1
|
Peroxiredoxins couple metabolism and cell division in an ultradian cycle. Nat Chem Biol 2021; 17:477-484. [PMID: 33574615 DOI: 10.1038/s41589-020-00728-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/22/2020] [Indexed: 01/30/2023]
Abstract
Redox cycles have been reported in ultradian, circadian and cell cycle-synchronized systems. Redox cycles persist in the absence of transcription and cyclin-CDK activity, indicating that cells harbor multiple coupled oscillators. Nonetheless, the causal relationships and molecular mechanisms by which redox cycles are embedded within ultradian, circadian or cell division cycles remain largely elusive. Yeast harbor an ultradian oscillator, the yeast metabolic cycle (YMC), which comprises metabolic/redox cycles, transcriptional cycles and synchronized cell division. Here, we reveal the existence of robust cycling of H2O2 and peroxiredoxin oxidation during the YMC and show that peroxiredoxin inactivation disrupts metabolic cycling and abolishes coupling with cell division. We find that thiol-disulfide oxidants and reductants predictably modulate the switching between different YMC metabolic states, which in turn predictably perturbs cell cycle entry and exit. We propose that oscillatory H2O2-dependent protein thiol oxidation is a key regulator of metabolic cycling and its coordination with cell division.
Collapse
|
2
|
Ciesielski A, Grzywacz R. Dynamic bifurcations in continuous process of bioethanol production under aerobic conditions using Saccharomyces cerevisiae. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
3
|
Gilbert K, Hammond KD, Brodsky VY, Lloyd D. An appreciation of the prescience of Don Gilbert (1930-2011): master of the theory and experimental unravelling of biochemical and cellular oscillatory dynamics. Cell Biol Int 2020; 44:1283-1298. [PMID: 32162760 DOI: 10.1002/cbin.11341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/08/2020] [Indexed: 11/08/2022]
Abstract
We review Don Gilbert's pioneering seminal contributions that both detailed the mathematical principles and the experimental demonstration of several of the key dynamic characteristics of life. Long before it became evident to the wider biochemical community, Gilbert proposed that cellular growth and replication necessitate autodynamic occurrence of cycles of oscillations that initiate, coordinate and terminate the processes of growth, during which all components are duplicated and become spatially re-organised in the progeny. Initiation and suppression of replication exhibit switch-like characteristics, that is, bifurcations in the values of parameters that separate static and autodynamic behaviour. His limit cycle solutions present models developed in a series of papers reported between 1974 and 1984, and these showed that most or even all of the major facets of the cell division cycle could be accommodated. That the cell division cycle may be timed by a multiple of shorter period (ultradian) rhythms, gave further credence to the central importance of oscillatory phenomena and homeodynamics as evident on multiple time scales (seconds to hours). Further application of the concepts inherent in limit cycle operation as hypothesised by Gilbert more than 50 years ago are now validated as being applicable to oscillatory transcript, metabolite and enzyme levels, cellular differentiation, senescence, cancerous states and cell death. Now, we reiterate especially for students and young colleagues, that these early achievements were even more exceptional, as his own lifetime's work on modelling was continued with experimental work in parallel with his predictions of the major current enterprises of biological research.
Collapse
Affiliation(s)
- Kay Gilbert
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Park Place, Cardiff, CF10 3AT, Wales, UK
| | | | - Vsevolod Y Brodsky
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 117808, Russia
| | - David Lloyd
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Park Place, Cardiff, CF10 3AT, Wales, UK
| |
Collapse
|
4
|
Manohar S, Jacob S, Wang J, Wiechecki KA, Koh HW, Simões V, Choi H, Vogel C, Silva GM. Polyubiquitin Chains Linked by Lysine Residue 48 (K48) Selectively Target Oxidized Proteins In Vivo. Antioxid Redox Signal 2019; 31:1133-1149. [PMID: 31482721 PMCID: PMC6798811 DOI: 10.1089/ars.2019.7826] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/11/2019] [Accepted: 08/30/2019] [Indexed: 01/04/2023]
Abstract
Aims: Ubiquitin is a highly conserved protein modifier that heavily accumulates during the oxidative stress response. Here, we investigated the role of the ubiquitination system, particularly at the linkage level, in the degradation of oxidized proteins. The function of ubiquitin in the removal of oxidized proteins remains elusive because of the wide range of potential targets and different roles that polyubiquitin chains play. Therefore, we describe in detail the dynamics of the K48 ubiquitin response as the canonical signal for protein degradation. We identified ubiquitin targets and defined the relationship between protein ubiquitination and oxidation during the stress response. Results: Combining oxidized protein isolation, linkage-specific ubiquitination screens, and quantitative proteomics, we found that K48 ubiquitin accumulated at both the early and late phases of the stress response. We further showed that a fraction of oxidized proteins are conjugated with K48 ubiquitin. We identified ∼750 ubiquitinated proteins and ∼400 oxidized proteins that were modified during oxidative stress, and around half of which contain both modifications. These proteins were highly abundant and function in translation and energy metabolism. Innovation and Conclusion: Our work showed for the first time that K48 ubiquitin modifies a large fraction of oxidized proteins, demonstrating that oxidized proteins can be targeted by the ubiquitin/proteasome system. We suggest that oxidized proteins that rapidly accumulate during stress are subsequently ubiquitinated and degraded during the late phase of the response. This delay between oxidation and ubiquitination may be necessary for reprogramming protein dynamics, restoring proteostasis, and resuming cell growth.
Collapse
Affiliation(s)
- Sandhya Manohar
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
| | - Samson Jacob
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
| | - Jade Wang
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
| | - Keira A. Wiechecki
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
| | - Hiromi W.L. Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vanessa Simões
- Department of Biology, Duke University, Durham, North Carolina
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christine Vogel
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
| | | |
Collapse
|
5
|
Baumgartner BL, O'Laughlin R, Jin M, Tsimring LS, Hao N, Hasty J. Flavin-based metabolic cycles are integral features of growth and division in single yeast cells. Sci Rep 2018; 8:18045. [PMID: 30575765 PMCID: PMC6303410 DOI: 10.1038/s41598-018-35936-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/02/2018] [Indexed: 11/08/2022] Open
Abstract
The yeast metabolic cycle (YMC) is a fascinating example of biological organization, in which cells constrain the function of specific genetic, protein and metabolic networks to precise temporal windows as they grow and divide. However, understanding the intracellular origins of the YMC remains a challenging goal, as measuring the oxygen oscillations traditionally associated with it requires the use of synchronized cultures growing in nutrient-limited chemostat environments. To address these limitations, we used custom-built microfluidic devices and time-lapse fluorescence microscopy to search for metabolic cycling in the form of endogenous flavin fluorescence in unsynchronized single yeast cells. We uncovered robust and pervasive metabolic cycles that were synchronized with the cell division cycle (CDC) and oscillated across four different nutrient conditions. We then studied the response of these metabolic cycles to chemical and genetic perturbations, showing that their phase synchronization with the CDC can be altered through treatment with rapamycin, and that metabolic cycles continue even in respiratory deficient strains. These results provide a foundation for future studies of the physiological importance of metabolic cycles in processes such as CDC control, metabolic regulation and cell aging.
Collapse
Affiliation(s)
- Bridget L Baumgartner
- Booz Allen Hamilton, 8283 Greensboro Drive, Hamilton Building, McLean, VA, 22102, USA
| | - Richard O'Laughlin
- University of California, San Diego, Department of Bioengineering, La Jolla, CA, 92093, USA
| | - Meng Jin
- BioCircuits Institute, University of California, San Diego, La Jolla, California, USA
| | - Lev S Tsimring
- BioCircuits Institute, University of California, San Diego, La Jolla, California, USA
| | - Nan Hao
- Molecular Biology Section, Division of Biological Science, University of California, San Diego, La Jolla, California, USA
| | - Jeff Hasty
- University of California, San Diego, Department of Bioengineering, La Jolla, CA, 92093, USA.
- BioCircuits Institute, University of California, San Diego, La Jolla, California, USA.
- Molecular Biology Section, Division of Biological Science, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
6
|
Lloyd D, Murray DB, Aon MA, Cortassa S, Roussel MR, Beckmann M, Poole RK. Temporal metabolic partitioning of the yeast and protist cellular networks: the cell is a global scale-invariant (fractal or self-similar) multioscillator. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-17. [PMID: 30516036 PMCID: PMC6992908 DOI: 10.1117/1.jbo.24.5.051404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Britton Chance, electronics expert when a teenager, became an enthusiastic student of biological oscillations, passing on this enthusiasm to many students and colleagues, including one of us (DL). This historical essay traces BC's influence through the accumulated work of DL to DL's many collaborators. The overall temporal organization of mass-energy, information, and signaling networks in yeast in self-synchronized continuous cultures represents, until now, the most characterized example of in vivo elucidation of time structure. Continuous online monitoring of dissolved gases by direct measurement (membrane-inlet mass spectrometry, together with NAD(P)H and flavin fluorescence) gives strain-specific dynamic information from timescales of minutes to hours as does two-photon imaging. The predominantly oscillatory behavior of network components becomes evident, with spontaneously synchronized cellular respiration cycles between discrete periods of increased oxygen consumption (oxidative phase) and decreased oxygen consumption (reductive phase). This temperature-compensated ultradian clock provides coordination, linking temporally partitioned functions by direct feedback loops between the energetic and redox state of the cell and its growing ultrastructure. Multioscillatory outputs in dissolved gases with 13 h, 40 min, and 4 min periods gave statistical self-similarity in power spectral and relative dispersional analyses: i.e., complex nonlinear (chaotic) behavior and a functional scale-free (fractal) network operating simultaneously over several timescales.
Collapse
Affiliation(s)
- David Lloyd
- Cardiff University, School of Biosciences, Cardiff, Wales, United Kingdom
| | - Douglas B. Murray
- Keio University, Institute for Advanced Biosciences, Tsuruoka, Japan
| | - Miguel A. Aon
- National Institutes of Health, National Institute on Aging, Laboratory of Cardiovascular Science, Baltimore, Maryland, United States
| | - Sonia Cortassa
- National Institutes of Health, National Institute on Aging, Laboratory of Cardiovascular Science, Baltimore, Maryland, United States
| | - Marc R. Roussel
- University of Lethbridge, Alberta RNA Research and Training Institute and Department of Chemistry and Biochemistry, Alberta, Canada
| | - Manfred Beckmann
- Institute of Biological, Environmental and Rural, Sciences, Aberystwyth, Wales, United Kingdom
| | - Robert K. Poole
- University of Sheffield, Department of Molecular Biology and Biotechnology, Firth Court, Western Bank, Sheffield, United Kingdom
| |
Collapse
|
7
|
Differential Proteome Analysis of a Flor Yeast Strain under Biofilm Formation. Int J Mol Sci 2017; 18:ijms18040720. [PMID: 28350350 PMCID: PMC5412306 DOI: 10.3390/ijms18040720] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 11/30/2022] Open
Abstract
Several Saccharomyces cerevisiae strains (flor yeasts) form a biofilm (flor velum) on the surface of Sherry wines after fermentation, when glucose is depleted. This flor velum is fundamental to biological aging of these particular wines. In this study, we identify abundant proteins in the formation of the biofilm of an industrial flor yeast strain. A database search to enrich flor yeast “biological process” and “cellular component” according to Gene Ontology Terminology (GO Terms) and, “pathways” was carried out. The most abundant proteins detected were largely involved in respiration, translation, stress damage prevention and repair, amino acid metabolism (glycine, isoleucine, leucine and arginine), glycolysis/gluconeogenesis and biosynthesis of vitamin B9 (folate). These proteins were located in cellular components as in the peroxisome, mitochondria, vacuole, cell wall and extracellular region; being these two last directly related with the flor formation. Proteins like Bgl2p, Gcv3p, Hyp2p, Mdh1p, Suc2p and Ygp1p were quantified in very high levels. This study reveals some expected processes and provides new and important information for the design of conditions and genetic constructions of flor yeasts for improving the cellular survival and, thus, to optimize biological aging of Sherry wine production.
Collapse
|
8
|
Abstract
Three properties are most often attributed to the circadian clock: a ca. 24-h free-running rhythm, temperature compensation of the circadian rhythm, and its entrainment to zeitgeber cycles. Relatively few experiments, however, are performed under entrainment conditions. Rather, most chronobiology protocols concern constant conditions. We have turned this paradigm around and used entrainment to study the circadian clock in organisms where a free-running rhythm is weak or lacking. We describe two examples therein: Caenorhabditis elegans and Saccharomyces cerevisiae. By probing the system with zeitgeber cycles that have various structures and amplitudes, we can demonstrate the establishment of systematic entrained phase angles in these organisms. We conclude that entrainment can be utilized to discover hitherto unknown circadian clocks and we discuss the implications of using entrainment more broadly, even in model systems that show robust free-running rhythms.
Collapse
|
9
|
Kaludercic N, Deshwal S, Di Lisa F. Reactive oxygen species and redox compartmentalization. Front Physiol 2014; 5:285. [PMID: 25161621 PMCID: PMC4130307 DOI: 10.3389/fphys.2014.00285] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/11/2014] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS) formation and signaling are of major importance and regulate a number of processes in physiological conditions. A disruption in redox status regulation, however, has been associated with numerous pathological conditions. In recent years it has become increasingly clear that oxidative and reductive modifications are confined in a spatio-temporal manner. This makes ROS signaling similar to that of Ca(2+) or other second messengers. Some subcellular compartments are more oxidizing (such as lysosomes or peroxisomes) whereas others are more reducing (mitochondria, nuclei). Moreover, although more reducing, mitochondria are especially susceptible to oxidation, most likely due to the high number of exposed thiols present in that compartment. Recent advances in the development of redox probes allow specific measurement of defined ROS in different cellular compartments in intact living cells or organisms. The availability of these tools now allows simultaneous spatio-temporal measurements and correlation between ROS generation and organelle and/or cellular function. The study of ROS compartmentalization and microdomains will help elucidate their role in physiology and disease. Here we will examine redox probes currently available and how ROS generation may vary between subcellular compartments. Furthermore, we will discuss ROS compartmentalization in physiological and pathological conditions focusing our attention on mitochondria, since their vulnerability to oxidative stress is likely at the basis of several diseases.
Collapse
Affiliation(s)
- Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR) Padova, Italy
| | - Soni Deshwal
- Department of Biomedical Sciences, University of Padova Padova, Italy
| | - Fabio Di Lisa
- Neuroscience Institute, National Research Council of Italy (CNR) Padova, Italy ; Department of Biomedical Sciences, University of Padova Padova, Italy
| |
Collapse
|
10
|
Visible light alters yeast metabolic rhythms by inhibiting respiration. Proc Natl Acad Sci U S A 2013; 110:21130-5. [PMID: 24297928 DOI: 10.1073/pnas.1313369110] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Exposure of cells to visible light in nature or in fluorescence microscopy often is considered to be relatively innocuous. However, using the yeast respiratory oscillation (YRO) as a sensitive measurement of metabolism, we find that non-UV visible light has a significant impact on yeast metabolism. Blue/green wavelengths of visible light shorten the period and dampen the amplitude of the YRO, which is an ultradian rhythm of cell metabolism and transcription. The wavelengths of light that have the greatest effect coincide with the peak absorption regions of cytochromes. Moreover, treating yeast with the electron transport inhibitor sodium azide has similar effects on the YRO as visible light. Because impairment of respiration by light would change several state variables believed to play vital roles in the YRO (e.g., oxygen tension and ATP levels), we tested oxygen's role in YRO stability and found that externally induced oxygen depletion can reset the phase of the oscillation, demonstrating that respiratory capacity plays a role in the oscillation's period and phase. Light-induced damage to the cytochromes also produces reactive oxygen species that up-regulate the oxidative stress response gene TRX2 that is involved in pathways that enable sustained growth in bright visible light. Therefore, visible light can modulate cellular rhythmicity and metabolism through unexpectedly photosensitive pathways.
Collapse
|
11
|
Overexpression of stress-related genes enhances cell viability and velum formation in Sherry wine yeasts. Appl Microbiol Biotechnol 2013; 97:6867-81. [DOI: 10.1007/s00253-013-4850-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/06/2013] [Accepted: 03/10/2013] [Indexed: 11/25/2022]
|
12
|
Lloyd D, Cortassa S, O'Rourke B, Aon MA. What yeast and cardiomyocytes share: ultradian oscillatory redox mechanisms of cellular coherence and survival. Integr Biol (Camb) 2012; 4:65-74. [PMID: 22143867 PMCID: PMC3348865 DOI: 10.1039/c1ib00124h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The coherent and robust, yet sensitively adaptable, nature of organisms is an astonishing phenomenon that involves massive parallel processing and concerted network performance at the molecular level. Unravelling the dynamic complexities of the living state underlines the essential operation of ultradian oscillations, rhythms and clocks for the establishment and maintenance of functional order simultaneously on fast and slower timescales. Non-invasive monitoring of respiration, mitochondrial inner membrane potentials, and redox states (especially those of NAD(P)H, flavin, and the monochlorobimane complex of glutathione), even after more than 50 years research, continue to provide both new insights and biomedical applications. Experiments with yeast and in cardiac cells reveal astonishing parallels and similarities in their dynamic biochemical organization.
Collapse
Affiliation(s)
- David Lloyd
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AT Wales, UK.
| | | | | | | |
Collapse
|
13
|
|
14
|
Abstract
Respiratory oscillations in yeasts have been studied in three time domains with periods of (a) about a minute, (b) about 40 min, and (c) about a day. Reactive responses (damped oscillations), rhythms and temperature-compensated clocks have been described for (b) and (c), but a timekeeping clock has not yet been shown for (a). Synchronous populations reveal the time-structure that can only otherwise be studied in single organisms; this is because time-averaging through an asynchronous population conceals its fine structure. Early studies with synchronous cultures made by size selection methods indicated ultradian-clock driven oscillations in respiration, pools of adenylates, total protein, RNA synthesis and many enzyme activities (tau = 40 min in Schizosaccharomyces pombe, 30 min in Candida utilis), and more recently in self-synchronised continuous cultures of Saccharomyces cerevisiae (tau = 48 min). Most detailed understanding comes from the latter system, where continuous, noninvasive real-time monitoring (of 02 uptake, CO2 production, and NAD(P)H redox state) is combined with frequent discrete time samples (for other redox components, including H2S, GSH and cytochromes, metabolites, and mRNA levels). A redox switch lies at the heart of this ultradian clock and a plethora of outputs is optimized to a time-base that is genetically-determined and differs in different organisms. It is suggested that the entire temporal landscape of all eukaryotic organisms and the cells of higher plants and animals is constructed on this basis. A time frame for the coordination and coherence of all intracellular processes and the construction and assembly of cellular structures is provided by the ultradian clock The circadian clock matches these functions to the daily cycle of the external environment.
Collapse
|
15
|
Abstract
Biological functions governed by the circadian clock are the evident result of the entrainment operated by the earth's day and night cycle on living organisms. However, the circadian clock is not unique, and cells and organisms possess many other cyclic activities. These activities are difficult to observe if carried out by single cells and the cells are not coordinated but, if they can be detected, cell-to-cell cross-talk and synchronization among cells must exist. Some of these cycles are metabolic and cell synchronization is due to small molecules acting as metabolic messengers. We propose a short survey of cellular cycles, paying special attention to metabolic cycles and cellular cross-talking, particularly when the synchronization of metabolism or, more generally, cellular functions are concerned. Questions arising from the observation of phenomena based on cell communication and from basic cellular cycles are also proposed.
Collapse
Affiliation(s)
- Michele M Bianchi
- Department of Cell and Developmental Biology, University of Rome La Sapienza, Rome, Italy.
| |
Collapse
|
16
|
Abstract
Maintenance of normal intracellular redox status plays an important role in such processes as DNA synthesis, gene expression, enzymatic activity, and others. In addition, it is clear that changes in the redox status of intracellular content and individual molecules, resulting from stress or intrinsic cellular activity, are involved in the regulation of different processes in cells. Small changes in intracellular levels of reactive oxygen species participate in intracellular signaling. Thiol-containing molecules, such as glutathione, thioredoxins, glutaredoxins, and peroxiredoxins, also play an important role in maintaining redox homeostasis and redox regulation. This review attempts to summarize the current knowledge about redox regulation in different cell types.
Collapse
Affiliation(s)
- O N Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Urals Division of the Russian Academy of Sciences, 614081 Perm', Russia.
| | | |
Collapse
|
17
|
Perez GI, Acton BM, Jurisicova A, Perkins GA, White A, Brown J, Trbovich AM, Kim MR, Fissore R, Xu J, Ahmady A, D'Estaing SG, Li H, Kagawa W, Kurumizaka H, Yokoyama S, Okada H, Mak TW, Ellisman MH, Casper RF, Tilly JL. Genetic variance modifies apoptosis susceptibility in mature oocytes via alterations in DNA repair capacity and mitochondrial ultrastructure. Cell Death Differ 2006; 14:524-33. [PMID: 17039249 DOI: 10.1038/sj.cdd.4402050] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Although the identification of specific genes that regulate apoptosis has been a topic of intense study, little is known of the role that background genetic variance plays in modulating cell death. Using germ cells from inbred mouse strains, we found that apoptosis in mature (metaphase II) oocytes is affected by genetic background through at least two different mechanisms. The first, manifested in AKR/J mice, results in genomic instability. This is reflected by numerous DNA double-strand breaks in freshly isolated oocytes, causing a high apoptosis susceptibility and impaired embryonic development following fertilization. Microinjection of Rad51 reduces DNA damage, suppresses apoptosis and improves embryonic development. The second, manifested in FVB mice, results in dramatic dimorphisms in mitochondrial ultrastructure. This is correlated with cytochrome c release and a high apoptosis susceptibility, the latter of which is suppressed by pyruvate treatment, Smac/DIABLO deficiency, or microinjection of 'normal' mitochondria. Therefore, background genetic variance can profoundly affect apoptosis in female germ cells by disrupting both genomic DNA and mitochondrial integrity.
Collapse
Affiliation(s)
- G I Perez
- Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Murray DB, Lloyd D. A tuneable attractor underlies yeast respiratory dynamics. Biosystems 2006; 90:287-94. [PMID: 17074432 DOI: 10.1016/j.biosystems.2006.09.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/12/2006] [Accepted: 09/13/2006] [Indexed: 11/25/2022]
Abstract
Our understanding of the molecular structure and function in the budding yeast, Saccharomyces cerevisiae, surpasses that of all other eukaryotic cells. However, the fundamental properties of the complex processes and their control systems have been difficult to reconstruct from detailed dissection of their molecular components. Spontaneous oscillatory dynamics observed in self-synchronized continuous cultures is pervasive, involves much of the cellular network, and provides unique insights into integrative cell physiology. Here, in non-invasive experiments in vivo, we exploit these oscillatory dynamics to analyse the global timing of the cellular network to show the presence of a low-order chaotic component. Although robust to a wide range of environmental perturbations, the system responds and reacts to the imposition of harsh environmental conditions, in this case low pH, by dynamic re-organization of respiration, and this feeds upwards to affect cell division. These complex dynamics can be represented by a tuneable attractor that orchestrates cellular complexity and coherence to the environment.
Collapse
Affiliation(s)
- Douglas B Murray
- The Systems Biology Institute, 953 Shinanomachi Research Park, Keio University School of Medicine, 35 Shinanomachi, Shimjuku-ku, Tokyo 160-852, Japan.
| | | |
Collapse
|
19
|
Lloyd D. Hydrogen sulfide: clandestine microbial messenger? Trends Microbiol 2006; 14:456-62. [PMID: 16908154 DOI: 10.1016/j.tim.2006.08.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 07/06/2006] [Accepted: 08/03/2006] [Indexed: 10/24/2022]
Abstract
Although the toxicity of hydrogen sulfide (H(2)S) has been substantiated for almost 230 years, its pivotal roles in both aerobic and anaerobic organisms have only recently become evident. In low oxygen environments with millimolar concentrations of H(2)S, it functions as an electron donor and as an energy source in some systems. At micromolar levels, intracellular H(2)S in aerobic organisms has a vital role in redox balancing. At even lower concentrations, H(2)S provides essential signals in yeast, in the brain and in smooth and cardiac muscles. Here, other possible coordinating roles within and between microorganisms are suggested, including the possibility that H(2)S functions as a signalling mediator in prokaryotes. It is expected that future research will uncover a host of novel functions, not only in eukaryotes but also in prokaryotic species.
Collapse
Affiliation(s)
- David Lloyd
- Microbiology, Cardiff School of Biosciences, Cardiff University, Main Building, P.O. Box 915, Cardiff CF10 3TL, UK.
| |
Collapse
|
20
|
Lloyd D, Murray DB. The temporal architecture of eukaryotic growth. FEBS Lett 2006; 580:2830-5. [PMID: 16545376 DOI: 10.1016/j.febslet.2006.02.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 02/25/2006] [Indexed: 11/19/2022]
Abstract
Coherence of the time structure of growing organisms depends on a metronome-like orchestration. In a continuously perfused culture of Saccharomyces cerevisiae the redox state of the cell shows a temperature-compensated oscillation manifest in respiratory cycles, which are measured by continuous and non-invasive electrodes of probes such as dissolved oxygen and probes such as fluorometric NAD(P)H. Although the entire transcriptome exhibits low-amplitude oscillatory behaviour, transcripts involved in the vast majority of metabolism, stress response, cellular structure, protein turnover, mRNA turnover, and DNA synthesis are amongst the top oscillators and their orchestration occurs by an intricate network of transcriptional regulators. Therefore cellular auto-dynamism is a function of a large ensemble of excitable intracellular components of that self-organized temporally and spatially that encompasses mitochondrial, nuclear, transcriptional and metabolic dynamics, coupled by cellular redox state.
Collapse
Affiliation(s)
- David Lloyd
- Microbiology, Cardiff School of Biosciences, (BIOSI 1, Main Building), Cardiff University, P.O. Box 915, Cardiff CF10 3TL, Wales, UK.
| | | |
Collapse
|
21
|
Shabala S, Shabala L, Gradmann D, Chen Z, Newman I, Mancuso S. Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:171-84. [PMID: 16330526 DOI: 10.1093/jxb/erj022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Although oscillations in membrane-transport activity are ubiquitous in plants, the ionic mechanisms of ultradian oscillations in plant cells remain largely unknown, despite much phenomenological data. The physiological role of such oscillations is also the subject of much speculation. Over the last decade, much experimental evidence showing oscillations in net ion fluxes across the plasma membrane of plant cells has been accumulated using the non-invasive MIFE technique. In this study, a recently proposed feedback-controlled oscillatory model was used. The model adequately describes the observed ion flux oscillations within the minute range of periods and predicts: (i) strong dependence of the period of oscillations on the rate constants for the H+ pump; (ii) a substantial phase shift between oscillations in net H+ and K+ fluxes; (iii) cessation of oscillations when H+ pump activity is suppressed; (iv) the existence of some 'window' of external temperatures and ionic concentrations, where non-damped oscillations are observed: outside this range, even small changes in external parameters lead to progressive damping and aperiodic behaviour; (v) frequency encoding of environmental information by oscillatory patterns; and (vi) strong dependence of oscillatory characteristics on cell size. All these predictions were successfully confirmed by direct experimental observations, when net ion fluxes were measured from root and leaf tissues of various plant species, or from single cells. Because oscillatory behaviour is inherent in feedback control systems having phase shifts, it is argued from this model that suitable conditions will allow oscillations in any cell or tissue. The possible physiological role of such oscillations is discussed in the context of plant adaptive responses to salinity, temperature, osmotic, hypoxia, and pH stresses.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Australia.
| | | | | | | | | | | |
Collapse
|
22
|
Lloyd D, Murray DB. Ultradian metronome: timekeeper for orchestration of cellular coherence. Trends Biochem Sci 2005; 30:373-7. [PMID: 15935677 DOI: 10.1016/j.tibs.2005.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 05/03/2005] [Accepted: 05/23/2005] [Indexed: 10/25/2022]
Abstract
Dynamic intracellular spatial and temporal organization emerges from spontaneous synchronization of a massive array of weakly coupled oscillators; the majority of subcellular processes are implicated in this integrated expression of cellular physiology. Evidence for this view comes mainly from studies of Saccharomyces cerevisiae growing in self-synchronized continuous cultures, in which a temperature-compensated ultradian clock (period of approximately 40 min) couples fermentation with redox state in addition to the transcriptome and cell-division-cycle progression. Functions for ultradian clocks have also been determined in other yeasts (e.g. Schizosaccharomyces pombe and Candida utilis), seven protists (e.g. Acanthamoeba castellanii and Paramecium tetraurelia), as well as cultured mammalian cells. We suggest that ultradian timekeeping is a basic universal necessity for coordinated intracellular coherence.
Collapse
Affiliation(s)
- David Lloyd
- Microbiology (BIOSI 1), Cardiff University, P O Box 915, Cardiff, CF10 3TL, UK.
| | | |
Collapse
|
23
|
Jules M, François J, Parrou JL. Autonomous oscillations in Saccharomyces cerevisiae during batch cultures on trehalose. FEBS J 2005; 272:1490-500. [PMID: 15752364 DOI: 10.1111/j.1742-4658.2005.04588.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report that autonomous oscillations, which usually happen in aerobic glucose-limited continuous cultures of yeast at low dilution rate, were also observed in trehalose discontinuous cultures of Saccharomyces cerevisiae. This unexpected oscillatory behaviour was therefore examined using fast Fourier transformation of online gas measurements. This robust mathematical analysis underlined the existence of two types of oscillation. The first was found to be linked to the cell cycle because (a) the periodicity corresponded to a fraction of the generation time and (b) the oscillations were accompanied by a transient increase in the budding index, mobilization of storage carbohydrates, and fermentative activity. Moreover, these oscillations occurred in a range of specific growth rates between 0.04 and 0.15 h(-1). All these criteria were consistent with the cell-cycle-related metabolic oscillations observed in the same range of growth rates in glucose-limited continuous cultures. The second type were short-period respiratory oscillations, independent of the specific growth rate. Both types of oscillation were found to take place consecutively and/or simultaneously during batch culture on trehalose. In addition, mobilization of intracellular trehalose emerged as a key parameter for the sustainability of these autonomous oscillations as they were no longer observed in a mutant defective in neutral trehalase activity. We propose that batch culture on trehalose may be an excellent device for further investigation of the molecular mechanisms that underlie autonomous oscillations in yeast.
Collapse
Affiliation(s)
- Matthieu Jules
- Centre de Bioingenierie Gilbert Durand, UMR-CNRS 5504, UMR-INRA 792, Institut National des Sciences Appliquées, Toulouse, France
| | | | | |
Collapse
|
24
|
Parrou JL, Jules M, Beltran G, François J. Acid trehalase in yeasts and filamentous fungi: Localization, regulation and physiological function. FEMS Yeast Res 2005; 5:503-11. [PMID: 15780651 DOI: 10.1016/j.femsyr.2005.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Revised: 12/15/2004] [Accepted: 01/14/2005] [Indexed: 01/17/2023] Open
Abstract
Yeasts and filamentous fungi are endowed with two different trehalose-hydrolysing activities, termed acid and neutral trehalases according to their optimal pH for enzymatic activity. A wealth of information already exists on fungal neutral trehalases, while data on localization, regulation and function of fungal acid trehalases have remained elusive. The gene encoding the latter enzyme has now been isolated from two yeast species and two filamentous fungi, and sequences encoding putative acid trehalase can be retrieved from available public sequences. Despite weak similarities between amino acids sequences, this type of trehalase potentially harbours either a transmembrane segment or a signal peptide at the N-terminal sequence, as deduced from domain prediction algorithms. This feature, together with the demonstration that acid trehalase from yeasts and filamentous fungi is localized at the cell surface, is consistent with its main role in the utilisation of exogenous trehalose as a carbon source. The growth on this disaccharide is in fact pretty effective in most fungi except in Saccharomyces cerevisiae. This yeast species actually exhibits a "Kluyver effect" on trehalose. Moreover, an oscillatory behaviour reminiscent of what is observed in aerobic glucose-limited continuous cultures at low dilution rate is also observed in batch growth on trehalose. Finally, the S. cerevisiae acid trehalase may also participate in the catabolism of endogenous trehalose by a mechanism that likely requires the export of the disaccharide, its extracellular hydrolysis, and the subsequent uptake of the glucose released. Based on these recent findings, we suggest to rename "acid" and "neutral" trehalases as "extracellular" and "cytosolic" trehalases, which is more adequate to describe their localization and function in the fungal cell.
Collapse
Affiliation(s)
- Jean Luc Parrou
- Centre de Bioingenierie Gilbert Durand, UMR-CNRS 5504, UMR-INRA 792, Institut National des Sciences Appliquées, 135 Avenue de Rangeuil, 31077 Toulouse cedex 04, France
| | | | | | | |
Collapse
|
25
|
|
26
|
Bursch W. Multiple cell death programs: Charon's lifts to Hades. FEMS Yeast Res 2005; 5:101-10. [PMID: 15489192 DOI: 10.1016/j.femsyr.2004.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2004] [Revised: 07/08/2004] [Accepted: 07/14/2004] [Indexed: 12/19/2022] Open
Abstract
Cells use different pathways for active self-destruction as reflected by different morphology: while in apoptosis (or "type I") nuclear fragmentation associated with cytoplasmic condensation but preservation of organelles is predominant, autophagic degradation of cytoplasmic structures preceding nuclear collapse is a characteristic of a second type of programmed cell death (PCD). The diverse morphologies can be attributed--at least to some extent--to distinct biochemical and molecular events (e.g. caspase-dependent and -independent death programs; DAP-kinase activity, Ras-expression). However, apoptosis and autophagic PCD are not mutually exclusive phenomena. Rather, diverse PCD programs emerged during evolution, the conservation of which apparently allows cells a flexible response to environmental changes, either physiological or pathological.
Collapse
Affiliation(s)
- Wilfried Bursch
- Institut für Krebsforschung der Medizinischen Universität Wien, Borschkegasse 8a, A-1090 Vienna, Austria.
| |
Collapse
|
27
|
Lloyd D, Harris JC, Biagini GA, Hughes MR, Maroulis S, Bernard C, Wadley RB, Edwards MR. The plasma membrane of microaerophilic protists: oxidative and nitrosative stress. Microbiology (Reading) 2004; 150:1183-1190. [PMID: 15133079 DOI: 10.1099/mic.0.26834-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The trans-plasma-membrane electrochemical potential of microaerophilic protists was monitored by the use of voltage-sensitive charged lipophilic fluorophores; of the many available probes, the anionic oxonol dye bis(1,3-dibarbituric acid)-trimethine oxonol [DiBAC4(3)] is an example of one which has been successfully employed using fluorescence microscopy, confocal laser-scanning microscopy and flow cytometry. Several microaerophilic protists have been investigated with this dye; these were Giardia intestinalis, Trichomonas vaginalis, Tritrichomonas foetus, Hexamita inflata and Mastigamoeba punctachora. Under conditions where they exhibit normal vitality, these organisms exclude DiBAC4(3) by virtue of their maintenance of a plasma-membrane potential (negative inside). Uptake of the fluorophore is indicative of disturbance to this membrane (i.e. by inhibition of pump/leak balance, blockage of channels or generation of ionic leaks), and is indicative of metabolic perturbation or environmental stress. Here, it is shown that oxidative or nitrosative stress depolarizes the plasma membranes of the aforementioned O2-sensitive organisms and allows DiBAC4(3) influx. Oxonol uptake thereby provides a sensitive and early indication of plasma-membrane perturbation by agents that may lead to cytotoxicity and eventually to cell death by necrotic or apoptotic pathways.
Collapse
Affiliation(s)
- D Lloyd
- Microbiology (BIOSI 1) Main Building, Cardiff University, PO Box 915, Cardiff CF10 3TL, UK
| | - J C Harris
- Microbiology (BIOSI 1) Main Building, Cardiff University, PO Box 915, Cardiff CF10 3TL, UK
| | - G A Biagini
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia
| | - M R Hughes
- Department of Chemistry, King's College University of London, Strand, London WC2R 2LS, UK
| | - S Maroulis
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia
| | - C Bernard
- School of Science, Parramatta Campus, University of Western Sydney, Australia
| | - R B Wadley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia
| | - M R Edwards
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
28
|
Moller IM, Kristensen BK. Protein oxidation in plant mitochondria as a stress indicator. Photochem Photobiol Sci 2004; 3:730-5. [PMID: 15295627 DOI: 10.1039/b315561g] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plant mitochondria produce reactive oxygen species (ROS) as an unavoidable side product of aerobic metabolism, but they have mechanisms for regulating this production such as the alternative oxidase. Once produced, ROS can be removed by several different enzyme systems. Finally, should the first two strategies fail, the ROS produced can act as a signal to the rest of the cell and/or cause damage to DNA, lipids and proteins. Proteins are modified in a variety of ways by ROS, some direct, others indirect e.g. by conjugation with breakdown products of fatty acid peroxidation. Reversible oxidation of cysteine and methionine side chains is an important mechanism for regulating enzyme activity. Mitochondria from both mammalian and plant tissues contain a number of oxidised proteins, but the relative abundance of these post-translationally modified forms is as yet unknown, as are the consequences of the modification for the properties and turnover time of the proteins. Specific proteins appear to be particularly vulnerable to oxidative carbonylation in the matrix of plant mitochondria; these include several enzymes of the Krebs cycle, glycine decarboxylase, superoxide dismutase and heat shock proteins. Plant mitochondria contain a number of different proteases, but their role in removing oxidatively damaged proteins is, as yet, unclear.
Collapse
Affiliation(s)
- Ian M Moller
- Plant Research Department, Riso National Laboratory, P.O. Box 49, DK-4000 Roskilde, Denmark.
| | | |
Collapse
|
29
|
Abstract
Glutathione (GSH; gamma-L-glutamyl-L-cysteinyl-glycine), a non-protein thiol with a very low redox potential (E'0 = 240 mV for thiol-disulfide exchange), is present in high concentration up to 10 mM in yeasts and filamentous fungi. GSH is concerned with basic cellular functions as well as the maintenance of mitochondrial structure, membrane integrity, and in cell differentiation and development. GSH plays key roles in the response to several stress situations in fungi. For example, GSH is an important antioxidant molecule, which reacts non-enzymatically with a series of reactive oxygen species. In addition, the response to oxidative stress also involves GSH biosynthesis enzymes, NADPH-dependent GSH-regenerating reductase, glutathione S-transferase along with peroxide-eliminating glutathione peroxidase and glutaredoxins. Some components of the GSH-dependent antioxidative defence system confer resistance against heat shock and osmotic stress. Formation of protein-SSG mixed disulfides results in protection against desiccation-induced oxidative injuries in lichens. Intracellular GSH and GSH-derived phytochelatins hinder the progression of heavy metal-initiated cell injuries by chelating and sequestering the metal ions themselves and/or by eliminating reactive oxygen species. In fungi, GSH is mobilized to ensure cellular maintenance under sulfur or nitrogen starvation. Moreover, adaptation to carbon deprivation stress results in an increased tolerance to oxidative stress, which involves the induction of GSH-dependent elements of the antioxidant defence system. GSH-dependent detoxification processes concern the elimination of toxic endogenous metabolites, such as excess formaldehyde produced during the growth of the methylotrophic yeasts, by formaldehyde dehydrogenase and methylglyoxal, a by-product of glycolysis, by the glyoxalase pathway. Detoxification of xenobiotics, such as halogenated aromatic and alkylating agents, relies on glutathione S-transferases. In yeast, these enzymes may participate in the elimination of toxic intermediates that accumulate in stationary phase and/or act in a similar fashion as heat shock proteins. GSH S-conjugates may also form in a glutathione S-transferases-independent way, e.g. through chemical reaction between GSH and the antifugal agent Thiram. GSH-dependent detoxification of penicillin side-chain precursors was shown in Penicillium sp. GSH controls aging and autolysis in several fungal species, and possesses an anti-apoptotic feature.
Collapse
Affiliation(s)
- István Pócsi
- Department of Microbiology and Biotechnology, Faculty of Sciences, University of Debrecen, P.O. Box 63, H-4010 Debrecen, Hungary
| | | | | |
Collapse
|
30
|
Current awareness on yeast. Yeast 2003; 20:1151-8. [PMID: 14598808 DOI: 10.1002/yea.949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|