1
|
Davyt M, Bharti N, Ignatova Z. Effect of mRNA/tRNA mutations on translation speed: Implications for human diseases. J Biol Chem 2023; 299:105089. [PMID: 37495112 PMCID: PMC10470029 DOI: 10.1016/j.jbc.2023.105089] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Recent discoveries establish tRNAs as central regulators of mRNA translation dynamics, and therefore cotranslational folding and function of the encoded protein. The tRNA pool, whose composition and abundance change in a cell- and tissue-dependent manner, is the main factor which determines mRNA translation velocity. In this review, we discuss a group of pathogenic mutations, in the coding sequences of either protein-coding genes or in tRNA genes, that alter mRNA translation dynamics. We also summarize advances in tRNA biology that have uncovered how variations in tRNA levels on account of genetic mutations affect protein folding and function, and thereby contribute to phenotypic diversity in clinical manifestations.
Collapse
Affiliation(s)
- Marcos Davyt
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Nikhil Bharti
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
2
|
Tischner C, Hofer A, Wulff V, Stepek J, Dumitru I, Becker L, Haack T, Kremer L, Datta AN, Sperl W, Floss T, Wurst W, Chrzanowska-Lightowlers Z, De Angelis MH, Klopstock T, Prokisch H, Wenz T. MTO1 mediates tissue specificity of OXPHOS defects via tRNA modification and translation optimization, which can be bypassed by dietary intervention. Hum Mol Genet 2015; 24:2247-66. [PMID: 25552653 PMCID: PMC4380071 DOI: 10.1093/hmg/ddu743] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/12/2014] [Accepted: 12/22/2014] [Indexed: 11/15/2022] Open
Abstract
Mitochondrial diseases often exhibit tissue-specific pathologies, but this phenomenon is poorly understood. Here we present regulation of mitochondrial translation by the Mitochondrial Translation Optimization Factor 1, MTO1, as a novel player in this scenario. We demonstrate that MTO1 mediates tRNA modification and controls mitochondrial translation rate in a highly tissue-specific manner associated with tissue-specific OXPHOS defects. Activation of mitochondrial proteases, aberrant translation products, as well as defects in OXPHOS complex assembly observed in MTO1 deficient mice further imply that MTO1 impacts translation fidelity. In our mouse model, MTO1-related OXPHOS deficiency can be bypassed by feeding a ketogenic diet. This therapeutic intervention is independent of the MTO1-mediated tRNA modification and involves balancing of mitochondrial and cellular secondary stress responses. Our results thereby establish mammalian MTO1 as a novel factor in the tissue-specific regulation of OXPHOS and fine tuning of mitochondrial translation accuracy.
Collapse
Affiliation(s)
- Christin Tischner
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, Cologne 50674, Germany
| | - Annette Hofer
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, Cologne 50674, Germany
| | - Veronika Wulff
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, Cologne 50674, Germany
| | - Joanna Stepek
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, Cologne 50674, Germany
| | - Iulia Dumitru
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, Cologne 50674, Germany
| | - Lore Becker
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich 80336, Germany, German Mouse Clinic, Institute of Experimental Genetics
| | - Tobias Haack
- Institute of Human Genetics, German Network for Mitochondrial Disorders (mitoNET), Germany
| | - Laura Kremer
- Institute of Human Genetics, German Network for Mitochondrial Disorders (mitoNET), Germany
| | - Alexandre N Datta
- Division of Neuropediatrics and Developmental Medicine, University Children's Hospital Basel (UKBB), University of Basel, Basel 4031, Switzerland
| | - Wolfgang Sperl
- German Network for Mitochondrial Disorders (mitoNET), Germany, Department of Pediatrics, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Thomas Floss
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), Neuherberg 85764, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), Neuherberg 85764, Germany, Technical University Munich, Helmholtz Zentrum München, Neuherberg 85764, Germany, DZNE-German Center for Neurodegenerative Diseases, Munich, Germany, Max Planck Institute of Psychiatry, Munich 80804, Germany, German Center for Vertigo and Balance Disorders, Munich, Germany
| | - Zofia Chrzanowska-Lightowlers
- The Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - Martin Hrabe De Angelis
- German Mouse Clinic, Institute of Experimental Genetics, German Center for Vertigo and Balance Disorders, Munich, Germany, Center of Life and Food Sciences Weihenstephan, Technische Universitat München, Freising 85350, Germany, German Center for Diabetes Research (DZD), Neuherberg 85764, Germany and Technische Universität München, Freising-Weihenstephan 85354, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich 80336, Germany, German Mouse Clinic, Institute of Experimental Genetics, German Network for Mitochondrial Disorders (mitoNET), Germany, DZNE-German Center for Neurodegenerative Diseases, Munich, Germany, German Center for Vertigo and Balance Disorders, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), Neuherberg 85764, Germany
| | - Tina Wenz
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, Cologne 50674, Germany, German Network for Mitochondrial Disorders (mitoNET), Germany,
| |
Collapse
|
3
|
|
4
|
Effect of taurine on ischemia–reperfusion injury. Amino Acids 2012; 46:21-30. [DOI: 10.1007/s00726-012-1378-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/20/2012] [Indexed: 01/08/2023]
|
5
|
Watanabe K, Yokobori SI. tRNA Modification and Genetic Code Variations in Animal Mitochondria. J Nucleic Acids 2011; 2011:623095. [PMID: 22007289 PMCID: PMC3191813 DOI: 10.4061/2011/623095] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/04/2011] [Indexed: 12/03/2022] Open
Abstract
In animal mitochondria, six codons have been known as nonuniversal genetic codes, which vary in the course of animal evolution. They are UGA (termination codon in the universal genetic code changes to Trp codon in all animal mitochondria), AUA (Ile to Met in most metazoan mitochondria), AAA (Lys to Asn in echinoderm and some platyhelminth mitochondria), AGA/AGG (Arg to Ser in most invertebrate, Arg to Gly in tunicate, and Arg to termination in vertebrate mitochondria), and UAA (termination to Tyr in a planaria and a nematode mitochondria, but conclusive evidence is lacking in this case). We have elucidated that the anticodons of tRNAs deciphering these nonuniversal codons (tRNATrp for UGA, tRNAMet for AUA, tRNAAsn for AAA, and tRNASer and tRNAGly for AGA/AGG) are all modified; tRNATrp has 5-carboxymethylaminomethyluridine or 5-taurinomethyluridine, tRNAMet has 5-formylcytidine or 5-taurinomethyluridine, tRNASer has 7-methylguanosine and tRNAGly has 5-taurinomethyluridine in their anticodon wobble position, and tRNAAsn has pseudouridine in the anticodon second position. This review aims to clarify the structural relationship between these nonuniversal codons and the corresponding tRNA anticodons including modified nucleosides and to speculate on the possible mechanisms for explaining the evolutional changes of these nonuniversal codons in the course of animal evolution.
Collapse
Affiliation(s)
- Kimitsuna Watanabe
- Department of Molecular Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | |
Collapse
|
6
|
MELAS syndrome associated with both A3243G-tRNALeu mutation and multiple mitochondrial DNA deletions. J Neurol Sci 2010; 296:101-3. [DOI: 10.1016/j.jns.2010.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 06/29/2010] [Accepted: 06/30/2010] [Indexed: 11/15/2022]
|
7
|
Yarham JW, Elson JL, Blakely EL, McFarland R, Taylor RW. Mitochondrial tRNA mutations and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:304-24. [DOI: 10.1002/wrna.27] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- John W. Yarham
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Joanna L. Elson
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Emma L. Blakely
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert McFarland
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert W. Taylor
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
8
|
Characterization of human GTPBP3, a GTP-binding protein involved in mitochondrial tRNA modification. Mol Cell Biol 2008; 28:7514-31. [PMID: 18852288 DOI: 10.1128/mcb.00946-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human GTPBP3 is an evolutionarily conserved, multidomain protein involved in mitochondrial tRNA modification. Characterization of its biochemical properties and the phenotype conferred by GTPBP3 inactivation is crucial to understanding the role of this protein in tRNA maturation and its effects on mitochondrial respiration. We show that the two most abundant GTPBP3 isoforms exhibit moderate affinity for guanine nucleotides like their bacterial homologue, MnmE, although they hydrolyze GTP at a 100-fold lower rate. This suggests that regulation of the GTPase activity, essential for the tRNA modification function of MnmE, is different in GTPBP3. In fact, potassium-induced dimerization of the G domain leads to stimulation of the GTPase activity in MnmE but not in GTPBP3. The GTPBP3 N-terminal domain mediates a potassium-independent dimerization, which appears as an evolutionarily conserved property of the protein family, probably related to the construction of the binding site for the one-carbon-unit donor in the modification reaction. Partial inactivation of GTPBP3 by small interfering RNA reduces oxygen consumption, ATP production, and mitochondrial protein synthesis, while the degradation of these proteins slightly increases. It also results in mitochondria with defective membrane potential and increased superoxide levels. These phenotypic traits suggest that GTPBP3 defects contribute to the pathogenesis of some oxidative phosphorylation diseases.
Collapse
|
9
|
Monleón D, Martínez-Vicente M, Esteve V, Yim L, Prado S, Armengod ME, Celda B. Structural insights into the GTPase domain of Escherichia coli MnmE protein. Proteins 2007; 66:726-39. [PMID: 17143896 DOI: 10.1002/prot.21186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Escherichia coli MnmE protein is a 50-kDa multidomain GTPase involved in tRNA modification. Its homologues in eukaryotes are crucial for mitochondrial respiration and, thus, it is thought that the human protein might be involved in mitochondrial diseases. Unlike Ras, MnmE shows a high intrinsic GTPase activity and requires effective GTP hydrolysis, and not simply GTP binding, to be functionally active. The isolated MnmE G-domain (165 residues) conserves the GTPase activity of the entire protein, suggesting that it contains the catalytic residues for GTP hydrolysis. To explore the GTP hydrolysis mechanism of MnmE, we analyzed the effect of low pH on binding and hydrolysis of GTP, as well as on the formation of a MnmE transition state mimic. GTP hydrolysis by MnmE, but not GTP binding or formation of a complex with mant-GDP and aluminium fluoride, is impaired at acidic pH, suggesting that the chemistry of the transition state mimic is different to that of the true transition state, and that some residue(s), critical for GTP hydrolysis, is severely affected by low pH. We use a nuclear magnetic resonance (NMR)-based approach to get insights into the MnmE structure and properties. The combined use of NMR restraints and homology structural information allowed the determination of the MnmE G-domain structure in its free form. Chemical shift structure-based prediction provided a good basis for structure refinement and validation. Our data support that MnmE, unlike other GTPases, does not use an arginine finger to drive catalysis, although Arg252 may play a role in stabilization of the transition state.
Collapse
Affiliation(s)
- Daniel Monleón
- Department of Physical Chemistry, University of Valencia, C/Dr. Moliner, 50, Burjassot 46100 Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Watanabe K. Role of Modified Nucleosides in the Translation Function of tRNAs from Extreme Thermophilic Bacteria and Animal Mitochondria. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2007. [DOI: 10.1246/bcsj.80.1253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Nishimura S, Watanabe K. The discovery of modified nucleosides from the early days to the present: A personal perspective. J Biosci 2006; 31:465-75. [PMID: 17206067 DOI: 10.1007/bf02705186] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Susumu Nishimura
- Center for TARA, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan.
| | | |
Collapse
|
12
|
Kirino Y, Yasukawa T, Marjavaara SK, Jacobs HT, Holt IJ, Watanabe K, Suzuki T. Acquisition of the wobble modification in mitochondrial tRNALeu(CUN) bearing the G12300A mutation suppresses the MELAS molecular defect. Hum Mol Genet 2006; 15:897-904. [PMID: 16446307 DOI: 10.1093/hmg/ddl007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The A3243G mutation in the mitochondrial gene for human mitochondrial (mt) tRNA(Leu(UUR)), responsible for decoding of UUR codons, is associated with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). We previously demonstrated that this mutation causes defects in 5-taurinomethyluridine (taum(5)U) modification at the anticodon first (wobble) position of the mutant mt tRNA(Leu(UUR)), leading to a UUG decoding deficiency and entraining severe respiratory defects. In addition, we previously identified a heteroplasmic mutation, G12300A, in the other mt leucine tRNA gene, mt tRNA(Leu(CUN)), which functions as a suppressor of the A3243G respiratory defect in cybrid cells containing A3243G mutant mtDNA. Although the G12300A mutation converts the anticodon sequence of mt tRNA(Leu(CUN)) from UAG to UAA, this tRNA carrying an unmodified wobble uridine still cannot decode the UUG codon. Mass spectrometric analysis of the suppressor mt tRNA(Leu(CUN)) carrying the G12300A mutation from the phenotypically revertant cells revealed that the wobble uridine acquires de novo taum(5)U modification. In vitro translation confirmed the functionality of the suppressor tRNA for decoding UUG codons. These results demonstrate that the acquisition of the wobble modification in another isoacceptor tRNA is critical for suppressing the MELAS mutation, and they highlight the primary role of the UUG decoding deficiency in the molecular pathogenesis of MELAS syndrome.
Collapse
Affiliation(s)
- Yohei Kirino
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Graduate School of Frontier Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Martínez-Vicente M, Yim L, Villarroya M, Mellado M, Pérez-Payá E, Björk GR, Armengod ME. Effects of mutagenesis in the switch I region and conserved arginines of Escherichia coli MnmE protein, a GTPase involved in tRNA modification. J Biol Chem 2005; 280:30660-70. [PMID: 15983041 DOI: 10.1074/jbc.m503223200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MnmE is an evolutionarily conserved, three domain GTPase involved in tRNA modification. In contrast to Ras proteins, MnmE exhibits a high intrinsic GTPase activity and requires GTP hydrolysis to be functionally active. Its G domain conserves the GTPase activity of the full protein, and thus, it should contain the catalytic residues responsible for this activity. In this work, mutational analysis of all conserved arginine residues of the MnmE G-domain indicates that MnmE, unlike other GTPases, does not use an arginine finger to drive catalysis. In addition, we show that residues in the G2 motif (249GTTRD253), which resides in the switch I region, are not important for GTP binding but play some role in stabilizing the transition state, specially Gly249 and Thr251. On the other hand, G2 mutations leading to a minor loss of the GTPase activity result in a non-functional MnmE protein. This indicates that GTP hydrolysis is a required but non-sufficient condition so that MnmE can mediate modification of tRNA. The conformational change of the switch I region associated with GTP hydrolysis seems to be crucial for the function of MnmE, and the invariant threonine (Thr251) of the G2 motif would be essential for such a change, because it cannot be substituted by serine. MnmE defects result in impaired growth, a condition that is exacerbated when defects in other genes involved in the decoding process are simultaneously present. This behavior is reminiscent to that found in yeast and stresses the importance of tRNA modification for gene expression.
Collapse
Affiliation(s)
- Marta Martínez-Vicente
- Laboratorio de Genética Molecular, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Kirino Y, Yasukawa T, Ohta S, Akira S, Ishihara K, Watanabe K, Suzuki T. Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc Natl Acad Sci U S A 2004; 101:15070-5. [PMID: 15477592 PMCID: PMC524061 DOI: 10.1073/pnas.0405173101] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Point mutations in the mitochondrial (mt) tRNA(Leu(UUR)) gene are responsible for mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), a subgroup of mitochondrial encephalomyopathic diseases. We previously showed that mt tRNA(Leu(UUR)) with an A3243G or T3271C mutation derived from patients with MELAS are deficient in a normal taurine-containing modification (taum5U; 5-taurinomethyluridine) at the anticodon wobble position. To examine decoding disorder of the mutant tRNA due to the wobble modification deficiency independent of the pathogenic point mutation itself, we used a molecular surgery technique to construct an mt tRNA(Leu(UUR)) molecule lacking the taurine modification but without the pathogenic mutation. This "operated" mt tRNA(Leu(UUR)) without the taurine modification showed severely reduced UUG translation but no decrease in UUA translation. We thus concluded that the UUG codon-specific translational defect of the mutant mt tRNAs(Leu(UUR)) is the primary cause of MELAS at the molecular level. This result could explain the complex I deficiency observed clinically in MELAS.
Collapse
Affiliation(s)
- Yohei Kirino
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | | | |
Collapse
|