1
|
Gong L, Pasqualetti F, Papouin T, Ching S. Astrocytes as a mechanism for contextually-guided network dynamics and function. PLoS Comput Biol 2024; 20:e1012186. [PMID: 38820533 PMCID: PMC11168681 DOI: 10.1371/journal.pcbi.1012186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/12/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Astrocytes are a ubiquitous and enigmatic type of non-neuronal cell and are found in the brain of all vertebrates. While traditionally viewed as being supportive of neurons, it is increasingly recognized that astrocytes play a more direct and active role in brain function and neural computation. On account of their sensitivity to a host of physiological covariates and ability to modulate neuronal activity and connectivity on slower time scales, astrocytes may be particularly well poised to modulate the dynamics of neural circuits in functionally salient ways. In the current paper, we seek to capture these features via actionable abstractions within computational models of neuron-astrocyte interaction. Specifically, we engage how nested feedback loops of neuron-astrocyte interaction, acting over separated time-scales, may endow astrocytes with the capability to enable learning in context-dependent settings, where fluctuations in task parameters may occur much more slowly than within-task requirements. We pose a general model of neuron-synapse-astrocyte interaction and use formal analysis to characterize how astrocytic modulation may constitute a form of meta-plasticity, altering the ways in which synapses and neurons adapt as a function of time. We then embed this model in a bandit-based reinforcement learning task environment, and show how the presence of time-scale separated astrocytic modulation enables learning over multiple fluctuating contexts. Indeed, these networks learn far more reliably compared to dynamically homogeneous networks and conventional non-network-based bandit algorithms. Our results fuel the notion that neuron-astrocyte interactions in the brain benefit learning over different time-scales and the conveyance of task-relevant contextual information onto circuit dynamics.
Collapse
Affiliation(s)
- Lulu Gong
- Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of California, Riverside, California, United States of America
| | - Thomas Papouin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - ShiNung Ching
- Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, United States of America
| |
Collapse
|
2
|
Benaroya H. Brain energetics, mitochondria, and traumatic brain injury. Rev Neurosci 2021; 31:363-390. [PMID: 32004148 DOI: 10.1515/revneuro-2019-0086] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
We review current thinking about, and draw connections between, brain energetics and metabolism, and between mitochondria and traumatic brain injury. Energy is fundamental to proper brain function. Its creation in a useful form for neurons and glia, and consistently in response to the brain's high energy needs, is critical for physiological pathways. Dysfunction in the mechanisms of energy production is at the center of neurological and neuropsychiatric pathologies. We examine the connections between energetics and mitochondria - the organelle responsible for almost all the energy production in the cell - and how secondary pathologies in traumatic brain injury result from energetic dysfunction. This paper interweaves these topics, a necessity since they are closely coupled, and identifies where there exist a lack of understanding and of data. In addition to summarizing current thinking in these disciplines, our goal is to suggest a framework for the mathematical modeling of mechanisms and pathways based on optimal energetic decisions.
Collapse
Affiliation(s)
- Haym Benaroya
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Omega-3 PUFAs Suppress IL-1β-Induced Hyperactivity of Immunoproteasomes in Astrocytes. Int J Mol Sci 2021; 22:ijms22115410. [PMID: 34063751 PMCID: PMC8196670 DOI: 10.3390/ijms22115410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
The role of immunoproteasome (iP) in astroglia, the cellular component of innate immunity, has not been clarified. The results so far indicate that neuroinflammation, a prominent hallmark of Alzheimer’s disease, strongly activates the iP subunits expression. Since omega-3 PUFAs possess anti-inflammatory and pro-resolving activity in the brain, we investigated the effect of DHA and EPA on the gene expression of constitutive (β1 and β5) and inducible (iβ1/LMP2 and iβ5/LMP7) proteasome subunits and proteasomal activity in IL-1β-stimulated astrocytes. We found that both PUFAs downregulated the expression of IL-1β-induced the iP subunits, but not the constitutive proteasome subunits. The chymotrypsin-like activity was inhibited in a dose-dependent manner by DHA, and much strongly in the lower concentration by EPA. Furthermore, we established that C/EBPα and C/EBPβ transcription factors, being the cis-regulatory element of the transcription complex, frequently activated by inflammatory mediators, participate in a reduction in the iP subunits’ expression. Moreover, the expression of connexin 43 the major gap junction protein in astrocytes, negatively regulated by IL-1β was markedly increased in PUFA-treated cells. These findings indicate that omega-3 PUFAs attenuate inflammation-induced hyperactivity of iPs in astrocytes and have a beneficial effect on preservation of interastrocytic communication by gap junctions.
Collapse
|
4
|
Jurisch-Yaksi N, Yaksi E, Kizil C. Radial glia in the zebrafish brain: Functional, structural, and physiological comparison with the mammalian glia. Glia 2020; 68:2451-2470. [PMID: 32476207 DOI: 10.1002/glia.23849] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/01/2023]
Abstract
The neuroscience community has witnessed a tremendous expansion of glia research. Glial cells are now on center stage with leading roles in the development, maturation, and physiology of brain circuits. Over the course of evolution, glia have highly diversified and include the radial glia, astroglia or astrocytes, microglia, oligodendrocytes, and ependymal cells, each having dedicated functions in the brain. The zebrafish, a small teleost fish, is no exception to this and recent evidences point to evolutionarily conserved roles for glia in the development and physiology of its nervous system. Due to its small size, transparency, and genetic amenability, the zebrafish has become an increasingly prominent animal model for brain research. It has enabled the study of neural circuits from individual cells to entire brains, with a precision unmatched in other vertebrate models. Moreover, its high neurogenic and regenerative potential has attracted a lot of attention from the research community focusing on neural stem cells and neurodegenerative diseases. Hence, studies using zebrafish have the potential to provide fundamental insights about brain development and function, and also elucidate neural and molecular mechanisms of neurological diseases. We will discuss here recent discoveries on the diverse roles of radial glia and astroglia in neurogenesis, in modulating neuronal activity and in regulating brain homeostasis at the brain barriers. By comparing insights made in various animal models, particularly mammals and zebrafish, our goal is to highlight the similarities and differences in glia biology among species, which could set new paradigms relevant to humans.
Collapse
Affiliation(s)
- Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St Olav University Hospital, Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Dresden, Germany.,Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Dresden, Germany
| |
Collapse
|
5
|
Fraunberger E, Esser MJ. Neuro-Inflammation in Pediatric Traumatic Brain Injury-from Mechanisms to Inflammatory Networks. Brain Sci 2019; 9:E319. [PMID: 31717597 PMCID: PMC6895990 DOI: 10.3390/brainsci9110319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Compared to traumatic brain injury (TBI) in the adult population, pediatric TBI has received less research attention, despite its potential long-term impact on the lives of many children around the world. After numerous clinical trials and preclinical research studies examining various secondary mechanisms of injury, no definitive treatment has been found for pediatric TBIs of any severity. With the advent of high-throughput and high-resolution molecular biology and imaging techniques, inflammation has become an appealing target, due to its mixed effects on outcome, depending on the time point examined. In this review, we outline key mechanisms of inflammation, the contribution and interactions of the peripheral and CNS-based immune cells, and highlight knowledge gaps pertaining to inflammation in pediatric TBI. We also introduce the application of network analysis to leverage growing multivariate and non-linear inflammation data sets with the goal to gain a more comprehensive view of inflammation and develop prognostic and treatment tools in pediatric TBI.
Collapse
Affiliation(s)
- Erik Fraunberger
- Alberta Children’s Hospital Research Institute, Calgary, AB T3B 6A8, Canada;
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Michael J. Esser
- Alberta Children’s Hospital Research Institute, Calgary, AB T3B 6A8, Canada;
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Pediatrics, Cumming School Of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
6
|
Glia-neuron interactions underlie state transitions to generalized seizures. Nat Commun 2019; 10:3830. [PMID: 31444362 PMCID: PMC6707163 DOI: 10.1038/s41467-019-11739-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/31/2019] [Indexed: 11/08/2022] Open
Abstract
Brain activity and connectivity alter drastically during epileptic seizures. The brain networks shift from a balanced resting state to a hyperactive and hypersynchronous state. It is, however, less clear which mechanisms underlie the state transitions. By studying neural and glial activity in zebrafish models of epileptic seizures, we observe striking differences between these networks. During the preictal period, neurons display a small increase in synchronous activity only locally, while the gap-junction-coupled glial network was highly active and strongly synchronized across large distances. The transition from a preictal state to a generalized seizure leads to an abrupt increase in neural activity and connectivity, which is accompanied by a strong alteration in glia-neuron interactions and a massive increase in extracellular glutamate. Optogenetic activation of glia excites nearby neurons through the action of glutamate and gap junctions, emphasizing a potential role for glia-glia and glia-neuron connections in the generation of epileptic seizures. During epileptic seizures, neural activity across the brain switches into a hyperactive and hypersynchronized state. Here, the authors report on the role of glia-glia and glia-neuron interactions in mediating the changes that result in the ictal state in a zebrafish model of epilepsy.
Collapse
|
7
|
Cinciute S. Translating the hemodynamic response: why focused interdisciplinary integration should matter for the future of functional neuroimaging. PeerJ 2019; 7:e6621. [PMID: 30941269 PMCID: PMC6438158 DOI: 10.7717/peerj.6621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/14/2019] [Indexed: 01/28/2023] Open
Abstract
The amount of information acquired with functional neuroimaging techniques, particularly fNIRS and fMRI, is rapidly growing and has enormous potential for studying human brain functioning. Therefore, many scientists focus on solving computational neuroimaging and Big Data issues to advance the discipline. However, the main obstacle—the accurate translation of the hemodynamic response (HR) by the investigation of a physiological phenomenon called neurovascular coupling—is still not fully overcome and, more importantly, often overlooked in this context. This article provides a brief and critical overview of significant findings from cellular biology and in vivo brain physiology with a focus on advancing existing HR modelling paradigms. A brief historical timeline of these disciplines of neuroscience is presented for readers to grasp the concept better, and some possible solutions for further scientific discussion are provided.
Collapse
Affiliation(s)
- Sigita Cinciute
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
8
|
Cinciute S, Daktariunas A, Ruksenas O. Hemodynamic effects of sex and handedness on the Wisconsin Card Sorting Test: the contradiction between neuroimaging and behavioural results. PeerJ 2018; 6:e5890. [PMID: 30498629 PMCID: PMC6252064 DOI: 10.7717/peerj.5890] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/08/2018] [Indexed: 02/03/2023] Open
Abstract
This study investigated the potential role of sex and handedness on the performance of a computerised Wisconsin Card Sorting Test (WCST) in healthy participants by applying functional near-infrared spectroscopy (fNIRS). We demonstrated significant (p < 0.05) sex-related differences of hemodynamic response in the prefrontal cortex of 70 healthy participants (female, n = 35 and male, n = 35; right-handed, n = 40 and left-handed, n = 30). In contrast, behavioural results of the WCST do not show sex bias, which is consistent with previous literature. Because of this, we compared ours and sparse previous fNIRS studies on the WCST. We propose that, according to recent studies of neurovascular coupling, this contradiction between neuroimaging and behavioural results may be explained by normal variability in neurovascular dynamics.
Collapse
Affiliation(s)
- Sigita Cinciute
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Algis Daktariunas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Osvaldas Ruksenas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
9
|
Pereira A, Furlan FA. Astrocytes and human cognition: modeling information integration and modulation of neuronal activity. Prog Neurobiol 2010; 92:405-20. [PMID: 20633599 DOI: 10.1016/j.pneurobio.2010.07.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 06/18/2010] [Accepted: 07/06/2010] [Indexed: 10/19/2022]
Abstract
Recent research focusing on the participation of astrocytes in glutamatergic tripartite synapses has revealed mechanisms that support cognitive functions common to human and other mammalian species, such as learning, perception, conscious integration, memory formation/retrieval and the control of voluntary behavior. Astrocytes can modulate neuronal activity by means of release of glutamate, d-serine, adenosine triphosphate and other signaling molecules, contributing to sustain, reinforce or depress pre- and post-synaptic membranes. We review molecular mechanisms present in tripartite synapses and model the cognitive role of astrocytes. Single protoplasmic astrocytes operate as a "Local Hub", integrating information patterns from neuronal and glial populations. Two mechanisms, here modeled as the "domino" and "carousel" effects, contribute to the formation of intercellular calcium waves. As waves propagate through gap junctions and reach other types of astrocytes (interlaminar, polarized, fibrous and varicose projection), the active astroglial network functions as a "Master Hub" that integrates results of distributed processing from several brain areas and supports conscious states. Response of this network would define the effect exerted on neuronal plasticity (membrane potentiation or depression), behavior and psychosomatic processes. Theoretical results of our modeling can contribute to the development of new experimental research programs to test cognitive functions of astrocytes.
Collapse
Affiliation(s)
- Alfredo Pereira
- Institute of Biosciences, State University of São Paulo (UNESP), Campus Rubião Jr., 18618-000 Botucatu-SP, Brazil.
| | | |
Collapse
|