physiopathologie, CNRS-UMR 7079, Université Paris VI, 75252 Paris cedex 05, France
| | | | | | | |
Collapse
|
41
|
Guigon CJ, Magre S. Contribution of Germ Cells to the Differentiation and Maturation of the Ovary: Insights from Models of Germ Cell Depletion. Biol Reprod 2006; 74:450-8. [PMID: 16339043 DOI: 10.1095/biolreprod.105.047134] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In mammals, the role played by germ cells in ovarian differentiation and folliculogenesis has been the focus of an increasing number of studies over the last decades. From these studies, it has emerged that bidirectional communication between germ cells and surrounding companion cells is required as soon as the initial assembly of follicles. Models of germ cell depletion that arise from both spontaneous and experimentally induced mutations as well as irradiation or chemical treatments have been helpful in deciphering the role played by germ cells from the onset of ovarian differentiation onward. This review reports current knowledge and proposes novel hypotheses that can be formulated from these models about the contribution of germ cells to ovarian differentiation and folliculogenesis. In particular, it promotes the idea that the influence of germ cells on companion somatic cells varies within both ovarian differentiation and folliculogenesis.
Collapse
Affiliation(s)
- Celine J Guigon
- Laboratoire de Physiologie et Physiopathologie, CNRS-UMR 7079, University Pierre et Marie Curie, 75005 Paris, France
| | | |
Collapse
|
42
|
Pangas SA, Rajkovic A. Transcriptional regulation of early oogenesis: in search of masters. Hum Reprod Update 2005; 12:65-76. [PMID: 16143663 DOI: 10.1093/humupd/dmi033] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcription factors in the germline play important roles in ovary formation and folliculogenesis, and control both oocyte development and somatic cell function. Factor in the germline (Figla) and newborn ovary homeobox gene (Nobox) represent a growing number of oocyte-specific transcription factors that regulate genes unique to oocytes. Studies on oocyte-specific transcription factors are important in understanding the genetic pathways essential for oogenesis, pluripotency, and embryonic development. Likely, these genes regulate reproductive life span and represent candidate genes for reproductive disorders, such as premature ovarian failure, and infertility. Therefore, oocyte-specific transcription factors, and oocyte-specific genes regulated by such factors, are attractive tissue-specific pharmacological targets to regulate human fertility.
Collapse
|
43
|
Vanderhyden BC. Loss of ovarian function and the risk of ovarian cancer. Cell Tissue Res 2005; 322:117-24. [PMID: 15902502 DOI: 10.1007/s00441-005-1100-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 02/14/2005] [Indexed: 01/28/2023]
Abstract
Animal models with premature ovarian failure resulting from the loss or depletion of germ cells consistently develop ovarian surface epithelial cell hyperplasia with invasion into the stroma and the development of ovarian tubular adenomas. In human ovaries, deep epithelial invaginations and inclusion cysts occur at increasing frequency with age and are thought to be the structures from which the majority of ovarian cancers arise. A feature that is common to these animal models and to post-menopausal women is a deficiency in the number of oocytes. The potential consequences of the loss or depletion of female germ cells, naturally or otherwise, include failure of follicle development, significant reductions in oestrogen and progesterone levels and elevation of circulating levels of gonadotropins. This review will consider the way in which these structural and hormonal changes affect ovarian cancer risk. Some lessons may be learned from gonad formation, since notable similarities exist between ovarian tumorigenesis and embryonic gonadogenesis including fragmentation of the basement membrane underlying the coelomic (surface) epithelium, the potential for the migration of epithelial cells into the gonad and the importance of the germ cells for the regulation of ovarian structure and function.
Collapse
Affiliation(s)
- Barbara C Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
44
|
Kidokoro T, Matoba S, Hiramatsu R, Fujisawa M, Kanai-Azuma M, Taya C, Kurohmaru M, Kawakami H, Hayashi Y, Kanai Y, Yonekawa H. Influence on spatiotemporal patterns of a male-specific Sox9 activation by ectopic Sry expression during early phases of testis differentiation in mice. Dev Biol 2005; 278:511-25. [PMID: 15680367 DOI: 10.1016/j.ydbio.2004.11.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Revised: 11/01/2004] [Accepted: 11/04/2004] [Indexed: 11/28/2022]
Abstract
Testis induction is associated with gonadal Sry and Sox9 expression in mammals. This study investigated whether Sry expression directly induces male-specific Sox9 activation during early phases of testis differentiation. We have established an XX sex-reversal mouse line carrying the Sry transgene driven by a weak basal promoter of the Hsp70.3 gene (Hsp-Sry), whereby the transgene was activated in the gonads along the entire anteroposterior axis from earlier stages. The effects of misexpression and overexpression of Sry on the spatiotemporal pattern of Sox9 expression were examined using both XX and XY gonads of Hsp-Sry transgenic embryos. It was shown that ectopic expression of Sry transcripts in the entire gonadal area from earlier stages promotes neither any advance in the timing nor any appreciable ectopic activation of endogenous Sox9 expression. Immediately after the onset of Sox9 activation, however, both the level of Sox9 expression and the number of SOX9-positive cells were significantly enhanced in Hsp-Sry/XY gonads, as compared with those in wild-type/XY and Hsp-Sry/XX gonads. These findings suggest that, although Sry is capable of up-regulating Sox9 expression dose-dependently, Sry mRNA expression alone is not likely to provide positional or timing information needed for male-specific Sox9 activation in developing XY gonads.
Collapse
Affiliation(s)
- Tomohide Kidokoro
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pujar S, Kothapalli KS, Kirkness E, Van Wormer RH, Meyers-Wallen VN. Exclusion of Lhx9 as a Candidate Gene for Sry-Negative XX Sex Reversal in the American Cocker Spaniel Model. J Hered 2005; 96:452-4. [PMID: 15814894 DOI: 10.1093/jhered/esi058] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
XX sex reversal is known in 17 breeds of dogs. In the American cocker spaniel, it segregates as an autosomal recessive trait, and the affected animals lack the testis determining Sry gene. In the search for an autosomal gene that causes this trait, we considered the possibility of Lhx9, a gene encoding LIM homeobox containing transcription factor 9, as a candidate gene. An American cocker spaniel pedigree showing Sry-negative XX sex reversal phenotype was genotyped with an intronic Lhx9 microsatellite marker. Segregation of the Lhx9 marker in the pedigree indicated that a mutation in canine Lhx9 is not likely to be the cause of Sry-negative XX sex reversal. In addition, using the recently available 7.6X canine genomic sequence, we report the location and genomic organization of canine Lhx9.
Collapse
Affiliation(s)
- S Pujar
- J. A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
46
|
Beverdam A, Wilhelm D, Koopman P. Molecular characterization of three gonad cell lines. Cytogenet Genome Res 2003; 101:242-9. [PMID: 14684990 DOI: 10.1159/000074344] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Accepted: 09/10/2003] [Indexed: 11/19/2022] Open
Abstract
To facilitate the study of the regulation and downstream interactions of genes involved in gonad development it is important to have a suitable cell culture model. We therefore aimed to characterize molecularly three different mouse gonad cell lines. TM3 and TM4 cells were originally isolated from prepubertal mouse gonads and were tentatively identified as being of Leydig cell and Sertoli cell origin, respectively, based upon their morphology and hormonal responses. The third line is a conditionally immortalized cell line, derived from 10.5-11.5 days post-coitum (dpc) male gonads of transgenic embryos carrying a temperature-sensitive SV40 large T-antigen. We studied by reverse transcription-polymerase chain reaction (RT-PCR) the expression profiles of a number of genes known to be important for early gonad development. Moreover, we assessed these cell lines for their capacity to induce SOX9 transcription upon expression of SRY, a key molecular event occurring during sex determination. We found that all three cell lines were unable to upregulate SOX9 expression upon transfection of SRY-expression constructs, even though these cells express many of the studied embryonic gonad genes. These observations point to a requirement for SRY cofactors for direct or indirect upregulation of SOX9 expression during testis determination.
Collapse
Affiliation(s)
- A Beverdam
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|