1
|
Steimann T, Wegmann J, Espinosa MI, Blank LM, Büchs J, Mann M, Magnus JB. Avoiding overflow metabolite formation in Komagataella phaffii fermentations to enhance recombinant protein production. J Biol Eng 2024; 18:54. [PMID: 39363343 PMCID: PMC11448000 DOI: 10.1186/s13036-024-00453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Komagataella phaffii (K. phaffii), formerly known as Pichia pastoris, is a widely utilized yeast for recombinant protein production. However, due to the formation of overflow metabolites, carbon yields may be reduced and product recovery becomes challenging. This study investigates the impact of oxygen availability, different glucose concentrations and feeding strategies on overflow metabolite formation and recombinant protein production in K. phaffii. RESULTS High glucose concentrations in batch fermentation, as applied in literature, lead to substantial ethanol accumulation, adversely affecting biomass yield and product formation. Increasing dissolved oxygen setpoints does not significantly reduce ethanol formation, indicating that glucose surplus, rather than oxygen availability, drives overflow metabolism. Decreasing the initial glucose concentration to 5 g/L and adapting the feeding strategy of the fed-batch phase, effectively mitigates overflow metabolite formation, improving biomass yield by up to 9% and product concentration by 40% without increasing process time. CONCLUSIONS These findings underscore the importance of a suitable glucose-feeding strategy in K. phaffii fermentation processes and highlight the detrimental effects of overflow metabolites on productivity. By optimizing carbon source utilization, it is possible to enhance fermentation efficiency and recombinant protein production with K. phaffii.
Collapse
Affiliation(s)
- Thomas Steimann
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, Aachen, 52074, Germany
| | - Judith Wegmann
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, Aachen, 52074, Germany
| | - Monica I Espinosa
- iAMB - Institute of Applied Microbiology, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Lars Mathias Blank
- iAMB - Institute of Applied Microbiology, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, Aachen, 52074, Germany
| | - Marcel Mann
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, Aachen, 52074, Germany
| | - Jørgen Barsett Magnus
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, Aachen, 52074, Germany.
| |
Collapse
|
2
|
Goldmanns J, Röhling GA, Lipa MK, Scholand T, Deitert A, May T, Haas EP, Boy M, Herold A, Büchs J. Development of a chemically defined medium for Paenibacillus polymyxa by parallel online monitoring of the respiration activity in microtiter plates. BMC Biotechnol 2023; 23:25. [PMID: 37507713 PMCID: PMC10385886 DOI: 10.1186/s12896-023-00793-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND One critical parameter in microbial cultivations is the composition of the cultivation medium. Nowadays, the application of chemically defined media increases, due to a more defined and reproducible fermentation performance than in complex media. In order, to improve cost-effectiveness of fermentation processes using chemically defined media, the media should not contain nutrients in large excess. Additionally, to obtain high product yields, the nutrient concentrations should not be limiting. Therefore, efficient medium optimization techniques are required which adapt medium compositions to the specific nutrient requirements of microorganisms. RESULTS Since most Paenibacillus cultivation protocols so far described in literature are based on complex ingredients, in this study, a chemically defined medium for an industrially relevant Paenibacillus polymyxa strain was developed. A recently reported method, which combines a systematic experimental procedure in combination with online monitoring of the respiration activity, was applied and extended to identify growth limitations for Paenibacillus polymyxa. All cultivations were performed in microtiter plates. By systematically increasing the concentrations of different nutrient groups, nicotinic acid was identified as a growth-limiting component. Additionally, an insufficient buffer capacity was observed. After optimizing the growth in the chemically defined medium, the medium components were systematically reduced to contain only nutrients relevant for growth. Vitamins were reduced to nicotinic acid and biotin, and amino acids to methionine, histidine, proline, arginine, and glutamate. Nucleobases/-sides could be completely left out of the medium. Finally, the cultivation in the reduced medium was reproduced in a laboratory fermenter. CONCLUSION In this study, a reliable and time-efficient high-throughput methodology was extended to investigate limitations in chemically defined media. The interpretation of online measured respiration activities agreed well with the growth performance of samples measured in parallel via offline analyses. Furthermore, the cultivation in microtiter plates was validated in a laboratory fermenter. The results underline the benefits of online monitoring of the respiration activity already in the early stages of process development, to avoid limitations of medium components, oxygen limitation and pH inhibition during the scale-up.
Collapse
Affiliation(s)
- Jennifer Goldmanns
- RWTH Aachen University, AVT - Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Georg Andreas Röhling
- RWTH Aachen University, AVT - Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Marie Kristine Lipa
- RWTH Aachen University, AVT - Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Theresa Scholand
- RWTH Aachen University, AVT - Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Alexander Deitert
- RWTH Aachen University, AVT - Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Tobias May
- BASF SE, Carl-Bosch-Straße 38, Ludwigshafen am Rhein, 67056, Germany
| | | | - Matthias Boy
- BASF SE, Carl-Bosch-Straße 38, Ludwigshafen am Rhein, 67056, Germany
| | - Andrea Herold
- BASF SE, Carl-Bosch-Straße 38, Ludwigshafen am Rhein, 67056, Germany
| | - Jochen Büchs
- RWTH Aachen University, AVT - Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
3
|
Volatile Aroma Compound Production Is Affected by Growth Rate in S. cerevisiae. Appl Environ Microbiol 2022; 88:e0150922. [PMID: 36377958 PMCID: PMC9746289 DOI: 10.1128/aem.01509-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The initial growth rate of a yeast strain is a key parameter in the production of fermented beverages. Fast growth is linked with higher fermentative capacity and results in less slow and stuck fermentations unable to reach the expected final gravity. As concentrations of metabolites are in a constant state of flux, quantitative data on how growth rate affects the production of aromatic compounds becomes an important factor for brewers. Chemostats allow to set and keep a specific dilution rate throughout the fermentation and are ideal system to study the effect of growth on aroma production. In this study, we ran chemostats alongside batch and fed-batch cultures, compared volatile profiles detected at different growth rates, and identified those affected by the different feeding profiles. Specifically, we quantified six abundant aroma compounds produced in anaerobic glucose-limited continuous cultivations of S. cerevisiae at different dilution rates. We found that volatile production was affected by the growth rate in four out of six compounds assayed, with higher alcohols and esters following opposite trends. Batch and fed-batch fermentations were devised to study the extent by which the final concentration of volatile compounds is influenced by glucose availability. Compared with the batch system, fed-batch fermentations, where the yeast growth was artificially limited by a slow constant release of nutrients in the media, resulted in a significant increase in concentration of higher alcohols, mirroring the results obtained in continuous fermentations. This study paves the way to further process development optimization for the production of fermented beverages. IMPORTANCE The production of fermentation beverages will need to quickly adapt to changes in both the climate and customer demands, requiring the development of new strains and processes. Breakthroughs in the field are hindered by the limited knowledge on the interplay between physiology and aroma compound production in yeast. No quantitative data on how growth rate affects aroma profile is available in the literature to guide optimization of the complex flavors in fermented beverages. In this study, we exploited the chemostat system, alongside with batch and fed-batch cultures, to compare volatile profiles at different growth rates. We identified the aromatic compounds affected by the different feeding profiles and nutrient limitations. Moreover, we uncovered the correlation between yeast growth, esters, and higher alcohols production. This study showcases the potential of the application of feeding profiles for the manipulation of aroma in the craft beverage industry.
Collapse
|
4
|
Isolated and fermented orange and grape wastes: Bromatological characterization and phytase, lipase and protease source. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Dinger R, Lattermann C, Flitsch D, Fischer JP, Kosfeld U, Büchs J. Device for respiration activity measurement enables the determination of oxygen transfer rates of microbial cultures in shaken 96-deepwell microtiter plates. Biotechnol Bioeng 2021; 119:881-894. [PMID: 34951007 DOI: 10.1002/bit.28022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/02/2022]
Abstract
Mini-bioreactors with integrated online monitoring capabilities are well established in the early stages of process development. Mini-bioreactors fulfil the demand for high-throughput-applications and a simultaneous reduction of material costs and total experimental time. One of the most essential online monitored parameters is the oxygen transfer rate (OTR). OTR-monitoring allows fast characterization of bioprocesses and process transfer to larger scales. Currently, OTR-monitoring on a small-scale is limited to shake flasks and 48-well microtiter plates (MTP). Especially, 96-deepwell MTP are used for high-throughput-experiments during early-stage bioprocess development. However, a device for OTR monitoring in 96-deepwell MTP is still not available. To determine OTR values, the measurement of the gas composition in each well of a MTP is necessary. Therefore, a new micro(µ)-scale Transfer rate Online Measurement device (µTOM) was developed. The µTOM includes 96 parallel oxygen-sensitive sensors and a single robust sealing mechanism. Different organisms (Escherichia. coli, Hansenula polymorpha, and Ustilago maydis) were cultivated in the µTOM. The measurement precision for 96 parallel cultivations was 0.21 mmol·L-1·h-1 (pooled standard deviation). In total, a more than 15-fold increase in throughput and an up to a 50-fold decrease in media consumption, compared with the shake flask RAMOS-technology, was achieved using the µTOM for OTR-monitoring. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Robert Dinger
- RWTH Aachen University, Chair of Biochemical Engineering (AVT.BioVT), Forckenbeckstraße 51, 52074, Aachen, Germany
| | | | - David Flitsch
- PyroScience GmbH, Hubertusstraße 35, 52064, Aachen, Germany
| | - Jan P Fischer
- PyroScience GmbH, Hubertusstraße 35, 52064, Aachen, Germany
| | - Udo Kosfeld
- RWTH Aachen University, Chair of Biochemical Engineering (AVT.BioVT), Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jochen Büchs
- RWTH Aachen University, Chair of Biochemical Engineering (AVT.BioVT), Forckenbeckstraße 51, 52074, Aachen, Germany
| |
Collapse
|
6
|
Screening of Aspergillus, Bacillus and Trichoderma strains and influence of substrates on auxin and phytases production through solid-state fermentation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Ainscough RJ, McGree JM, Callaghan MJ, Speight RE. Effective incorporation of xylanase and phytase in lick blocks for grazing livestock. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an18424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The addition of feed enzymes to livestock diets has contributed to significant increases in productivity over recent decades. The use of enzymes has been the most common in systems where enzyme delivery and diets can be easily managed, such as for poultry and pigs. Lick blocks supplement the forage diets of ruminants with nitrogen and minerals but not enzymes, due in part to concerns that block manufacturing temperatures would lead to unacceptable levels of enzyme degradation. The nutritional value of low quality pasture could be improved using enzyme supplemented lick blocks if enzymes remain active at the high lick block manufacturing temperatures. The aim of this study was to determine the extent of xylanase and phytase activity survival when exposed to the production of hot poured lick blocks. Lick block formulations and methods of manufacturing vary, so two enzyme containing molasses-based lick blocks were produced, one at 60°C and another at 100°C. The results showed that both the xylanase and phytase enzymes have high levels of survival at 60°C. In the 100°C lick block, the phytase displayed a half-life of ~10 min, whereas the xylanase retained 90% of the original activity after 30 min of exposure. The inherent thermostability of the enzymes were critical factors for enzyme survival and the enzymes were more stable in the lick blocks than in solution. The results indicate that it should be possible to add enzymes to lick blocks manufactured at elevated temperatures to enhance low quality pasture and thereby aid ruminant digestion and production.
Collapse
|
8
|
Xie D. Integrating Cellular and Bioprocess Engineering in the Non-Conventional Yeast Yarrowia lipolytica for Biodiesel Production: A Review. Front Bioeng Biotechnol 2017; 5:65. [PMID: 29090211 PMCID: PMC5650997 DOI: 10.3389/fbioe.2017.00065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/02/2017] [Indexed: 12/14/2022] Open
Abstract
As one of the major biofuels to replace fossil fuel, biodiesel has now attracted more and more attention due to its advantages in higher energy density and overall less greenhouse gas generation. Biodiesel (fatty acid alkyl esters) is produced by chemically or enzymatically catalyzed transesterification of lipids from microbial cells, microalgae, oil crops, or animal fats. Currently, plant oils or waste cooking oils/fats remain the major source for biodiesel production via enzymatic route, but the production capacity is limited either by the uncertain supplement of plant oils or by the low or inconsistent quality of waste oils/fats. In the past decades, significant progresses have been made on synthesis of microalgae oils directly from CO2via a photosynthesis process, but the production cost from any current technologies is still too high to be commercialized due to microalgae’s slow growth rate on CO2, inefficiency in photo-bioreactors, lack of efficient contamination control methods, and high cost in downstream recovery. At the same time, many oleaginous microorganisms have been studied to produce lipids via the fatty acid synthesis pathway under aerobic fermentation conditions, among them one of the most studied is the non-conventional yeast, Yarrowia lipolytica, which is able to produce fatty acids at very high titer, rate, and yield from various economical substrates. This review summarizes the recent research progresses in both cellular and bioprocess engineering in Y. lipolytica to produce lipids at a low cost that may lead to commercial-scale biodiesel production. Specific technologies include the strain engineering for using various substrates, metabolic engineering in high-yield lipid synthesis, cell morphology study for efficient substrate uptake and product formation, free fatty acid formation and secretion for improved downstream recovery, and fermentation engineering for higher productivities and less operating cost. To further improve the economics of the microbial oil-based biodiesel, production of lipid-related or -derived high-value products are also discussed.
Collapse
Affiliation(s)
- Dongming Xie
- Massachusetts Biomanufacturing Center, Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
9
|
Ladner T, Held M, Flitsch D, Beckers M, Büchs J. Quasi-continuous parallel online scattered light, fluorescence and dissolved oxygen tension measurement combined with monitoring of the oxygen transfer rate in each well of a shaken microtiter plate. Microb Cell Fact 2016; 15:206. [PMID: 27912768 PMCID: PMC5135821 DOI: 10.1186/s12934-016-0608-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/27/2016] [Indexed: 12/26/2022] Open
Abstract
Background Microtiter plates (MTP) are often applied as culture vessels in high-throughput screening programs. If online measuring techniques are available, MTPs can also be applied in the first steps of process development. For such small-scale bioreactors dipping probes are usually too large; therefore, optical measurements are often used. For example, the BioLector technology allows for the online monitoring of scattered light and fluorescence in each well of a continuously orbitally shaken MTP. Although this system provides valuable data, these measurements are mainly of a semi-quantitative nature. Therefore, signal calibration is required to obtain absolute values. With the µRAMOS technology it became possible for the first time to quantify the oxygen transfer rate (OTR) separately in each well of an MTP. In this work, a device is presented that combines both techniques, to provide a hitherto unparalleled high amount of information from each single well. Results Because both systems (BioLector and µRAMOS) are based on optical measurements, the measurements need to be synchronized to avoid interferences with the optical signals. The new experimental setup was applied for online monitoring in cultures of Escherichia coli and Hansenula polymorpha. It has been demonstrated that the well-to-well reproducibility is very high, and that the monitored signals provide reliable and valuable information about the process. With varying filling volumes, different maximum oxygen transfer capacities (OTRmax) were adjusted in oxygen-limited cultures. The different degrees of stress during the culture due to oxygen limitation affected microbial growth and also impacted reproducibility from culture to culture. Furthermore, it was demonstrated that this new device significantly simplifies the experimental efforts: instead of parallel cultures in a shake flask and MTP, just one single experiment in MTP needs to be conducted to measure the OTR, dissolved oxygen tension (DOT), scattered light and fluorescence. Conclusions The new device is a very suitable system for the online monitoring of cultures in continuously orbitally shaken MTPs. Due to the high number of parameters that can simultaneously be measured with this small-scale device, deeper insight into the investigated microbial system can be achieved. Furthermore, the experimental efforts to obtain OTR, DOT, scattered light and fluorescence signals during a culture are decreased. Ultimately, this new technology and the resulting high amount of collected data will eliminate the currently existing separation between screening and process development.Picture of the combined μRAMOS and BioLector setup which allows for measurements of the oxygen transfer rate (OTR), dissolved oxygen tension (DOT), scattered light and fluorescence in each single well of an orbitally shaken microtiter plate. ![]() Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0608-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tobias Ladner
- AVT-Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Markus Held
- AVT-Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - David Flitsch
- AVT-Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Mario Beckers
- AVT-Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Jochen Büchs
- AVT-Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| |
Collapse
|
10
|
Meier K, Klöckner W, Bonhage B, Antonov E, Regestein L, Büchs J. Correlation for the maximum oxygen transfer capacity in shake flasks for a wide range of operating conditions and for different culture media. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.01.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Sustainable Production of Omega-3 Eicosapentaenoic Acid by Fermentation of Metabolically Engineered Yarrowia lipolytica. GREEN CHEMISTRY AND SUSTAINABLE TECHNOLOGY 2016. [DOI: 10.1007/978-3-662-53704-6_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Glauche F, John GT, Arain S, Knepper A, Neubauer A, Goelling D, Lang C, Violet N, King R, Neubauer P. Toward Microbioreactor Arrays. ACTA ACUST UNITED AC 2015; 20:438-46. [DOI: 10.1177/2211068215573924] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Indexed: 11/16/2022]
|
13
|
Kreyenschulte D, Paciok E, Regestein L, Blümich B, Büchs J. Online monitoring of fermentation processes via non-invasive low-field NMR. Biotechnol Bioeng 2015; 112:1810-21. [DOI: 10.1002/bit.25599] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/03/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Dirk Kreyenschulte
- AVT - Biochemical Engineering; RWTH Aachen University; Worringer Weg 1 52074 Aachen Germany
| | - Eva Paciok
- Institute for Technical Chemistry and Macromolecular Chemistry; RWTH Aachen University; Aachen Germany
| | - Lars Regestein
- AVT - Biochemical Engineering; RWTH Aachen University; Worringer Weg 1 52074 Aachen Germany
| | - Bernhard Blümich
- Institute for Technical Chemistry and Macromolecular Chemistry; RWTH Aachen University; Aachen Germany
| | - Jochen Büchs
- AVT - Biochemical Engineering; RWTH Aachen University; Worringer Weg 1 52074 Aachen Germany
| |
Collapse
|
14
|
Xie D, Jackson EN, Zhu Q. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production. Appl Microbiol Biotechnol 2015; 99:1599-610. [PMID: 25567511 PMCID: PMC4322222 DOI: 10.1007/s00253-014-6318-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 11/28/2022]
Abstract
The omega-3 fatty acids, cis-5, 8, 11, 14, and 17-eicosapentaenoic acid (C20:5; EPA) and cis-4, 7, 10, 13, 16, and 19-docosahexaenoic acid (C22:6; DHA), have wide-ranging benefits in improving heart health, immune function, mental health, and infant cognitive development. Currently, the major source for EPA and DHA is from fish oil, and a minor source of DHA is from microalgae. With the increased demand for EPA and DHA, DuPont has developed a clean and sustainable source of the omega-3 fatty acid EPA through fermentation using metabolically engineered strains of Yarrowia lipolytica. In this mini-review, we will focus on DuPont’s technology for EPA production. Specifically, EPA biosynthetic and supporting pathways have been introduced into the oleaginous yeast to synthesize and accumulate EPA under fermentation conditions. This Yarrowia platform can also produce tailored omega-3 (EPA, DHA) and/or omega-6 (ARA, GLA) fatty acid mixtures in the cellular lipid profiles. Fundamental research such as metabolic engineering for strain construction, high-throughput screening for strain selection, fermentation process development, and process scale-up were all needed to achieve the high levels of EPA titer, rate, and yield required for commercial application. Here, we summarize how we have combined the fundamental bioscience and the industrial engineering skills to achieve large-scale production of Yarrowia biomass containing high amounts of EPA, which led to two commercial products, New Harvest™ EPA oil and Verlasso® salmon.
Collapse
Affiliation(s)
- Dongming Xie
- Biotechnology, Central Research and Development, E.I. du Pont de Nemours and Company, Wilmington, DE, USA
| | | | | |
Collapse
|
15
|
Mehmood N, Husson E, Jacquard C, Wewetzer S, Büchs J, Sarazin C, Gosselin I. Impact of two ionic liquids, 1-ethyl-3-methylimidazolium acetate and 1-ethyl-3-methylimidazolium methylphosphonate, on Saccharomyces cerevisiae: metabolic, physiologic, and morphological investigations. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:17. [PMID: 25688291 PMCID: PMC4329657 DOI: 10.1186/s13068-015-0206-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/16/2015] [Indexed: 05/15/2023]
Abstract
BACKGROUND Ionic liquids (ILs) are considered as suitable candidates for lignocellulosic biomass pretreatment prior enzymatic saccharification and, obviously, for second-generation bioethanol production. However, several reports showed toxic or inhibitory effects of residual ILs on microorganisms, plants, and animal cells which could affect a subsequent enzymatic saccharification and fermentation process. RESULTS In this context, the impact of two hydrophilic imidazolium-based ILs already used in lignocellulosic biomass pretreatment was investigated: 1-ethyl-3-methylimidazolium acetate [Emim][OAc] and 1-ethyl-3-methylimidazolium methylphosphonate [Emim][MeO(H)PO2]. Their effects were assessed on the model yeast for ethanolic fermentation, Saccharomyces cerevisiae, grown in a culture medium containing glucose as carbon source and various IL concentrations. Classical fermentation parameters were followed: growth, glucose consumption and ethanol production, and two original factors: the respiratory status with the oxygen transfer rate (OTR) and carbon dioxide transfer rate (CTR) of yeasts which were monitored online by respiratory activity monitoring systems (RAMOS). In addition, yeast morphology was characterized by environmental scanning electron microscope (ESEM). The addition of ILs to the growth medium inhibited the OTR and switched the metabolism from respiration (conversion of glucose into biomass) to fermentation (conversion of glucose to ethanol). This behavior could be observed at low IL concentrations (≤5% IL) while above there is no significant growth or ethanol production. The presence of IL in the growth medium also induced changes of yeast morphology, which exhibited wrinkled, softened, and holed shapes. Both ILs showed the same effects, but [Emim][MeO(H)PO2] was more biocompatible than [Emim][OAc] and could be better tolerated by S. cerevisiae. CONCLUSIONS These two imidazolium-derived ILs were appropriate candidates for useful pretreatment of lignocellulosic biomass in the context of second-generation bioethanol production. This fundamental study provides additional information about the toxic effects of ILs. Indeed, the investigations highlighted the better tolerance by S. cerevisiae of [Emim][MeO(H)PO2] than [Emim][OAc].
Collapse
Affiliation(s)
- Nasir Mehmood
- />Unité Génie Enzymatique et Cellulaire, FRE-CNRS 3580, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens Cedex, France
| | - Eric Husson
- />Unité Génie Enzymatique et Cellulaire, FRE-CNRS 3580, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens Cedex, France
| | - Cédric Jacquard
- />Unité de Recherche Vignes et Vins de Champagne—UPRES-EA 4707, Université de Reims Champagne-Ardenne, BP1039, 51687 Reims Cedex 2, France
| | - Sandra Wewetzer
- />AVT—Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Jochen Büchs
- />AVT—Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Catherine Sarazin
- />Unité Génie Enzymatique et Cellulaire, FRE-CNRS 3580, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens Cedex, France
| | - Isabelle Gosselin
- />Unité Génie Enzymatique et Cellulaire, FRE-CNRS 3580, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens Cedex, France
| |
Collapse
|
16
|
Stöckmann C, Palmen TG, Schroer K, Kunze G, Gellissen G, Büchs J. Definition of culture conditions for Arxula adeninivorans, a rational basis for studying heterologous gene expression in this dimorphic yeast. ACTA ACUST UNITED AC 2014; 41:965-76. [DOI: 10.1007/s10295-014-1433-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
Abstract
The yeast Arxula adeninivorans is considered to be a promising producer of recombinant proteins. However, growth characteristics are poorly investigated and no industrial process has been established yet. Though of vital interest for strain screening and production processes, rationally defined culture conditions remain to be developed. A cultivation system was evolved based on targeted sampling and mathematical analysis of rationally designed small-scale cultivations in shake flasks. The oxygen and carbon dioxide transfer rates were analyzed as conclusive online parameters. Oxygen limitation extended cultivation and led to ethanol formation in cultures supplied with glucose. Cultures were inhibited at pH-values below 2.8. The phosphorus demand was determined as 1.55 g phosphorus per 100 g cell dry weight. Synthetic SYN6 medium with 20 g glucose l−1 was optimized for cultivation in shake flasks by buffering at pH 6.4 with 140 mmol MES l−1. Optimized SYN6 medium and operating conditions provided non-limited cultivations without by-product formation. A maximal specific growth rate of 0.32 h−1 and short fermentations of 15 h were achieved. A pH optimum curve was derived from the oxygen transfer rates of differently buffered cultures, showing maximal growth between pH 2.8 and 6.5. Furthermore, it was shown that the applied medium and cultivation conditions were also suitable for non-limiting growth and product formation of a genetically modified A. adeninivorans strain expressing a heterologous phytase.
Collapse
Affiliation(s)
- Christoph Stöckmann
- grid.1957.a 000000010728696X AVT-Biochemical Engineering RWTH Aachen University Worringer Weg 1 52074 Aachen Germany
| | - Thomas G Palmen
- grid.1957.a 000000010728696X AVT-Biochemical Engineering RWTH Aachen University Worringer Weg 1 52074 Aachen Germany
| | - Kirsten Schroer
- grid.1957.a 000000010728696X AVT-Biochemical Engineering RWTH Aachen University Worringer Weg 1 52074 Aachen Germany
- grid.419481.1 0000000115159979 Novartis Institutes for Biomedical Research 4056 Basel Switzerland
| | - Gotthard Kunze
- grid.418934.3 0000000109439907 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Corrensstraße 3 06466 Gatersleben Germany
| | - Gerd Gellissen
- grid.1957.a 000000010728696X Microbiology and Genetics, Department of Biology IV RWTH Aachen University Worringer Weg 1 52074 Aachen Germany
| | - Jochen Büchs
- grid.1957.a 000000010728696X AVT-Biochemical Engineering RWTH Aachen University Worringer Weg 1 52074 Aachen Germany
| |
Collapse
|
17
|
Kawałek A, van der Klei IJ. At neutral pH the chronological lifespan of Hansenula polymorpha increases upon enhancing the carbon source concentrations. MICROBIAL CELL 2014; 1:189-202. [PMID: 28357243 PMCID: PMC5354561 DOI: 10.15698/mic2014.06.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dietary restriction is generally assumed to increase the lifespan in most
eukaryotes, including the simple model organism Saccharomyces
cerevisiae. However, recent data questioned whether this phenomenon
is indeed true for yeast. We studied the effect of reduction of the carbon
source concentration on the chronological lifespan of the yeast
Hansenula polymorpha using four different carbon sources.
Our data indicate that reduction of the carbon source concentration has a
negative (glucose, ethanol, methanol) or positive (glycerol) effect on the
chronological lifespan. We show that the actual effect of carbon source
concentrations largely depends on extracellular factor(s). We provide evidence
that H. polymorpha acidifies the medium and that a low pH of
the medium alone is sufficient to significantly decrease the chronological
lifespan. However, glucose-grown cells are less sensitive to low pH compared to
glycerol-grown cells, explaining why only the reduction of the
glycerol-concentration (which leads to less medium acidification) has a positive
effect on the chronological lifespan. Instead, the positive effect of enhancing
the glucose concentrations is much larger than the negative effect of the medium
acidification at these conditions, explaining the increased lifespan with
increasing glucose concentrations. Importantly, at neutral pH, the chronological
lifespan also decreases with a reduction in glycerol concentrations. We show
that for glycerol cultures this effect is related to acidification independent
changes in the composition of the spent medium. Altogether, our data indicate
that in H. polymorpha at neutral pH the chronological lifespan
invariably extends upon increasing the carbon source concentration.
Collapse
Affiliation(s)
- Adam Kawałek
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, Systems Biology Centre for Metabolism and Ageing, University of Groningen, the Netherlands
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, Systems Biology Centre for Metabolism and Ageing, University of Groningen, the Netherlands
| |
Collapse
|
18
|
Meier K, Carstensen F, Scheeren C, Regestein L, Wessling M, Büchs J. In situ product recovery of single-chain antibodies in a membrane bioreactor. Biotechnol Bioeng 2014; 111:1566-76. [DOI: 10.1002/bit.25220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kristina Meier
- RWTH Aachen; AVT-Biochemical Engineering; Worringer Weg 1 52074 Aachen Germany
| | | | - Christoph Scheeren
- RWTH Aachen; AVT-Biochemical Engineering; Worringer Weg 1 52074 Aachen Germany
| | - Lars Regestein
- RWTH Aachen; AVT-Biochemical Engineering; Worringer Weg 1 52074 Aachen Germany
| | - Matthias Wessling
- RWTH Aachen; AVT-Chemical Product & Process Engineering; Aachen Germany
| | - Jochen Büchs
- RWTH Aachen; AVT-Biochemical Engineering; Worringer Weg 1 52074 Aachen Germany
| |
Collapse
|
19
|
Wilming A, Bähr C, Kamerke C, Büchs J. Fed-batch operation in special microtiter plates: a new method for screening under production conditions. ACTA ACUST UNITED AC 2014; 41:513-25. [DOI: 10.1007/s10295-013-1396-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/22/2013] [Indexed: 10/25/2022]
Abstract
Abstract
Batch and fed-batch operation result in completely different physiological conditions for cultivated microorganisms or cells. To close the gap between screening, which is hitherto exclusively performed in batch mode, and fed-batch production processes, a special microtiter plate was developed that allows screening in fed-batch mode. The fed-batch microtiter plate (FB-MTP) enables 44 parallel fed-batch experiments at small scale. A small channel filled with a hydrogel connects a reservoir well with a culture well. The nutrient compound diffuses from the reservoir well through the hydrogel into the culture well. Hence, the feed rate can easily be adjusted to the needs of the cultured microorganisms by changing the geometry of the hydrogel channel and the driving concentration gradient. Any desired compound including liquid nutrients like glycerol can be fed to the culture. In combination with an optical measuring device (BioLector), online monitoring of these 44 fed-batch cultures is possible. Two Escherichia coli strains and a Hansenula polymorpha strain were successfully cultivated in the new FB-MTP. As a positive impact of the fed-batch mode on the used strains, a fourfold increase in product formation was observed for E. coli. For H. polymorpha, the use of fed-batch mode resulted in a strong increase in product formation, whereas no measurable product formation was observed in batch mode. In conclusion, the newly developed fed-batch microtiter plate is a versatile, easy-to-use, disposable system to perform fed-batch cultivations at small scale. Screening cultures in high-throughput under online monitoring are possible similar to cultivations under production conditions.
Collapse
Affiliation(s)
- Anja Wilming
- grid.1957.a 000000010728696X AVT-Biochemical Engineering RWTH Aachen University Sammelbau Biologie, Worringerweg 1 52074 Aachen Germany
| | - Cornelia Bähr
- grid.1957.a 000000010728696X AVT-Biochemical Engineering RWTH Aachen University Sammelbau Biologie, Worringerweg 1 52074 Aachen Germany
| | - Claudia Kamerke
- grid.1957.a 000000010728696X AVT-Biochemical Engineering RWTH Aachen University Sammelbau Biologie, Worringerweg 1 52074 Aachen Germany
| | - Jochen Büchs
- grid.1957.a 000000010728696X AVT-Biochemical Engineering RWTH Aachen University Sammelbau Biologie, Worringerweg 1 52074 Aachen Germany
| |
Collapse
|
20
|
Hansen S, Hariskos I, Luchterhand B, Büchs J. Development of a modified Respiration Activity Monitoring System for accurate and highly resolved measurement of respiration activity in shake flask fermentations. J Biol Eng 2012; 6:11. [PMID: 22901278 PMCID: PMC3490767 DOI: 10.1186/1754-1611-6-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/26/2012] [Indexed: 11/13/2022] Open
Abstract
Background The Respiration Activity Monitoring System (RAMOS) is an established device to measure on-line the oxygen transfer rate (OTR), thereby, yielding relevant information about metabolic activities of microorganisms and cells during shake flask fermentations. For very fast-growing microbes, however, the RAMOS technique provides too few data points for the OTR. Thus, this current study presents a new model based evaluation method for generating much more data points to enhance the information content and the precision of OTR measurements. Results In cultivations with E.coli BL21 pRSET eYFP-IL6, short diauxic and even triauxic metabolic activities were detected with much more detail compared to the conventional evaluation method. The decline of the OTR during the stop phases during oxygen limitations, which occur when the inlet and outlet valves of the RAMOS flask were closed for calibrating the oxygen sensor, were also detected. These declines reflected a reduced oxygen transfer due to the stop phases. In contrast to the conventional calculation method the new method was almost independent from the number of stop phases chosen in the experiments. Conclusions This new model based evaluation method unveils new peaks of metabolic activity which otherwise would not have been resolved by the conventional RAMOS evaluation method. The new method yields substantially more OTR data points, thereby, enhancing the information content and the precision of the OTR measurements. Furthermore, oxygen limitations can be detected by a decrease of the OTR during the stop phases.
Collapse
Affiliation(s)
- Sven Hansen
- AVT, Biochemical Engineering, RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany.
| | | | | | | |
Collapse
|
21
|
Klöckner W, Büchs J. Advances in shaking technologies. Trends Biotechnol 2012; 30:307-14. [PMID: 22520242 DOI: 10.1016/j.tibtech.2012.03.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/01/2012] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
Abstract
Shaking bioreactors are the most frequently used reactor system for screening and process optimization on a small scale. Their success can be attributed to their simple and functional design, which make shaking systems suitable for a large number of cost-efficient parallel experiments. Recently reported findings for oxygen transfer, power input, out-of-phase operation, hydromechanical stress and mixing in shaken bioreactors are summarized in this article. Novel monitoring techniques for the control of culture conditions in shake flasks and microtiter plates are described. The methods for characterizing culture conditions and the novel online measurement techniques that are summarized in this article can be utilized to tap the full potential of shaking reactor systems.
Collapse
Affiliation(s)
- Wolf Klöckner
- AVT Biochemical Engineering, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | | |
Collapse
|
22
|
Xie D. Using an advanced microfermentor system for strain screening and fermentation optimization. Methods Mol Biol 2012; 834:217-231. [PMID: 22144362 DOI: 10.1007/978-1-61779-483-4_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Industrial biotechnology employs microorganisms (strains) for manufacture of certain food or industrial products to meet the increasing need of the world. To develop a bioproduction process, the first step is to screen out a production strain from isolated, mutated, or genetically engineered strain candidates. To maximize the bioproduction of a selected strain, bioreaction (fermentation) conditions need to be optimized. Fermentation experiments in shake flasks, bench-scale fermentors, or a combination of both are the conventional methods for both strain screening and fermentation optimization. Shake-flask experiments are easy to handle and cost-effective compared to experiments in fermentors, but the lower controllability makes the shake-flask data less informative for fermentation scale-up. Bench-scale fermentor experiments (>0.5 L) are well controlled under designed conditions and provide high-quality data, but they are also very time- and cost-consuming. The novel microfermentor system (typically <100 mL), or mentioned as microbioreactor, mini-fermentor, mini-bioreactor, or miniature bioreactor, combines the advantages of both shake-flask's easy handling and bench-scale fermentor's controllability, thus can achieve comparable results from fermentors at much higher efficiency and lower cost. This chapter introduces an example of how to use a microfermentor system for strain screening and fermentation optimization.
Collapse
Affiliation(s)
- Dongming Xie
- DuPont Central Research and Development, Division of Biochemical Science and Engineering, Wilmington, DE, USA.
| |
Collapse
|
23
|
Madeira JV, Macedo JA, Macedo GA. A new process for simultaneous production of tannase and phytase by Paecilomyces variotii in solid-state fermentation of orange pomace. Bioprocess Biosyst Eng 2011; 35:477-82. [DOI: 10.1007/s00449-011-0587-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/19/2011] [Indexed: 11/25/2022]
|
24
|
Ries EF, Alves Macedo G. Improvement of Phytase Activity by a New Saccharomyces cerevisiae Strain Using Statistical Optimization. Enzyme Res 2011; 2011:796394. [PMID: 21837273 PMCID: PMC3152956 DOI: 10.4061/2011/796394] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/18/2011] [Accepted: 06/21/2011] [Indexed: 11/20/2022] Open
Abstract
Using statistical optimization, we enhanced the activity of phytase by a new Saccharomyces cerevisiae strain cultured in mineral medium. Concentrations of carbon source and inducer of phytase production were optimized using a 2(2) full factorial CCD and response surface methodology (RSM). Urea was fixed as nitrogen source in culture medium (0.15%, w/v). The culture medium consisting of 2.5% sucrose and 0.5% sodium phytate optimally supported the maximum phytase activity. In addition, we found that culture of the yeast at 35°C with shaking at 150 rpm supports maximum phytase production. The validity of this model was verified by culturing the organisms in flasks on a shaker. Using the optimized media and growth conditions, we obtained a 10-fold improvement in the production of phytase by S. cerevisiae.
Collapse
Affiliation(s)
| | - Gabriela Alves Macedo
- Food Science Department, Faculty of Food Engineering, Campinas State University (UNICAMP), Monteiro Lobato Street 70, 13083 970 Campinas, SP, Brazil
| |
Collapse
|
25
|
Madeira JV, Macedo JA, Macedo GA. Detoxification of castor bean residues and the simultaneous production of tannase and phytase by solid-state fermentation using Paecilomyces variotii. BIORESOURCE TECHNOLOGY 2011; 102:7343-8. [PMID: 21612916 DOI: 10.1016/j.biortech.2011.04.099] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/28/2011] [Accepted: 04/29/2011] [Indexed: 05/30/2023]
Abstract
In this work, we introduce a biological detoxification method that converts toxic waste from castor beans into animal feed material. This method simultaneously induces the production of tannase and phytase by Paecilomyces variotii; both enzymes have high levels of activity and have the potential to be used in feedstuffs because they decrease overall anti-nutritional factors. The maximum tannase and phytase activities obtained were 2600 and 260 U/g after 48 and 72 h, respectively. SDS-PAGE electrophoresis of the fermented castor cake extracts revealed a reduction in ricin bands during fermentation, and the bands were no longer visible after 48 h. The cytotoxicity of the extracts was evaluated by MTT testing on RAW cells, and a progressive increase in cellular viability was obtained, reaching almost 100% after 72 h of fermentation.
Collapse
Affiliation(s)
- Jose Valdo Madeira
- Food Science Department, Faculty of Food Engineering, Campinas State University, Campinas, SP, Brazil.
| | | | | |
Collapse
|
26
|
Scheidle M, Jeude M, Dittrich B, Denter S, Kensy F, Suckow M, Klee D, Büchs J. High-throughput screening of Hansenula polymorpha clones in the batch compared with the controlled-release fed-batch mode on a small scale. FEMS Yeast Res 2009; 10:83-92. [PMID: 19849718 DOI: 10.1111/j.1567-1364.2009.00586.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Most large-scale production processes in biotechnology are performed in fed-batch operational mode. In contrast, the screenings for microbial production strains are run in batch mode, which results in the microorganisms being subjected to different physiological conditions. This significantly affects strain selection. To demonstrate differences in ranking during strain selection depending on the operational mode, screenings were performed in batch and fed-batch modes. Two model populations of the methylotrophic yeast Hansenula polymorpha RB11 with vector pC10-FMD (P(FMD)-GFP) (220 clones) and vector pC10-MOX (P(MOX)-GFP) (224 clones) were applied. For fed-batch cultivations in deep-well microtiter plates, a controlled-release system made of silicone elastomer discs containing glucose was used. Three experimental set-ups were investigated: batch cultivation with (1) glucose as a substrate, which catabolite represses product formation, and (2) glycerol as a carbon source, which is partially repressing, respectively, and (3) fed-batch cultivation with glucose as a limiting substrate using the controlled-release system. These three experimental set-ups showed significant variations in green fluorescent protein (GFP) yield. Interestingly, screenings in fed-batch mode with glucose as a substrate resulted in the selection of yeast strains different from those cultivated in batch mode with glycerol or glucose. Ultimately, fed-batch screening is considerably better than screening in batch mode for fed-batch production processes with glucose as a carbon source.
Collapse
Affiliation(s)
- Marco Scheidle
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Sammelbau Biologie, Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Microlitre/millilitre shaken bioreactors in fermentative and biotransformation processes – a review. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420600667684] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Kensy F, Zang E, Faulhammer C, Tan RK, Büchs J. Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates. Microb Cell Fact 2009; 8:31. [PMID: 19497126 PMCID: PMC2700080 DOI: 10.1186/1475-2859-8-31] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 06/04/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An advanced version of a recently reported high-throughput fermentation system with online measurement, called BioLector, and its validation is presented. The technology combines high-throughput screening and high-information content by applying online monitoring of scattered light and fluorescence intensities in continuously shaken microtiter plates. Various examples in calibration of the optical measurements, clone and media screening and promoter characterization are given. RESULTS Bacterial and yeast biomass concentrations of up to 50 g/L cell dry weight could be linearly correlated to scattered light intensities. In media screening, the BioLector could clearly demonstrate its potential for detecting different biomass and product yields and deducing specific growth rates for quantitatively evaluating media and nutrients. Growth inhibition due to inappropriate buffer conditions could be detected by reduced growth rates and a temporary increase in NADH fluorescence. GFP served very well as reporter protein for investigating the promoter regulation under different carbon sources in yeast strains. A clone screening of 90 different GFP-expressing Hansenula polymorpha clones depicted the broad distribution of growth behavior and an even stronger distribution in GFP expression. The importance of mass transfer conditions could be demonstrated by varying filling volumes of an E. coli culture in 96 well MTP. The different filling volumes cause a deviation in the culture growth and acidification both monitored via scattered light intensities and the fluorescence of a pH indicator, respectively. CONCLUSION The BioLector technology is a very useful tool to perform quantitative microfermentations under engineered reaction conditions. With this technique, specific yields and rates can be directly deduced from online biomass and product concentrations, which is superior to existing technologies such as microplate readers or optode-based cultivation systems. In particular, applications with strong demand on high-throughput such as clone and media screening and systems biology can benefit from its simple handling, the high quantitative information content and its capacity of automation.
Collapse
Affiliation(s)
- Frank Kensy
- AVT, Biochemical Engineering, RWTH Aachen University, Sammelbau Biologie, Worringerweg 1, 52074 Aachen, Germany.
| | | | | | | | | |
Collapse
|
29
|
Stöckmann C, Scheidle M, Dittrich B, Merckelbach A, Hehmann G, Melmer G, Klee D, Büchs J, Kang HA, Gellissen G. Process development in Hansenula polymorpha and Arxula adeninivorans, a re-assessment. Microb Cell Fact 2009; 8:22. [PMID: 19368732 PMCID: PMC2676251 DOI: 10.1186/1475-2859-8-22] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/15/2009] [Indexed: 11/18/2022] Open
Abstract
A range of industrial H. polymorpha-based processes exist, most of them for the production of pharmaceuticals. The established industrial processes lean on the use of promoters derived from MOX and FMD, genes of the methanol metabolism pathway. In Hansenula polymorpha these promoters are de-repressed upon depletion of a range of carbon sources like glucose and glycerol instead of being induced by methanol as reported for other methylotrophs. Due to these characteristics screening and fermentation modes have been defined for strains harbouring such expression control elements that lean on a limited supplementation of glycerol or glucose to a culture medium. For fermentation of H. polymorpha a synthetic minimal medium (SYN6) has been developed. No industrial processes have been developed so far based on Arxula adeninivorans and only a limited range of strong promoter elements exists, suitable for heterologous gene expression. SYN6 originally designed for H. polymorpha provided a suitable basis for the initial definition of fermentation conditions for this dimorphic yeast. Characteristics like osmo- and thermotolerance can be addressed for the definition of culture conditions.
Collapse
|
30
|
Akgün A, Müller C, Engmann R, Büchs J. Application of an improved continuous parallel shaken bioreactor system for three microbial model systems. Bioprocess Biosyst Eng 2008; 31:193-205. [PMID: 18175155 DOI: 10.1007/s00449-007-0183-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 12/06/2007] [Indexed: 11/24/2022]
Abstract
A continuous parallel shaken bioreactor system, combining the advantages of shaken bioreactors with the advantages of continuous fermentation, was specifically manufactured from quartz glass and provides a geometric accuracy of <1 mm. Two different model systems (facultative anaerobic bacterium C. glutamicum, and Crabtree-negative yeast P. stipitis), whose growth behaviour and metabolite formation are affected by dilution rate and oxygen availability, were studied. The transition from non-oxygen to limited conditions as function of the dilution rate could precisely be predicted applying the approach described by Maier et al. (Biochem Eng J 17:155-167, 2004). In addition, the Crabtree-positive yeast S. cerevisiae was simultaneously studied in the continuous parallel shaken bioreactor system and in a conventional 1-L bioreactor, for comparison. Essentially the same results were obtained in both types of bioreactors. However, many more reading points were obtained with the parallel shaken bioreactor system in the same time at much lower consumption of culture media.
Collapse
Affiliation(s)
- Ali Akgün
- Biochemical Engineering, RWTH Aachen University, Sammelbau Biologie, Worringerweg 1, 52074 Aachen, Germany
| | | | | | | |
Collapse
|
31
|
Scheidle M, Klinger J, Büchs J. Combination of On-line pH and Oxygen Transfer Rate Measurement in Shake Flasks by Fiber Optical Technique and Respiration Activity MOnitoring System (RAMOS). SENSORS 2007; 7:3472-3480. [PMID: 28903306 PMCID: PMC3841907 DOI: 10.3390/s7123472] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 12/20/2007] [Indexed: 11/16/2022]
Abstract
Shake flasks are commonly used for process development in biotechnologyindustry. For this purpose a lot of information is required from the growth conditions duringthe fermentation experiments. Therefore, Anderlei et al. developed the RAMOS technology[1, 2], which proviedes on-line oxygen and carbondioxide transfer rates in shake flasks.Besides oxygen consumption, the pH in the medium also plays an important role for thesuccessful cultivation of micro-organisms and for process development. For online pHmeasurement fiber optical methods based on fluorophores are available. Here a combinationof the on-line Oxygen Transfer Rate (OTR) measurements in the RAMOS device with anon-line, fiber optical pH measurement is presented. To demonstrate the application of thecombined measurement techniques, Escherichia coli cultivations were performed and on-line pH measurements were compared with off-line samples. The combination of on-lineOTR and pH measurements gives a lot of information about the cultivation and, therefore, itis a powerful technique for monitoring shake flask experiments as well as for processdevelopment.
Collapse
Affiliation(s)
- Marco Scheidle
- Biochemical Engineering, RWTH Aachen University, Sammelbau Biologie, Worringerweg 1, D-52074 Aachen, Germany.
| | - Johannes Klinger
- Biochemical Engineering, RWTH Aachen University, Sammelbau Biologie, Worringerweg 1, D-52074 Aachen, Germany.
| | - Jochen Büchs
- Biochemical Engineering, RWTH Aachen University, Sammelbau Biologie, Worringerweg 1, D-52074 Aachen, Germany.
| |
Collapse
|
32
|
|
33
|
Knoll A, Bartsch S, Husemann B, Engel P, Schroer K, Ribeiro B, Stöckmann C, Seletzky J, Büchs J. High cell density cultivation of recombinant yeasts and bacteria under non-pressurized and pressurized conditions in stirred tank bioreactors. J Biotechnol 2007; 132:167-79. [PMID: 17681630 DOI: 10.1016/j.jbiotec.2007.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 05/27/2007] [Accepted: 06/14/2007] [Indexed: 11/21/2022]
Abstract
This study demonstrates the applicability of pressurized stirred tank bioreactors for oxygen transfer enhancement in aerobic cultivation processes. The specific power input and the reactor pressure was employed as process variable. As model organism Escherichia coli, Arxula adeninivorans, Saccharomyces cerevisiae and Corynebacterium glutamicum were cultivated to high cell densities. By applying specific power inputs of approx. 48kWm(-3) the oxygen transfer rate of a E. coli culture in the non-pressurized stirred tank bioreactor was lifted up to values of 0.51moll(-1)h(-1). When a reactor pressure up to 10bar was applied, the oxygen transfer rate of a pressurized stirred tank bioreactor was lifted up to values of 0.89moll(-1)h(-1). The non-pressurized stirred tank bioreactor was able to support non-oxygen limited growth of cell densities of more than 40gl(-1) cell dry weight (CDW) of E. coli, whereas the pressurized stirred tank bioreactor was able to support non-oxygen limited growth of cell densities up to 225gl(-1) CDW of A. adeninivorans, 89gl(-1) CDW of S. cerevisiae, 226gl(-1) CDW of C. glutamicum and 110gl(-1) CDW of E. coli. Compared to literature data, some of these cell densities are the highest values ever achieved in high cell density cultivation of microorganisms in stirred tank bioreactors. By comparing the specific power inputs as well as the k(L)a values of both systems, it is demonstrated that only the pressure is a scaleable tool for oxygen transfer enhancement in industrial stirred tank bioreactors. Furthermore, it was shown that increased carbon dioxide partial pressures did not remarkably inhibit the growth of the investigated model organisms.
Collapse
Affiliation(s)
- Arnd Knoll
- Biochemical Engineering, RWTH Aachen University, 52056 Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Seletzky JM, Noack U, Hahn S, Knoll A, Amoabediny G, Büchs J. An experimental comparison of respiration measuring techniques in fermenters and shake flasks: exhaust gas analyzer vs. RAMOS device vs. respirometer. J Ind Microbiol Biotechnol 2006; 34:123-30. [PMID: 17001475 DOI: 10.1007/s10295-006-0176-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 08/29/2006] [Indexed: 12/11/2022]
Abstract
Respiration measurement is applied as a universal tool to determine the activity of biological systems. The measurement techniques are difficult to compare, due to the vast variety of devices and analytical procedures commonly in use. They are used in fields as different as microbiology, gene engineering, toxicology, and industrial process monitoring to observe the physiological activity of living systems in environments as diverse as fermenters, shake flasks, lakes and sewage plants. A method is introduced to determine accuracy, quantitation limit, range and precision of different respiration measurement devices. Corynebacterium glutamicum cultures were used to compare an exhaust gas analyzer (EGA), a RAMOS device (respiration measurement in shake flasks) and a respirometer. With all measuring devices it was possible to determine the general culture characteristics. The EGA and the RAMOS device produced almost identical results. The scatter of the respirometer was noticeably higher. The EGA is the technique of choice, if the reaction volume is high or a short reaction time is required. The possibility to monitor cultures simultaneously makes the RAMOS device an indispensable tool for media and strain development. If online monitoring is not compulsive, the respiration of the investigated microbial system extremely low, or the sample size small, a respirometer is recommended.
Collapse
Affiliation(s)
- Juri M Seletzky
- Biochemical Engineering, RWTH Aachen University, Sammelbau Biologie, Worringerweg 1, 52056, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Jeude M, Dittrich B, Niederschulte H, Anderlei T, Knocke C, Klee D, Büchs J. Fed-batch mode in shake flasks by slow-release technique. Biotechnol Bioeng 2006; 95:433-45. [PMID: 16736531 DOI: 10.1002/bit.21012] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Most industrial production processes are performed in fed-batch operational mode. In contrast, the screenings for microbial production strains are run in batch mode which results in completely different physiological conditions than relevant for production conditions. This may lead to wrong selections of strains. Silicone elastomer discs containing glucose crystals were developed to realize fed-batch fermentation in shake flasks. No other device for feeding was required. Glucose was fed in this way to Hansenula polymorpha cultures controlled by diffusion. Two strains of H. polymorpha were investigated in shake flasks: the wild-type strain (DSM 70277) and a recombinant strain pC10-FMD (P(FMD)-GFP). The oxygen transfer rate (OTR) and respiratory quotient (RQ) of the cultures were monitored online in shake flasks with a Respiration Activity Monitoring System (RAMOS). Formation of biomass and green fluorescent protein (GFP), pH-drift and the metabolite dynamics of glucose, ethanol and acetic acid were measured offline. With the slow-release technique overflow metabolism could be reduced leading to an increase of 85% in biomass yield. To date, 23.4 g/L cell dry weight of H. polymorpha could be achieved in shake flask. Biomass yields of 0.38-0.47 were obtained which are in the same magnitude of laboratory scale fermentors equipped with a substrate feed pump. GFP yield could be increased by a factor of 35 in Syn6-MES mineral medium. In fed-batch mode 88 mg/L GFP was synthesized with 35.9 g/L fed glucose. In contrast, only 2.5 mg/L with 40 g/L metabolized glucose was revealed in batch mode. In YNB mineral medium over 420-fold improvement in fed-batch mode was achieved with 421 mg/L GFP at 41.3 g/L fed glucose in comparison to less than 1 mg/L in batch mode with 40 g/L glucose.
Collapse
Affiliation(s)
- M Jeude
- Biochemical Engineering, RWTH Aachen University, Sammelbau Biologie, Worringer Weg 1, D-52074 Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): an overview. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2004.03.010] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|