1
|
Croft J, Grajeda B, Aguirre LA, Abou-Fadel JS, Ellis CC, Estevao I, Almeida IC, Zhang J. Circulating Blood Prognostic Biomarker Signatures for Hemorrhagic Cerebral Cavernous Malformations (CCMs). Int J Mol Sci 2024; 25:4740. [PMID: 38731959 PMCID: PMC11084792 DOI: 10.3390/ijms25094740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cerebral cavernous malformations (CCMs) are a neurological disorder characterized by enlarged intracranial capillaries in the brain, increasing the susceptibility to hemorrhagic strokes, a major cause of death and disability worldwide. The limited treatment options for CCMs underscore the importance of prognostic biomarkers to predict the likelihood of hemorrhagic events, aiding in treatment decisions and identifying potential pharmacological targets. This study aimed to identify blood biomarkers capable of diagnosing and predicting the risk of hemorrhage in CCM1 patients, establishing an initial set of circulating biomarker signatures. By analyzing proteomic profiles from both human and mouse CCM models and conducting pathway enrichment analyses, we compared groups to identify potential blood biomarkers with statistical significance. Specific candidate biomarkers primarily associated with metabolism and blood clotting pathways were identified. These biomarkers show promise as prognostic indicators for CCM1 deficiency and the risk of hemorrhagic stroke, strongly correlating with the likelihood of hemorrhagic cerebral cavernous malformations (CCMs). This lays the groundwork for further investigation into blood biomarkers to assess the risk of hemorrhagic CCMs.
Collapse
Affiliation(s)
- Jacob Croft
- Department of Molecular and Translational Medicine, Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA (J.S.A.-F.)
| | - Brian Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Luis A. Aguirre
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Johnathan S. Abou-Fadel
- Department of Molecular and Translational Medicine, Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA (J.S.A.-F.)
| | - Cameron C. Ellis
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Igor Estevao
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Igor C. Almeida
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Jun Zhang
- Department of Molecular and Translational Medicine, Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA (J.S.A.-F.)
| |
Collapse
|
2
|
Ballonová L, Kulíšková P, Slanina P, Štíchová J, Vlková M, Hakl R, Litzman J, Souček P, Freiberger T. PLAUR splicing pattern in hereditary angioedema patients' monocytes and macrophages. Mol Biol Rep 2023; 50:4975-4982. [PMID: 37086298 DOI: 10.1007/s11033-023-08391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/17/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND The PLAUR gene encodes the urokinase-like plasminogen activator receptor (uPAR) and may undergo alternative splicing. Excluding cassette exons 3, 5 and 6 from the transcript results in truncated protein variants whose precise functions have not been elucidated yet. The PLAUR gene is one of several expressed in myeloid cells, where uPAR participates in different cellular processes, including the contact activation system and kallikrein-kinin system, which play an important role in hereditary angioedema (HAE) pathogenesis. A hypothesis about the PLAUR splicing pattern impact on HAE severity was tested. METHODS AND RESULTS The RT-PCR quantified by capillary electrophoresis was used. Although no significant difference in alternative transcript frequency was observed between healthy volunteers and HAE patients, a significant increase in all cassette exon inclusion variants was revealed during monocyte-to-macrophage differentiation. CONCLUSIONS PLAUR alternative splicing in monocytes and macrophages neither was different between HAE patients and healthy controls, nor reflected disease severity. However, the results showed an PLAUR splicing pattern was changing during monocyte-to-macrophage differentiation, but the significance of these changes is unknown and awaits future clarification.
Collapse
Affiliation(s)
- Lucie Ballonová
- Centre of Cardiovascular Surgery and Transplantation, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Kulíšková
- Centre of Cardiovascular Surgery and Transplantation, Brno, Czech Republic
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Peter Slanina
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Julie Štíchová
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcela Vlková
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Roman Hakl
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiří Litzman
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Přemysl Souček
- Centre of Cardiovascular Surgery and Transplantation, Brno, Czech Republic.
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Tomáš Freiberger
- Centre of Cardiovascular Surgery and Transplantation, Brno, Czech Republic
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
3
|
Wu MA, Bova M, Berra S, Senter R, Parolin D, Caccia S, Cicardi M. The central role of endothelium in hereditary angioedema due to C1 inhibitor deficiency. Int Immunopharmacol 2020; 82:106304. [PMID: 32114411 DOI: 10.1016/j.intimp.2020.106304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/10/2020] [Indexed: 12/31/2022]
Abstract
An impairment of the endothelial barrier function underlies a wide spectrum of pathological conditions. Hereditary angioedema due to C1-inhibitor deficiency (C1-INH-HAE) can be considered the "pathophysiological and clinical paradigm" of Paroxysmal Permeability Diseases (PPDs), conditions characterized by recurrent transient primitively functional alteration of the endothelial sieving properties, not due to inflammatory-ischemic-degenerative injury and completely reversible after the acute flare. It is a rare yet probably still underdiagnosed disease which presents with localized, non-pitting swelling of the skin and submucosal tissues of the upper respiratory and gastrointestinal tracts, without significant wheals or pruritus. The present review addresses the pathophysiology of C1-INH-HAE with a focus on the crucial role of the endothelium during contact and kallikrein/kinin system (CAS and KKS) activation, currently available and emerging biomarkers, methods applied to get new insights into the mechanisms underlying the disease (2D, 3D and in vivo systems), new promising investigation techniques (autonomic nervous system analysis, capillaroscopy, flow-mediated dilation method, non-invasive finger plethysmography). Hints are given to the binding of C1-INH to endothelial cells. Finally, crucial issues as the local vs systemic nature of CAS/KKS activation, the episodic nature of attacks vs constant C1-INH deficiency, pros and cons as well as future perspectives of available methodologies are briefly discussed.
Collapse
Affiliation(s)
- Maddalena Alessandra Wu
- Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy.
| | - Maria Bova
- Department of Translational Medical Sciences and Interdepartmental Center for Research in Basic and Clinical Immunology Sciences, University of Naples Federico II, Naples, Italy
| | - Silvia Berra
- Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy
| | | | - Debora Parolin
- Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy
| | - Sonia Caccia
- Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy
| | - Marco Cicardi
- Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy; IRCCS-ICS Maugeri, Milan, Italy
| |
Collapse
|
4
|
Subverting bradykinin-evoked inflammation by co-opting the contact system: lessons from survival strategies of Trypanosoma cruzi. Curr Opin Hematol 2019; 25:347-357. [PMID: 30028741 DOI: 10.1097/moh.0000000000000444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW During Chagas disease, Trypanosoma cruzi alternates between intracellular and extracellular developmental forms. After presenting an overview about the roles of the contact system in immunity, I will review experimental studies showing that activation of the kallikrein-kinin system (KKS) translates into mutual benefits to the host/parasite relationship. RECENT FINDINGS T. cruzi trypomastigotes initiate inflammation by activating tissue-resident innate sentinel cells via the TLR2/CXCR2 pathway. Following neutrophil-evoked microvascular leakage, the parasite's major cysteine protease (cruzipain) cleaves plasma-borne kininogens and complement C5. Tightly regulated by angiotensin-converting enzyme (ACE), kinins and C5a in turn further propagate inflammation via iterative cycles of mast cell degranulation, contact system activation, bradykinin release and activation of endothelial bradykinin B2 receptors (B2R). Recently, studies in the intracardiac model of infection revealed a dichotomic role for bradykinin and endothelin-1: generated upon contact activation (mast cell/KKS pathway), these pro-oedematogenic peptides reciprocally stimulate trypomastigote invasion of heart cells that naturally overexpress B2R and endothelin receptors (ETaR/ETbR). SUMMARY Studies focusing on the immunopathogenesis of Chagas disease revealed that the contact system plays a dual role in host/parasite balance: T. cruzi co-opts bradykinin-induced plasma leakage as a strategy to increment heart parasitism and increase immune resistance by upregulating type-1 effector T-cell production in secondary lymphoid tissues.
Collapse
|
5
|
Berger M, de Moraes JA, Beys-da-Silva WO, Santi L, Terraciano PB, Driemeier D, Cirne-Lima EO, Passos EP, Vieira MAR, Barja-Fidalgo TC, Guimarães JA. Renal and vascular effects of kallikrein inhibition in a model of Lonomia obliqua venom-induced acute kidney injury. PLoS Negl Trop Dis 2019; 13:e0007197. [PMID: 30763408 PMCID: PMC6392336 DOI: 10.1371/journal.pntd.0007197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 02/27/2019] [Accepted: 10/30/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Lonomia obliqua venom is nephrotoxic and acute kidney injury (AKI) is the main cause of death among envenomed victims. Mechanism underlying L. obliqua-induced AKI involves renal hypoperfusion, inflammation, tubular necrosis and loss of glomerular filtration and tubular reabsorption capacities. In the present study, we aimed to investigate the contribution of kallikrein to the hemodynamic instability, inflammation and consequent renal and vascular impairment. METHODOLOGY/PRINCIPAL FINDINGS Addition of L. obliqua venom to purified prekallikrein and human plasma in vitro or to vascular smooth muscle cells (VSMC) in culture, was able to generate kallikrein in a dose-dependent manner. Injected in rats, the venom induced AKI and increased kallikrein levels in plasma and kidney. Kallikrein inhibition by aprotinin prevented glomerular injury and the decrease in glomerular filtration rate, restoring fluid and electrolyte homeostasis. The mechanism underlying these effects was associated to lowering renal inflammation, with decrease in pro-inflammatory cytokines and matrix metalloproteinase expression, reduced tubular degeneration, and protection against oxidative stress. Supporting the key role of kallikrein, we demonstrated that aprotinin inhibited effects directly associated with vascular injury, such as the generation of intracellular reactive oxygen species (ROS) and migration of VSMC induced by L. obliqua venom or by diluted plasma obtained from envenomed rats. In addition, kallikrein inhibition also ameliorated venom-induced blood incoagulability and decreased kidney tissue factor expression. CONCLUSIONS/SIGNIFICANCE These data indicated that kallikrein and consequently kinin release have a key role in kidney injury and vascular remodeling. Thus, blocking kallikrein may be a therapeutic alternative to control the progression of venom-induced AKI and vascular disturbances.
Collapse
Affiliation(s)
- Markus Berger
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- * E-mail:
| | - João Alfredo de Moraes
- Laboratório de Biologia REDOX, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Cellular and Molecular Pharmacology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Walter Orlando Beys-da-Silva
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Lucélia Santi
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Paula Barros Terraciano
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - David Driemeier
- Departamento de Patologia Clínica Veterinária, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Elizabeth Obino Cirne-Lima
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Eduardo Pandolfi Passos
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Maria Aparecida Ribeiro Vieira
- Laboratório de Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Thereza Christina Barja-Fidalgo
- Laboratory of Cellular and Molecular Pharmacology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Jorge Almeida Guimarães
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular de Molecular (PPGBCM), Centro de Biotecnologia (Cbiot-UFRGS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Lei C, Zhu H, Li J, Feng X, Chen J. Preparation and hemostatic property of low molecular weight silk fibroin. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:403-18. [DOI: 10.1080/09205063.2015.1136918] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Wagner L, Wolf R, Zeitschel U, Rossner S, Petersén Å, Leavitt BR, Kästner F, Rothermundt M, Gärtner UT, Gündel D, Schlenzig D, Frerker N, Schade J, Manhart S, Rahfeld JU, Demuth HU, von Hörsten S. Proteolytic degradation of neuropeptide Y (NPY) from head to toe: Identification of novel NPY-cleaving peptidases and potential drug interactions in CNS and Periphery. J Neurochem 2015; 135:1019-37. [PMID: 26442809 DOI: 10.1111/jnc.13378] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 01/24/2023]
Abstract
The bioactivity of neuropeptide Y (NPY) is either N-terminally modulated with respect to receptor selectivity by dipeptidyl peptidase 4 (DP4)-like enzymes or proteolytic degraded by neprilysin or meprins, thereby abrogating signal transduction. However, neither the subcellular nor the compartmental differentiation of these regulatory mechanisms is fully understood. Using mass spectrometry, selective inhibitors and histochemistry, studies across various cell types, body fluids, and tissues revealed that most frequently DP4-like enzymes, aminopeptidases P, secreted meprin-A (Mep-A), and cathepsin D (CTSD) rapidly hydrolyze NPY, depending on the cell type and tissue under study. Novel degradation of NPY by cathepsins B, D, L, G, S, and tissue kallikrein could also be identified. The expression of DP4, CTSD, and Mep-A at the median eminence indicates that the bioactivity of NPY is regulated by peptidases at the interphase between the periphery and the CNS. Detailed ex vivo studies on human sera and CSF samples recognized CTSD as the major NPY-cleaving enzyme in the CSF, whereas an additional C-terminal truncation by angiotensin-converting enzyme could be detected in serum. The latter finding hints to potential drug interaction between antidiabetic DP4 inhibitors and anti-hypertensive angiotensin-converting enzyme inhibitors, while it ablates suspected hypertensive side effects of only antidiabetic DP4-inhibitors application. The bioactivity of neuropeptide Y (NPY) is either N-terminally modulated with respect to receptor selectivity by dipeptidyl peptidase 4 (DP4)-like enzymes or proteolytic degraded by neprilysin or meprins, thereby abrogating signal transduction. However, neither the subcellular nor the compartmental differentiation of these regulatory mechanisms is fully understood. Using mass spectrometry, selective inhibitors and histochemistry, studies across various cell types, body fluids, and tissues revealed that most frequently DP4-like enzymes, aminopeptidases P, secreted meprin-A (Mep-A), and cathepsin D (CTSD) rapidly hydrolyze NPY, depending on the cell type and tissue under study. Novel degradation of NPY by cathepsins B, D, L, G, S, and tissue kallikrein could also be identified. The expression of DP4, CTSD, and Mep-A at the median eminence indicates that the bioactivity of NPY is regulated by peptidases at the interphase between the periphery and the CNS. Detailed ex vivo studies on human sera and CSF samples recognized CTSD as the major NPY-cleaving enzyme in the CSF, whereas an additional C-terminal truncation by angiotensin-converting enzyme could be detected in serum. The latter finding hints to potential drug interaction between antidiabetic DP4 inhibitors and anti-hypertensive angiotensin-converting enzyme inhibitors, while it ablates suspected hypertensive side effects of only antidiabetic DP4-inhibitors application.
Collapse
Affiliation(s)
- Leona Wagner
- Deutschsprachige Selbsthilfegruppe für Alkaptonurie (DSAKU) e.V., Stuttgart, Germany.,Probiodrug AG, Halle, Germany.,Department of Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Ulrike Zeitschel
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Steffen Rossner
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Lund University, Lund, Sweden
| | - Blair R Leavitt
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia and Children's and Women's Hospital, Vancouver, BC, Canada
| | - Florian Kästner
- Department of Psychiatry, University of Muenster, Muenster, Germany
| | - Matthias Rothermundt
- Department of Psychiatry, University of Muenster, Muenster, Germany.,St. Rochus-Hospital Telgte, Telgte, Germany
| | | | - Daniel Gündel
- Julius Bernstein Institute for Physiology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Dagmar Schlenzig
- Fraunhofer-Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany
| | - Nadine Frerker
- Department of Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jutta Schade
- Department of Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Jens-Ulrich Rahfeld
- Fraunhofer-Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer-Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
8
|
Labberton L, Kenne E, Renné T. New agents for thromboprotection. A role for factor XII and XIIa inhibition. Hamostaseologie 2015; 35:338-50. [PMID: 25609114 DOI: 10.5482/hamo-14-11-0060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/13/2015] [Indexed: 11/05/2022] Open
Abstract
Blood coagulation is essential for hemostasis, however excessive coagulation can lead to thrombosis. Factor XII starts the intrinsic coagulation pathway and contact-induced factor XII activation provides the mechanistic basis for the diagnostic aPTT clotting assay. Despite its function for fibrin formation in test tubes, patients and animals lacking factor XII have a completely normal hemostasis. The lack of a bleeding tendency observed in factor XII deficiency states is in sharp contrast to deficiencies of other components of the coagulation cascade and factor XII has been considered to have no function for coagulation in vivo. Recently, experimental animal models showed that factor XII is activated by an inorganic polymer, polyphosphate, which is released from procoagulant platelets and that polyphosphate-driven factor XII activation has an essential role in pathologic thrombus formation. Cumulatively, the data suggest to target polyphosphate, factor XII, or its activated form factor XIIa for anticoagulation. As the factor XII pathway specifically contributes to thrombosis but not to hemostasis, interference with this pathway provides a unique opportunity for safe anticoagulation that is not associated with excess bleeding. The review summarizes current knowledge on factor XII functions, activators and inhibitors.
Collapse
Affiliation(s)
| | | | - T Renné
- Thomas Renné, M.D. Ph.D., Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna (L2:05), 171 76 Stockholm, Sweden, Tel. +46/8/51 77 33 90, +49/(0)40/741 05 89 84, Fax +46/31 03 76, +49/(0)40/741 05 75 76, E-mail:
| |
Collapse
|
9
|
Brito MV, de Oliveira C, Salu BR, Andrade SA, Malloy PMD, Sato AC, Vicente CP, Sampaio MU, Maffei FHA, Oliva MLV. The Kallikrein Inhibitor from Bauhinia bauhinioides (BbKI) shows antithrombotic properties in venous and arterial thrombosis models. Thromb Res 2014; 133:945-51. [PMID: 24642009 DOI: 10.1016/j.thromres.2014.02.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/31/2014] [Accepted: 02/25/2014] [Indexed: 11/17/2022]
Abstract
The Bauhinia bauhinioides Kallikrein Inhibitor (BbKI) is a Kunitz-type serine peptidase inhibitor of plant origin that has been shown to impair the viability of some tumor cells and to feature a potent inhibitory activity against human and rat plasma kallikrein (Kiapp 2.4 nmol/L and 5.2 nmol/L, respectively). This inhibitory activity is possibly responsible for an effect on hemostasis by prolonging activated partial thromboplastin time (aPTT). Because the association between cancer and thrombosis is well established, we evaluated the possible antithrombotic activity of this protein in venous and arterial thrombosis models. Vein thrombosis was studied in the vena cava ligature model in Wistar rats, and arterial thrombosis in the photochemical induced endothelium lesion model in the carotid artery of C57 black 6 mice. BbKI at a concentration of 2.0 mg/kg reduced the venous thrombus weight by 65% in treated rats in comparison to rats in the control group. The inhibitor prolonged the time for total artery occlusion in the carotid artery model mice indicating that this potent plasma kallikrein inhibitor prevented thrombosis.
Collapse
Affiliation(s)
- Marlon V Brito
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua três de Maio, 100, 04044-020 São Paulo, Brazil
| | - Cleide de Oliveira
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua três de Maio, 100, 04044-020 São Paulo, Brazil
| | - Bruno R Salu
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua três de Maio, 100, 04044-020 São Paulo, Brazil
| | - Sonia A Andrade
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, Av Vital Brazil, 1500, 05503-900 São Paulo, Brazil
| | - Paula M D Malloy
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua três de Maio, 100, 04044-020 São Paulo, Brazil
| | - Ana C Sato
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua três de Maio, 100, 04044-020 São Paulo, Brazil
| | - Cristina P Vicente
- Universidade Estadual de Campinas, Instituto de Biologia, Rua Charles Darwin, s/n, 13083-863 Campinas, Brazil
| | - Misako U Sampaio
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua três de Maio, 100, 04044-020 São Paulo, Brazil
| | - Francisco H A Maffei
- Departamento de Cirurgia e Ortopedia, Faculdade de Medicina de Botucatu, UNESP, 18618-970, Botucatu, Brazil.
| | - Maria Luiza V Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua três de Maio, 100, 04044-020 São Paulo, Brazil.
| |
Collapse
|
10
|
Abstract
The plasma zymogens factor XII (fXII) and factor XI (fXI) contribute to thrombosis in a variety of mouse models. These proteins serve a limited role in hemostasis, suggesting that antithrombotic therapies targeting them may be associated with low bleeding risks. Although there is substantial epidemiologic evidence supporting a role for fXI in human thrombosis, the situation is not as clear for fXII. We generated monoclonal antibodies (9A2 and 15H8) against the human fXII heavy chain that interfere with fXII conversion to the protease factor XIIa (fXIIa). The anti-fXII antibodies were tested in models in which anti-fXI antibodies are known to have antithrombotic effects. Both anti-fXII antibodies reduced fibrin formation in human blood perfused through collagen-coated tubes. fXII-deficient mice are resistant to ferric chloride-induced arterial thrombosis, and this resistance can be reversed by infusion of human fXII. 9A2 partially blocks, and 15H8 completely blocks, the prothrombotic effect of fXII in this model. 15H8 prolonged the activated partial thromboplastin time of baboon and human plasmas. 15H8 reduced fibrin formation in collagen-coated vascular grafts inserted into arteriovenous shunts in baboons, and reduced fibrin and platelet accumulation downstream of the graft. These findings support a role for fXII in thrombus formation in primates.
Collapse
|
11
|
Abstract
Patients affected by angioedema (AE) are subject to asymmetric, nonerythematous, nonpruritic, localized, transient, episodic swelling of deeper layers or submucosal tissues of the skin, oropharyngolaryngeal tissue, and/or gastrointestinal wall. The nonapeptide bradykinin (BK) may be largely responsible for the vascular permeability seen in most AE. During AE attacks, activation of the serine proteases leads to the release of BK. Enzymes expressed on the endothelial cell membrane can metabolize BK, producing the agonist of the B1R, which can then be upregulated by proinflammatory stimuli, suggesting that the blockade of B1R and B2R, or gC1q/p33, may provide novel therapeutic targets.
Collapse
|
12
|
MAKIN JOSEPHG, NARAYANAN SRINI. A HYBRID-SYSTEM MODEL OF THE COAGULATION CASCADE: SIMULATION, SENSITIVITY, AND VALIDATION. J Bioinform Comput Biol 2013; 11:1342004. [DOI: 10.1142/s0219720013420043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The process of human blood clotting involves a complex interaction of continuous-time/continuous-state processes and discrete-event/discrete-state phenomena, where the former comprise the various chemical rate equations and the latter comprise both threshold-limited behaviors and binary states (presence/absence of a chemical). Whereas previous blood-clotting models used only continuous dynamics and perforce addressed only portions of the coagulation cascade, we capture both continuous and discrete aspects by modeling it as a hybrid dynamical system. The model was implemented as a hybrid Petri net, a graphical modeling language that extends ordinary Petri nets to cover continuous quantities and continuous-time flows. The primary focus is simulation: (1) fidelity to the clinical data in terms of clotting-factor concentrations and elapsed time; (2) reproduction of known clotting pathologies; and (3) fine-grained predictions which may be used to refine clinical understanding of blood clotting. Next we examine sensitivity to rate-constant perturbation. Finally, we propose a method for titrating between reliance on the model and on prior clinical knowledge. For simplicity, we confine these last two analyses to a critical purely-continuous subsystem of the model.
Collapse
Affiliation(s)
- JOSEPH G. MAKIN
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, USA
- International Computer Science Institute, Berkeley, CA 94720, USA
| | - SRINI NARAYANAN
- International Computer Science Institute, Division of Cognitive Science and Institute of Cognitive and Brain Sciences, University of California, 1947 Center Street, Suite 600, Berkeley, CA 94704, USA
| |
Collapse
|
13
|
Endothelial cell permeability during hantavirus infection involves factor XII-dependent increased activation of the kallikrein-kinin system. PLoS Pathog 2013; 9:e1003470. [PMID: 23874198 PMCID: PMC3715459 DOI: 10.1371/journal.ppat.1003470] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/16/2013] [Indexed: 11/19/2022] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC) display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE)-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF). To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC) to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS). We show that incubation of factor XII (FXII), prekallikrein (PK), and high molecular weight kininogen (HK) plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL) and increased liberation of bradykinin (BK). Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS), we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation during hantavirus infection and could have profound implications for treatment of hantavirus infections. Primary manifestations of disease due to hantavirus infections include systemic vascular leakage and hypotension for which the underlying mechanism is not known. A particularly perplexing finding is that the vascular endothelium remains intact during hantavirus infection and with no apparent cytopathic effects to explain leakage and edema. Our studies show for the first time that hantavirus-infected EC have increased KKS activation resulting in liberation of the inflammatory peptide, BK. BK is a potent inducer of vascular permeability, edema formation, and hypotension; thus, our results provide a novel mechanism for hantavirus-induced vascular abnormalities. Additionally, we describe the use of an in vitro capillary blood vessel model to examine responses occurring locally in blood vessels during infection. This model could be used in future studies by others for assessing further aspects of hantavirus pathogenesis or that of other vascular tropic viruses.
Collapse
|
14
|
Kashuba E, Bailey J, Allsup D, Cawkwell L. The kinin-kallikrein system: physiological roles, pathophysiology and its relationship to cancer biomarkers. Biomarkers 2013; 18:279-96. [PMID: 23672534 DOI: 10.3109/1354750x.2013.787544] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The kinin-kallikrein system (KKS) is an endogenous multiprotein cascade, the activation of which leads to triggering of the intrinsic coagulation pathway and enzymatic hydrolysis of kininogens with the consequent release of bradykinin-related peptides. This system plays a crucial role in inflammation, vasodilation, smooth muscle contraction, cardioprotection, vascular permeability, blood pressure control, coagulation and pain. In this review, we will outline the physiology and pathophysiology of the KKS and also highlight the association of this system with carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- Elena Kashuba
- Postgraduate Medical Institute, University of Hull, Hull, UK
| | | | | | | |
Collapse
|
15
|
Verweij N, Mahmud H, Leach IM, de Boer RA, Brouwers FP, Yu H, Asselbergs FW, Struck J, Bakker SJ, Gansevoort RT, Munroe PB, Hillege HL, van Veldhuisen DJ, van Gilst WH, Silljé HH, van der Harst P. Genome-Wide Association Study on Plasma Levels of Midregional-Proadrenomedullin and C-Terminal-Pro-Endothelin-1. Hypertension 2013; 61:602-8. [DOI: 10.1161/hypertensionaha.111.203117] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Niek Verweij
- From the Department of Cardiology (N.V., H.M., I.M.L., R.A.d.B., F.P.B., H.Y., D.J.v.V., W.H.v.G., H.H.W.S., P.v.d.H.), Department of Internal Medicine (S.J.L.B., R.T.G.), Trial Coordination Center (H.L.H.), and Department of Genetics (P.v.d.H.), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands (F.W.A.); Department of Research and Development,
| | - Hasan Mahmud
- From the Department of Cardiology (N.V., H.M., I.M.L., R.A.d.B., F.P.B., H.Y., D.J.v.V., W.H.v.G., H.H.W.S., P.v.d.H.), Department of Internal Medicine (S.J.L.B., R.T.G.), Trial Coordination Center (H.L.H.), and Department of Genetics (P.v.d.H.), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands (F.W.A.); Department of Research and Development,
| | - Irene Mateo Leach
- From the Department of Cardiology (N.V., H.M., I.M.L., R.A.d.B., F.P.B., H.Y., D.J.v.V., W.H.v.G., H.H.W.S., P.v.d.H.), Department of Internal Medicine (S.J.L.B., R.T.G.), Trial Coordination Center (H.L.H.), and Department of Genetics (P.v.d.H.), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands (F.W.A.); Department of Research and Development,
| | - Rudolf A. de Boer
- From the Department of Cardiology (N.V., H.M., I.M.L., R.A.d.B., F.P.B., H.Y., D.J.v.V., W.H.v.G., H.H.W.S., P.v.d.H.), Department of Internal Medicine (S.J.L.B., R.T.G.), Trial Coordination Center (H.L.H.), and Department of Genetics (P.v.d.H.), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands (F.W.A.); Department of Research and Development,
| | - Frank P. Brouwers
- From the Department of Cardiology (N.V., H.M., I.M.L., R.A.d.B., F.P.B., H.Y., D.J.v.V., W.H.v.G., H.H.W.S., P.v.d.H.), Department of Internal Medicine (S.J.L.B., R.T.G.), Trial Coordination Center (H.L.H.), and Department of Genetics (P.v.d.H.), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands (F.W.A.); Department of Research and Development,
| | - Hongjuan Yu
- From the Department of Cardiology (N.V., H.M., I.M.L., R.A.d.B., F.P.B., H.Y., D.J.v.V., W.H.v.G., H.H.W.S., P.v.d.H.), Department of Internal Medicine (S.J.L.B., R.T.G.), Trial Coordination Center (H.L.H.), and Department of Genetics (P.v.d.H.), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands (F.W.A.); Department of Research and Development,
| | - Folkert W. Asselbergs
- From the Department of Cardiology (N.V., H.M., I.M.L., R.A.d.B., F.P.B., H.Y., D.J.v.V., W.H.v.G., H.H.W.S., P.v.d.H.), Department of Internal Medicine (S.J.L.B., R.T.G.), Trial Coordination Center (H.L.H.), and Department of Genetics (P.v.d.H.), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands (F.W.A.); Department of Research and Development,
| | - Joachim Struck
- From the Department of Cardiology (N.V., H.M., I.M.L., R.A.d.B., F.P.B., H.Y., D.J.v.V., W.H.v.G., H.H.W.S., P.v.d.H.), Department of Internal Medicine (S.J.L.B., R.T.G.), Trial Coordination Center (H.L.H.), and Department of Genetics (P.v.d.H.), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands (F.W.A.); Department of Research and Development,
| | - Stephan J.L. Bakker
- From the Department of Cardiology (N.V., H.M., I.M.L., R.A.d.B., F.P.B., H.Y., D.J.v.V., W.H.v.G., H.H.W.S., P.v.d.H.), Department of Internal Medicine (S.J.L.B., R.T.G.), Trial Coordination Center (H.L.H.), and Department of Genetics (P.v.d.H.), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands (F.W.A.); Department of Research and Development,
| | - Ron T. Gansevoort
- From the Department of Cardiology (N.V., H.M., I.M.L., R.A.d.B., F.P.B., H.Y., D.J.v.V., W.H.v.G., H.H.W.S., P.v.d.H.), Department of Internal Medicine (S.J.L.B., R.T.G.), Trial Coordination Center (H.L.H.), and Department of Genetics (P.v.d.H.), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands (F.W.A.); Department of Research and Development,
| | - Patricia B. Munroe
- From the Department of Cardiology (N.V., H.M., I.M.L., R.A.d.B., F.P.B., H.Y., D.J.v.V., W.H.v.G., H.H.W.S., P.v.d.H.), Department of Internal Medicine (S.J.L.B., R.T.G.), Trial Coordination Center (H.L.H.), and Department of Genetics (P.v.d.H.), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands (F.W.A.); Department of Research and Development,
| | - Hans L. Hillege
- From the Department of Cardiology (N.V., H.M., I.M.L., R.A.d.B., F.P.B., H.Y., D.J.v.V., W.H.v.G., H.H.W.S., P.v.d.H.), Department of Internal Medicine (S.J.L.B., R.T.G.), Trial Coordination Center (H.L.H.), and Department of Genetics (P.v.d.H.), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands (F.W.A.); Department of Research and Development,
| | - Dirk J. van Veldhuisen
- From the Department of Cardiology (N.V., H.M., I.M.L., R.A.d.B., F.P.B., H.Y., D.J.v.V., W.H.v.G., H.H.W.S., P.v.d.H.), Department of Internal Medicine (S.J.L.B., R.T.G.), Trial Coordination Center (H.L.H.), and Department of Genetics (P.v.d.H.), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands (F.W.A.); Department of Research and Development,
| | - Wiek H. van Gilst
- From the Department of Cardiology (N.V., H.M., I.M.L., R.A.d.B., F.P.B., H.Y., D.J.v.V., W.H.v.G., H.H.W.S., P.v.d.H.), Department of Internal Medicine (S.J.L.B., R.T.G.), Trial Coordination Center (H.L.H.), and Department of Genetics (P.v.d.H.), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands (F.W.A.); Department of Research and Development,
| | - Herman H.W. Silljé
- From the Department of Cardiology (N.V., H.M., I.M.L., R.A.d.B., F.P.B., H.Y., D.J.v.V., W.H.v.G., H.H.W.S., P.v.d.H.), Department of Internal Medicine (S.J.L.B., R.T.G.), Trial Coordination Center (H.L.H.), and Department of Genetics (P.v.d.H.), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands (F.W.A.); Department of Research and Development,
| | - Pim van der Harst
- From the Department of Cardiology (N.V., H.M., I.M.L., R.A.d.B., F.P.B., H.Y., D.J.v.V., W.H.v.G., H.H.W.S., P.v.d.H.), Department of Internal Medicine (S.J.L.B., R.T.G.), Trial Coordination Center (H.L.H.), and Department of Genetics (P.v.d.H.), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands (F.W.A.); Department of Research and Development,
| |
Collapse
|
16
|
Heparin affects the interaction of kininogen on endothelial cells. Biochimie 2011; 93:1839-45. [DOI: 10.1016/j.biochi.2011.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 07/04/2011] [Indexed: 11/21/2022]
|
17
|
Selective depletion of plasma prekallikrein or coagulation factor XII inhibits thrombosis in mice without increased risk of bleeding. Blood 2011; 118:5302-11. [PMID: 21821705 DOI: 10.1182/blood-2011-05-355248] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies indicate that the plasma contact system plays an important role in thrombosis, despite being dispensable for hemostasis. For example, mice deficient in coagulation factor XII (fXII) are protected from arterial thrombosis and cerebral ischemia-reperfusion injury. We demonstrate that selective reduction of prekallikrein (PKK), another member of the contact system, using antisense oligonucleotide (ASO) technology results in an antithrombotic phenotype in mice. The effects of PKK deficiency were compared with those of fXII deficiency produced by specific ASO-mediated reduction of fXII. Mice with reduced PKK had ∼ 3-fold higher plasma levels of fXII, and reduced levels of fXIIa-serpin complexes, consistent with fXII being a substrate for activated PKK in vivo. PKK or fXII deficiency reduced thrombus formation in both arterial and venous thrombosis models, without an apparent effect on hemostasis. The amount of reduction of PKK and fXII required to produce an antithrombotic effect differed between venous and arterial models, suggesting that these factors may regulate thrombus formation by distinct mechanisms. Our results support the concept that fXII and PKK play important and perhaps nonredundant roles in pathogenic thrombus propagation, and highlight a novel, specific and safe pharmaceutical approach to target these contact system proteases.
Collapse
|
18
|
Cross-talk between the complement and the kinin system in vascular permeability. Immunol Lett 2011; 140:7-13. [PMID: 21762728 DOI: 10.1016/j.imlet.2011.06.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/08/2011] [Accepted: 06/23/2011] [Indexed: 02/01/2023]
Abstract
The endothelium is a continuous physical barrier that regulates coagulation and selective passage of soluble molecules and circulating cells through the vessel wall into the tissue. Due to its anatomic localization, the endothelium may establish contact with components of the complement, the kinin and the coagulation systems which are the main, though not exclusive, inducers of vascular leakage. Although the complement and the kinin systems may act independently, increasing evidence suggest that there is a crosstalk that involve different components of both systems. Activation is required for the function of the two systems which are involved in pathological conditions such as hereditary and acquired angioedema (AE) and vasculitidis. The aim of this review is to discuss the contribution of complement and kinin systems to vascular leakage and the cross-talk between the two systems in the development of AE. This clinical condition is characterized by episodic and recurrent local edema of subcutaneous and submucosal tissues and is due to inherited or acquired C1-INH deficiency. Although the pathogenesis of the swelling in patients with AE was originally thought to be mediated by C2, ample evidence indicate bradykinin (BK) as the most effective mediator even though the possibility that both the complement and the kinin-forming systems may contribute to the edema has not been completely excluded. BK induces endothelial leakage interacting with B2 receptors but other molecules may be involved in the onset and maintenance of AE. In this review we shall discuss the role of B1 receptors and gC1qR/p33 in addition to that of B2 receptors in the onset of AE attacks and the importance of these receptors as new possible molecular targets for therapy.
Collapse
|
19
|
Abstract
UNLABELLED Vasculitis is a systemic autoimmune inflammatory disease, characterized by inflammation in and around vessel walls leading to perturbed vessel patency and tissue damage. Many different organs may be involved. In this review, pathogenetic mechanisms of vasculitis are discussed, with special reference to activation of the kinin system. Mechanisms of kinin system activation are described, ultimately leading to release of kinins from high molecular weight kininogen. These vasoactive peptides promote inflammation. CONCLUSION Kinin system activation during vasculitis promotes inflammation.
Collapse
Affiliation(s)
- Robin Kahn
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | | |
Collapse
|
20
|
Varano della Vergiliana JF, Lansley S, Tan AL, Creaney J, Lee YG, Stewart GA. Mesothelial cells activate the plasma kallikrein-kinin system during pleural inflammation. Biol Chem 2011; 392:633-42. [DOI: 10.1515/bc.2011.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractPleural inflammation underlies the formation of most exudative pleural effusions and the plasma kallikrein-kinin system (KKS) is known to contribute. Mesothelial cells are the predominant cell type in the pleural cavity, but their potential role in plasma KKS activation and BK production has not been studied. Bradykinin concentrations were higher in pleural fluids than the corresponding serum samples in patients with a variety of diseases. Bradykinin concentrations did not correlate with disease diagnosis, but were elevated in exudative effusions. It was demonstrated, using a range of primary and transformed mesothelial and mesothelioma cell lines, that cells assembled high molecular weight kininogen and plasma prekallikrein to liberate bradykinin, a process inhibited by novobiocin, a heat shock protein 90 (HSP90) inhibitor, cysteine, bradykinin and protamine sulphate. Of the common plasma prekallikrein activators, mesothelial cells expressed HSP90, but not prolylcarboxypeptidase or Factor XII. Calcium mobilisation was induced in some mesothelium-derived cell lines by bradykinin. Des-Arg9-bradykinin was inactive, indicating that mesothelial cells are responsive to bradykinin, mediated via the bradykinin receptor subtype 2. In summary, pleural mesothelial cells support the assembly and activation of the plasma KKS by a mechanism dependent on HSP90, and may contribute to KKS-mediated inflammation in pleural disease.
Collapse
|
21
|
Karkowska-Kuleta J, Kozik A, Rapala-Kozik M. Binding and activation of the human plasma kinin-forming system on the cell walls of Candida albicans and Candida tropicalis. Biol Chem 2010; 391:97-103. [PMID: 19804360 DOI: 10.1515/bc.2009.145] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bacterial infections often upregulate the plasma kinin-forming cascade of the host (the 'contact system') which is triggered by adsorption of high molecular mass kininogen (HK), coagulation factor XII (FXII) and prekallikrein (pHPK) on the host or pathogen cell surfaces. A possible activation of the contact system upon infection of the human host by major fungal pathogens of Candida species has not been extensively explored until a recent report of tight binding of HK to the cell walls of these fungi. In the current study, the adsorption of the other contact system components to the cell surfaces of Candida albicans and Candida tropicalis was characterized. FXII was found to be tightly bound by Candida germ tube forms, to a level 5-fold higher than that for HK. In contrast, pHPK bound poorly but its additional amounts could dock to the cell wall through the surface-bound HK. It was also shown that within the complex of these proteins assembled on the cell walls of fungal hyphae, pHPK could be activated by FXIIa and the active HPK effectively produced kinins from HK. It is suggested that kinins, released at the Candida cell wall, can promote host colonization by the pathogen and the development of infection.
Collapse
Affiliation(s)
- Justyna Karkowska-Kuleta
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | | | | |
Collapse
|
22
|
Bossi F, Fischetti F, Regoli D, Durigutto P, Frossi B, Gobeil F, Ghebrehiwet B, Peerschke EI, Cicardi M, Tedesco F. Novel pathogenic mechanism and therapeutic approaches to angioedema associated with C1 inhibitor deficiency. J Allergy Clin Immunol 2010; 124:1303-10.e4. [PMID: 19796797 DOI: 10.1016/j.jaci.2009.08.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/04/2009] [Accepted: 08/05/2009] [Indexed: 11/16/2022]
Abstract
BACKGROUND Activation of bradykinin-mediated B2 receptor has been shown to play an important role in the onset of angioedema associated with C1 inhibitor deficiency. This finding has led to the development of novel therapeutic drugs such as the B2 receptor antagonist icatibant. However, it is unclear whether other receptors expressed on endothelial cells contribute to the release of kinins and vascular leakage in these patients. The recognition of their role may have obvious therapeutic implications. OBJECTIVE Our aim was to investigate the involvement of B1 and gC1q receptors in in vitro and in vivo models of vascular leakage induced by plasma samples obtained from patients with C1 inhibitor deficiency. METHODS The vascular leakage was evaluated in vitro on endothelial cells by a transwell model system and in vivo on rat mesentery microvessels by intravital microscopy. RESULTS We observed that the attack phase plasma from C1 inhibitor-deficient patients caused a delayed fluorescein-labeled albumin leakage as opposed to the rapid effect of bradykinin, whereas remission plasma elicited a modest effect compared with control plasma. The plasma permeabilizing effect was prevented by blocking the gC1q receptor-high-molecular-weight kininogen interaction, was partially inhibited by B2 receptor or B1 receptor antagonists, and was totally prevented by the mixture of the 2 antagonists. Involvement of B1 receptor was supported by the finding that albumin leakage caused by attack phase plasma was enhanced by IL-1beta and was markedly reduced by brefeldin A. CONCLUSION Our data suggest that both B1 receptor and gC1q receptor are involved in the vascular leakage induced by hereditary and acquired angioedema plasma.
Collapse
Affiliation(s)
- Fleur Bossi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Degradable, antibacterial silver exchanged mesoporous silica spheres for hemorrhage control. Biomaterials 2009; 30:5364-75. [DOI: 10.1016/j.biomaterials.2009.06.052] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 06/29/2009] [Indexed: 11/20/2022]
|
24
|
Abstract
Vasculitides are a group of conditions with marked inflammation in and around vessel walls and vascular leakage. These conditions may involve the presence of auto-antibodies such as ANCA or may be mediated by other autoimmune or pathogenic mechanisms. Regardless of the primary trigger, vasculitides entail activation of the complement system as well as the contact/kinin system. In vivo and in vitro data support the involvement of these systems showing activation of the alternative, classical and lectin complement pathways as well as release of bradykinin at sites of vascular inflammation. This short review will summarize some of the data regarding the participation of these systems and the interplay between the complement and kinin systems as well as their interaction with the endothelium and neutrophils. Although these systems do not play a primary role in induction of vasculitis, the peptides released contribute to inflammation and vascular leakage and may thus be identified as potential therapeutic targets.
Collapse
Affiliation(s)
- Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden.
| | | |
Collapse
|
25
|
Bryant J, Shariat-Madar Z. Human plasma kallikrein-kinin system: physiological and biochemical parameters. Cardiovasc Hematol Agents Med Chem 2009; 7:234-50. [PMID: 19689262 PMCID: PMC4905712 DOI: 10.2174/187152509789105444] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The plasma kallikrein-kinin system (KKS) plays a critical role in human physiology. The KKS encompasses coagulation factor XII (FXII), the complex of prekallikrein (PK) and high molecular weight kininogen (HK). The conversion of plasma prekallikrein to kallikrein by the activated FXII and in response to numerous different stimuli leads to the generation of bradykinin (BK) and activated HK (HKa, an antiangiogenic peptide). BK is a proinflammatory peptide, a pain mediator and potent vasodilator, leading to robust accumulation of fluid in the interstitium. Systemic production of BK, HKa with the interplay between BK bound-BK receptors and the soluble form of HKa are key to angiogenesis and hemodynamics. KKS has been implicated in the pathogenesis of inflammation, hypertension, endotoxemia, and coagulopathy. In all these cases increased BK levels is the hallmark. In some cases, the persistent production of BK due to the deficiency of the blood protein C1-inhibitor, which controls FXII, is detrimental to the survival of the patients with hereditary angioedema (HAE). In others, the inability of angiotensin converting enzyme (ACE) to degrade BK leads to elevated BK levels and edema in patients on ACE inhibitors. Thus, the mechanisms that interfere with BK liberation or degradation would lead to blood pressure dysfunction. In contrast, anti-kallikrein treatment could have adverse effects in hemodynamic changes induced by vasoconstrictor agents. Genetic models of kallikrein deficiency are needed to evaluate the quantitative role of kallikrein and to validate whether strategies designed to activate or inhibit kallikrein may be important for regulating whole-body BK sensitivity.
Collapse
Affiliation(s)
- J.W. Bryant
- Pfizer Global Research and Development, CVMED Exploratory, Groton, CT 06340
| | - z Shariat-Madar
- School of Pharmacy, Department of Pharmacology, University of Mississippi, University, MS 38677-1848
| |
Collapse
|
26
|
Kahn R, Hellmark T, Leeb-Lundberg LMF, Akbari N, Todiras M, Olofsson T, Wieslander J, Christensson A, Westman K, Bader M, Müller-Esterl W, Karpman D. Neutrophil-Derived Proteinase 3 Induces Kallikrein-Independent Release of a Novel Vasoactive Kinin. THE JOURNAL OF IMMUNOLOGY 2009; 182:7906-15. [DOI: 10.4049/jimmunol.0803624] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Joseph K, Tuscano TB, Kaplan AP. Studies of the mechanisms of bradykinin generation in hereditary angioedema plasma. Ann Allergy Asthma Immunol 2008; 101:279-86. [DOI: 10.1016/s1081-1206(10)60493-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Bossi F, Bulla R, Tedesco F. Endothelial cells are a target of both complement and kinin system. Int Immunopharmacol 2008; 8:143-7. [DOI: 10.1016/j.intimp.2007.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 08/03/2007] [Accepted: 08/04/2007] [Indexed: 10/22/2022]
|
29
|
Adrenomedullary catecholamine, pressor and chronotropic responses to human coagulation β-FXIIa mediated by endogenous kinins. J Hypertens 2008; 26:61-9. [DOI: 10.1097/hjh.0b013e3282f190cf] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Kokje RJ, Wilson WL, Brown TE, Karamyan VT, Wright JW, Speth RC. Central pressor actions of aminopeptidase-resistant angiotensin II analogs: challenging the angiotensin III hypothesis. Hypertension 2007; 49:1328-35. [PMID: 17470719 DOI: 10.1161/hypertensionaha.107.087130] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Intracerebroventricular administration of angiotensins causes pronounced pressor and dipsogenic responses. The suggestion that angiotensin III rather than angiotensin II is the active peptide in the brain spawned what we call The Angiotensin III. HYPOTHESIS To test this hypothesis, 5 angiotensin II analogs containing zero or one position substitutions conferring resistance to aminopeptidases were administered intracerebroventricularly to determine their pressor and dipsogenic efficacies. Two aminopeptidase-resistant analogs caused significantly greater pressor responses than angiotensin II, whereas 3 analogs caused pressor responses similar to angiotensin II. Latency to cause a pressor response for 4 of the 5 aminopeptidase-resistant angiotensin II analogs was the same as for angiotensin II. There was no detectable formation of (125)I-angiotensin III from 1 of the intracerebroventricularly administered analogs, (125)I- N-Methyl-l-Asp(1)-angiotensin II, indicating its aminopeptidase resistance. Latency to drink also did not differ between the angiotensins. After the initial dipsogenic response, water was removed until 25 minutes after angiotensin administration to avoid interfering with the pressor response. The dipsogenic stimulus was sustained 25 minutes after intracerebroventricular injection of angiotensin II and its aminopeptidase-resistant analogs. Comparison of angiotensin III and angiotensin II showed equivalent pressor responses with similar latencies and durations. The latency to drink was similar for angiotensin III and angiotensin II. However, there was no dipsogenic response to angiotensin III 25 minutes after intracerebroventricular injection. These data do not support The Angiotensin III Hypothesis and suggest that conversion of exogenously applied angiotensin II to angiotensin III is not necessary to cause brain-mediated pressor or dipsogenic responses.
Collapse
Affiliation(s)
- Ranjita J Kokje
- Department of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | | | | | | | | | |
Collapse
|
31
|
Köhl J. Self, non-self, and danger: a complementary view. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 586:71-94. [PMID: 16893066 DOI: 10.1007/0-387-34134-x_6] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complement is a sophisticated system of molecules that is critical to the functional integrity of the body. Initially considered as a defense system to ward off infections, it becomes increasingly clear that the complement system is one of the most important humoral systems to sense danger, i.e., to recognize conserved patterns on pathogens and on altered/damaged self. In addition to this important role in danger recognition, the complement system has the ability to translate the danger information into an adequate cellular innate or adaptive immune response. This is accomplished by two distinct mechanisms: (a) danger sensors that have recognized altered cells or pathogens can directly activate cell-bound receptors (e.g., C1q/C1q receptor interaction), and/or (b) danger sensors initiate cleavage of complement factors C3 and C5, the fragments of which acquire the ability to bind to complement receptors and/or regulators. It is the specific interaction of the danger sensors and of the cleavage fragments with distinct cell-bound receptors/regulators that directs the immune response toward an innate or an adaptive phenotype. Further, the expression pattern of the complement receptors critically impacts the shape of the immune response. Complement has the ability to discriminate between physiological and pathological danger, i.e., physiological cell death and death in response to injury. In the former case, cells are merely flagged for enhanced phagocytosis (by C3 fragments) without accompanying inflammation (through CR3), whereas in the latter case inflammatory signals are accessorily triggered (e.g., by the release of ATs, which recruit and activate neutrophils, eosinophils, etc.). This function is of major importance for apoptotic cell clearance and tissue repair but plays also important roles in fibrotic tissue remodeling in response to chronic tissue injury. Further, complement cleavage fragments may prevent the development of maldaptive immune responses at the mucosal surface. Here, complement fragment C5a does not act as a danger transmitter but as a "homeostasis transmitter," as its interaction with the C5a receptor on DCs provides a signal that prevents DCs from activating CD4+ T cells. The generation of regulatory T cells in response to CD46 ligation may have a similar function, as injured cells lose CD46 expresssion, which may lead to decreased proliferation of Tregs and, consecutively, increased production of T effector cells. Although we are still at the beginning of understanding the complex interaction patterns within the complement system, recent data suggest substantial crosstalk between the signaling pathways downstream of complement receptors and other receptors of the innate immune system that function as immune sensors and/or transmitters (i.e., TLRs, FcgammaRs130,131). Given the importance of complement as a sensor and effector system of innate and adaptive immune responses, a complement-related view of the immune system might help to unravel some enigmas of autoimmunity, allergy, and transplantation.
Collapse
Affiliation(s)
- Jörg Köhl
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, MLC 7021, Cincinnati, OH 45229, USA.
| |
Collapse
|
32
|
Davis AE. Mechanism of angioedema in first complement component inhibitor deficiency. Immunol Allergy Clin North Am 2007; 26:633-51. [PMID: 17085282 DOI: 10.1016/j.iac.2006.08.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since shortly after the discovery that hereditary angioedema resulted from deficiency of first complement component (C1) inhibitor, the characterization of the mediator of angioedema has been a major goal. However, because C1 inhibitor regulates activation of both the contract and complement systems, identification of the mediator was not immediately accomplished. For a number of years, some studies appeared to indicate involvement of one system, whereas other studies suggested involvement of the other. However, the vast majority of the evidence accumulated over the past years indicates quite clearly that the major mediator is bradykinin. Therefore, unregulated contact system activation is the defect that leads directly to the development of angioedema.
Collapse
Affiliation(s)
- Alvin E Davis
- CBR Institute for Biomedical Research, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Köhl J. The role of complement in danger sensing and transmission. Immunol Res 2006; 34:157-76. [PMID: 16760575 DOI: 10.1385/ir:34:2:157] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/08/2023]
Abstract
Self-non-self discrimination has long been considered the main function of the immune system. Increasing evidence supports the view of the immune system as a network of complex danger sensors and transmitters in which self-non-self discrimination is only one facet. To meet the challenge of danger sensing, the immune system carries a large stock of germline-encoded, highly conserved molecules that can recognize microbial as well as modified host structures. Among those are the Toll-like receptors (TLR), which comprise a dozen membrane-bound pattern-recognition receptors that directly link danger recognition to danger transmission through activation of several distinct cellular signaling pathways. Here, I discuss the function and biology of a complex, evolutionary ancient system, the complement system, which has long been considered critical to host defense. In contrast to TLRs, the complement system senses danger by a panel of soluble molecules that can directly bind to specific complement receptors and/or initiate a complex cascade of proteolytic events that lead to the generation of soluble complement fragments able to bind to another, distinct set of specific complement receptors. As I will outline in this review, complement- mediated danger sensing and the complex transition of this information into distinct cellular activation profiles is critical for tissue homeostasis under steady-state conditions and in response to infection and cell injury. Furthermore, I will discuss recent findings that support a concept of intense cross-talk between the complement system and TLRs, which defines the quality and the magnitude of immune responses in vivo.
Collapse
Affiliation(s)
- Jörg Köhl
- Division of Molecular Immunology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA.
| |
Collapse
|
34
|
Lee THD, Streb JW, Georger MA, Miano JM. Tissue expression of the novel serine carboxypeptidase Scpep1. J Histochem Cytochem 2006; 54:701-11. [PMID: 16461364 DOI: 10.1369/jhc.5a6894.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We previously identified a novel gene designated retinoid-inducible serine carboxypeptidase (RISC or Scpep1). Here we characterize a polyclonal antibody raised to Scpep1 and assess its localization in mouse cells and tissues. Western blot analysis revealed an immunospecific approximately 35-kDa protein corresponding to endogenous Scpep1. This protein is smaller than the predicted approximately 51-kDa, suggesting that Scpep1 is proteolytically cleaved to a mature enzyme. Immunohistochemical studies demonstrate Scpep1 expression in embryonic heart and vasculature as well as in adult aortic smooth muscle cells and endothelial cells. Scpep1 displays a broad expression pattern in adult tissues with detectable levels in epithelia of digestive tract and urinary bladder, islet of Langerhans, type II alveolar cells and macrophages of lung, macrophage-like cells of lymph nodes and spleen, Leydig cells of testis, and nerve fibers in brain and ganglia. Consistent with previous mRNA studies in kidney, Scpep1 protein is restricted to proximal convoluted tubular epithelium (PCT). Immunoelectron microscopy shows enriched Scpep1 within lysosomes of the PCT, and immunofluorescence microscopy colocalizes Scpep1 with lysosomal-associated membrane protein-2. These results suggest that Scpep1 is a widely distributed lysosomal protease requiring proteolytic cleavage for activity. The highly specific Scpep1 antibody characterized herein provides a necessary reagent for elucidating Scpep1 function.
Collapse
Affiliation(s)
- Ting-Hein D Lee
- Cardiovascular Research Institute, University of Rochester School of Medicine, 601 Elmwood Avenue, Box 679, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
35
|
Storini C, Bergamaschini L, Gesuete R, Rossi E, Maiocchi D, De Simoni MG. Selective inhibition of plasma kallikrein protects brain from reperfusion injury. J Pharmacol Exp Ther 2006; 318:849-54. [PMID: 16705080 DOI: 10.1124/jpet.106.105064] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have studied the effect of DX-88, a selective recombinant inhibitor of human plasma kallikrein, in transient or permanent focal brain ischemia (with or without reperfusion, respectively) induced in C57BL/6 mice. Twenty-four hours after transient ischemia, DX-88 administered at the beginning of ischemia (pre) induced a dose-dependent reduction of ischemic volume that, at the dose of 30 microg/mouse, reached 49% of the volume of saline-treated mice. At the same dose, DX-88 was also able to reduce brain swelling to 32%. Mice treated with DX-88 pre had significantly lower general and focal deficit score. Fluoro-Jade staining, a marker for neuronal degeneration, showed that DX-88-treated mice had a reduction in the number of degenerating cells, compared with saline-treated mice. Seven days after transient ischemia, the DX-88 protective effect was still present. When the inhibitor was injected at the end of ischemia (post), it was still able to reduce ischemic volume, brain swelling, and neurological deficits. DX-88 efficacy was lost when the inhibitor was given 30 min after the beginning of reperfusion (1 h post) or when reperfusion was not present (permanent occlusion model). This study shows that DX-88 has a strong neuroprotective effect in the early phases of brain ischemia preventing reperfusion injury and indicates that inhibition of plasma kallikrein may be a useful tool in the strategy aimed at reducing the detrimental effects linked to reperfusion.
Collapse
Affiliation(s)
- Claudio Storini
- Department of Neuroscience, Mario Negri Institute, Milan, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Pachl J, Svoboda P, Jacobs F, Vandewoude K, van der Hoven B, Spronk P, Masterson G, Malbrain M, Aoun M, Garbino J, Takala J, Drgona L, Burnie J, Matthews R. A randomized, blinded, multicenter trial of lipid-associated amphotericin B alone versus in combination with an antibody-based inhibitor of heat shock protein 90 in patients with invasive candidiasis. Clin Infect Dis 2006; 42:1404-13. [PMID: 16619152 DOI: 10.1086/503428] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 01/23/2006] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Mycograb (NeuTec Pharma) is a human recombinant monoclonal antibody against heat shock protein 90 that, in laboratory studies, was revealed to have synergy with amphotericin B against a broad spectrum of Candida species. METHODS A double-blind, randomized study was conducted to determine whether lipid-associated amphotericin B plus Mycograb was superior to amphotericin B plus placebo in patients with culture-confirmed invasive candidiasis. Patients received a lipid-associated formulation of amphotericin B plus a 5-day course of Mycograb or placebo, having been stratified on the basis of Candida species (Candida albicans vs. non-albicans species of Candida). Inclusion criteria included clinical evidence of active infection at trial entry plus growth of Candida species on culture of a specimen from a clinically significant site within 3 days after initiation of study treatment. The primary efficacy variable was overall response to treatment (clinical and mycological resolution) by day 10. RESULTS Of the 139 patients enrolled from Europe and the United States, 117 were included in the modified intention-to-treat population. A complete overall response by day 10 was obtained for 29 (48%) of 61 patients in the amphotericin B group, compared with 47 (84%) of 56 patients in the Mycograb combination therapy group (odds ratio [OR], 5.8; 95% confidence interval [CI], 2.41-13.79; P<.001). The following efficacy criteria were also met: clinical response (52% vs. 86%; OR, 5.4; 95% CI, 2.21-13.39; P<.001), mycological response (54% vs. 89%; OR, 7.1; 95% CI, 2.64-18.94; P<.001), Candida-attributable mortality (18% vs. 4%; OR, 0.2; 95% CI, 0.04-0.80; P = .025), and rate of culture-confirmed clearance of the infection (hazard ratio, 2.3; 95% CI, 1.4-3.8; P = .001). Mycograb was well tolerated. CONCLUSIONS Mycograb plus lipid-associated amphotericin B produced significant clinical and culture-confirmed improvement in outcome for patients with invasive candidiasis.
Collapse
Affiliation(s)
- Jan Pachl
- Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Heat-shock proteins (hsps) have been identified as molecular chaperones conserved between microbes and man and grouped by their molecular mass and high degree of amino acid homology. This article reviews the major hsps of Saccharomyces cerevisiae, their interactions with trehalose, the effect of fermentation and the role of the heat-shock factor. Information derived from this model, as well as from Neurospora crassa and Achlya ambisexualis, helps in understanding the importance of hsps in the pathogenic fungi, Candida albicans, Cryptococcus neoformans, Aspergillus spp., Histoplasma capsulatum, Paracoccidioides brasiliensis, Trichophyton rubrum, Phycomyces blakesleeanus, Fusarium oxysporum, Coccidioides immitis and Pneumocystis jiroveci. This has been matched with proteomic and genomic information examining hsp expression in response to noxious stimuli. Fungal hsp90 has been identified as a target for immunotherapy by a genetically recombinant antibody. The concept of combining this antibody fragment with an antifungal drug for treating life-threatening fungal infection and the potential interactions with human and microbial hsp90 and nitric oxide is discussed.
Collapse
Affiliation(s)
- James P Burnie
- Department of Medical Microbiology, Clinical Sciences Building, University of Manchester, Manchester Royal Infirmary, Manchester, UK.
| | | | | | | |
Collapse
|
38
|
Burnie J, Matthews R. Genetically recombinant antibodies: new therapeutics against candidiasis. Expert Opin Biol Ther 2005; 4:233-41. [PMID: 14998780 DOI: 10.1517/14712598.4.2.233] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Historically, the therapy of serious fungal infection has been dominated by monotherapy with the polyene antibiotic amphotericin B. Clinical failures, side effects, the lack of alternatives and the toxicity of this drug have heightened the need to produce alternative therapies, which have included fluconazole, voriconazole and caspofungin. The observation that recovery from disseminated candidiasis was associated with an antibody response to the 47 kDa Candida heat-shock protein (HSP)90 homologue, coupled with the ability to sequence all the antibodies from patients who have recovered from the infection and to re-express the dominant ones as fragments in Escherichia coli, has opened the possibility of immunotherapy. The first recombinant antibody fragment, Mycograb (Neu Tec Pharma plc), against Candida HSP90 is now in clinical trials in patients with disseminated candidiasis in Europe and the US. Laboratory and early clinical data support the concept of synergy between Mycograb and amphotericin B. This should improve outcome and diminish the risk of resistance occurring to either drug, without an increase in toxicity, as this should be minimal in a human antibody fragment representing the natural antibody that a patient produces on recovery.
Collapse
Affiliation(s)
- James Burnie
- University Department of Medical Microbiology, and NeuTec Pharma plc, 2nd floor, Clinical Sciences Building 1, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL, UK.
| | | |
Collapse
|
39
|
Abstract
Hereditary angioedema (HAE), characterized by recurrent episodes of angioedema involving the skin, or the mucosa of the upper respiratory or the gastrointestinal tracts, results from heterozygosity for deficiency of the serine proteinase inhibitor (serpin), C1 inhibitor (C1INH). The primary biological role of C1INH is to regulate activation of the complement system, the contact system, and the intrinsic coagulation system. During attacks of angioedema, together with decreasing levels of C1INH, the complement and contact systems are activated: C2 and C4 levels fall and high molecular weight kininogen is cleaved. Although previous data suggested that symptoms in HAE might be mediated via complement system activation, a combination of recent clinical data, in vitro studies, and analysis of C1INH-deficient mice all indicate that the major mediator of angioedema is bradykinin: (1) a vascular permeability enhancing factor can be generated in vitro in C1INH-depleted, C2-deficient plasma, but not from C1INH-depleted, contact system-deficient plasma; this factor was identified by sequence analysis as bradykinin; (2) bradykinin can be detected in the plasma of HAE patients during attacks of angioedema; (3) in several members of one family, expression of a C1INH variant that inhibits contact system proteases but has defective inhibition of C1r and C1s does not result in HAE; (4) C1INH-deficient (C1INH-/-) mice have a defect in vascular permeability that is suppressed by treatment with specific plasma kallikrein inhibitors and by bradykinin type 2 receptor (Bk2R) antagonists, and is eliminated in C1INH-/-, Bk2R-/- double-deficient mice.
Collapse
Affiliation(s)
- Alvin E Davis
- Department of Pediatrics, CBR Institute for Biomedical Research, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Neth P, Arnhold M, Sidarovich V, Bhoola KD, Fink E. Expression of the plasma prekallikrein gene: utilization of multiple transcription start sites and alternative promoter regions. Biol Chem 2005; 386:101-9. [PMID: 15843153 DOI: 10.1515/bc.2005.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The plasma prekallikrein gene is expressed in many different human tissues at distinctly different levels and therefore tissue-specific control of the gene transcription is likely. In this study we demonstrate that transcription of the plasma prekallikrein gene can be initiated at multiple sites, for which at least four different promoters are utilized. A comparison of the genomic and mRNA sequences of mouse plasma prekallikrein revealed that the sequence segment that was formerly regarded as the first exon of the mouse plasma prekallikrein gene consists of three exons, with the first exon localized 14.2 kbp upstream of the translation start. For the rat and human plasma prekallikrein genes, in silico analysis suggested an analogous exon-intron organization. Determination of the transcription start sites showed that in both mouse and human, the proximal and distal regions could be utilized for transcription initiation; however, the proximal region is preferred. A deletion mutation analysis of the proximal promoter region using a 1.7-kbp segment revealed a strong activating region immediately upstream of the known mRNA, followed by both a modest repressor and an enhancer region.
Collapse
Affiliation(s)
- Peter Neth
- Abteilung für Klinische Chemie und Klinische Biochemie, Chirurgische Klinik Innenstadt, Ludwig-Maximilians-Universität München, Nussbaumstrasse 20, D-80336 Münich, Germany
| | | | | | | | | |
Collapse
|
41
|
Abstract
Hereditary angioedema (HAE), which is characterized by episodic localized angioedema of the skin or mucosa, results from heterozygous deficiency of the plasma protease inhibitor, C1 inhibitor (C1INH). The most obvious biologic role of C1INH, therefore, is prevention of excessive vascular permeability. A variety of data indicate that this role is primarily a product of regulation of the contact system proteases, factor XIIa and plasma kallikrein. The C1INH deficient mouse, although it does not have episodes of cutaneous angioedema, does have increased vascular permeability which is reversed by treatment with C1INH, with the plasma kallikrein inhibitor, DX88, and with the bradykinin 2 receptor (Bk2R) antagonist, Hoe140. In addition, mice deficient in both C1INH and the Bk2R do not have increased vascular permeability. These analyses strengthen the argument that angioedema is mediated by bradykinin. This mouse also provides a system to test new potential therapeutic approaches. In addition to its role in the regulation of vascular permeability, C1INH also is an important modulator of inflammatory responses via regulation of activation of both the contact and the complement systems, and very likely via activities unrelated to protease inhibition.
Collapse
Affiliation(s)
- Alvin E Davis
- Center for Blood Research, Harvard University Medical School, 800 Huntington Avenue, Boston, MA 02115-6303, USA.
| |
Collapse
|
42
|
Davis AE, Cai S, Liu D. The biological role of the C1 inhibitor in regulation of vascular permeability and modulation of inflammation. Adv Immunol 2004; 82:331-63. [PMID: 14975261 DOI: 10.1016/s0065-2776(04)82008-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Alvin E Davis
- Harvard Medical School, CBR Institute for Biomedical Research, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
43
|
Spronk HMH, Govers-Riemslag JWP, ten Cate H. The blood coagulation system as a molecular machine. Bioessays 2003; 25:1220-8. [PMID: 14635257 DOI: 10.1002/bies.10360] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The human blood coagulation system comprises a series of linked glycoproteins that upon activation induce the generation of downstream enzymes ultimately forming fibrin. This process is primarily important to arrest bleeding (hemostasis). Hemostasis is a typical example of a molecular machine, where the assembly of substrates, enzymes, protein cofactors and calcium ions on a phospholipid surface markedly accelerates the rate of coagulation. Excess, pathological, coagulation activity occurs in "thrombosis", the formation of an intravascular clot, which in the most dramatic form precipitates in the microvasculature as disseminated intravascular coagulation. Thrombosis occurs according to a biochemical machine model in the case of atherothrombosis on a ruptured atherosclerotic plaque, but may develop at a slower rate in venous thrombosis, illustrating that the coagulation machinery can act at different velocities. The separate coagulation enzymes are also important in other biological processes, including inflammation for which the rapid conversion of one coagulation factor by the other is not a prerequisite. The latter role of coagulation enzymes may be related to the old and probably maintained function of the coagulation machine in innate immunity.
Collapse
Affiliation(s)
- Henri M H Spronk
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, University Maastricht, The Netherlands
| | | | | |
Collapse
|
44
|
Mahdi F, Shariat-Madar Z, Schmaier AH. The relative priority of prekallikrein and factors XI/XIa assembly on cultured endothelial cells. J Biol Chem 2003; 278:43983-90. [PMID: 12944405 DOI: 10.1074/jbc.m304239200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Investigations determined the relative preference of prekallikrein (PK) or factor XI/XIa (FXI/FXIa) binding to endothelial cells (HUVECs). In microtiter plates, biotinylated high molecular weight kininogen (biotin-HK) or biotin-FXI binding to HUVEC monolayers or their matrix proteins, but not fibronectin-coated plastic microtiter plate wells, was specifically blocked by antibodies to each of the receptors of HK, uPAR, gC1qR, or cytokeratin 1. Fluorescein isothiocyanate (FITC)-PK specifically bound to HUVEC suspensions without added Zn2+, whereas FITC-FXI or -FXIa binding to HUVEC suspensions required 10 microM added Zn2+ to support specific binding. Plasma concentrations of FXI did not block FITC-PK binding to HUVECs in the absence or presence of 10 microM Zn2+. In the absence of HK, the level of FITC-FXI or -FXIa binding was half that seen in its presence. At physiologic concentrations, PK (450 nM) abolished FITC-FXI or -FXIa binding to HUVEC suspensions in the absence or presence of HK in the presence of 10 microM Zn2+. Released Zn2+ from 2-8 x 10(8) collagen-activated platelets/ml supported biotin-FXI binding to HUVEC monolayers, but platelet activation was not necessary to support biotin-PK binding to HUVECs. At physiologic concentrations, PK also abolished FXI binding to HUVECs in the presence of activated platelets, but FXI did not influence PK binding. PK in the presence or absence of HK preferentially bound to HUVECs over FXI or FXIa. Elevated Zn2+ concentrations are required for FXI but not PK binding, but the presence of physiologic concentrations of PK and HK also prevented FXI binding. PK preferential binding to endothelial cells contributes to their anticoagulant nature.
Collapse
Affiliation(s)
- Fakhri Mahdi
- Department of Internal Medicine, Hematology and Oncology Division, the University of Michigan, Ann Arbor, Michigan 48109-0640, USA
| | | | | |
Collapse
|
45
|
Dulinski R, Suder P, Guevara-Lora I, Rapała-Kozik M, Potempa J, Silberring J, Imamura T, Travis J, Kozik A. Attenuated kinin release from human neutrophil elastase-pretreated kininogens by tissue and plasma kallikreins. Biol Chem 2003; 384:929-37. [PMID: 12887060 DOI: 10.1515/bc.2003.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Components of kinin-forming systems operating at inflammatory sites are likely to interact with elastase that is released by recruited neutrophils and may, at least temporarily, constitute the major proteolytic activity present at these sites. The aim of this work was to determine the effect of kininogen degradation by human neutrophil elastase (HNE) on kinin generation by tissue and plasma kallikreins. We show that the digestion of both low molecular mass (LK) and high molecular mass (HK) forms of human kininogen by HNE renders them essentially unsusceptible to processing by human urinary kallikrein (tissue-type) and also significantly quenches the kinin release from HK by plasma kallikrein. Studies with synthetic model heptadecapeptide substrates, ISLMKRPPGFSPFRSSR and SLMKRPPGFSPFRSSRI, confirmed the inability of tissue kallikrein to process peptides at either termini of the internal kinin sequence, while plasma kallikrein was shown to release the kinin C-terminus relatively easily. The HNE-generated fragments of kininogens were separated by HPLC and the fractions containing internal kinin sequences were identified by a kinin-specific immunoenzymatic test after trypsin digestion. These fractions were analyzed by electrospray-ionization mass spectrometry. In this way, multiple peptides containing the kinin sequence flanked by only a few amino acid residues at each terminus were identified in elastase digests of both LK and HK. These results suggest that elastase may be involved in quenching the kinin-release cascade at the late stages of the inflammatory reaction.
Collapse
Affiliation(s)
- Robert Dulinski
- Faculty of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|