1
|
Camoretti-Mercado B, Lockey RF. Airway smooth muscle pathophysiology in asthma. J Allergy Clin Immunol 2021; 147:1983-1995. [PMID: 34092351 DOI: 10.1016/j.jaci.2021.03.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/06/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
The airway smooth muscle (ASM) cell plays a central role in the pathogenesis of asthma and constitutes an important target for treatment. These cells control muscle tone and thus regulate the opening of the airway lumen and air passage. Evidence indicates that ASM cells participate in the airway hyperresponsiveness as well as the inflammatory and remodeling processes observed in asthmatic subjects. Therapeutic approaches require a comprehensive understanding of the structure and function of the ASM in both the normal and disease states. This review updates current knowledge about ASM and its effects on airway narrowing, remodeling, and inflammation in asthma.
Collapse
Affiliation(s)
- Blanca Camoretti-Mercado
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla.
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla
| |
Collapse
|
2
|
Li H, Yu H, Li Q. Striated myosin heavy chain gene is a crucial regulator of larval myogenesis in the pacific oyster Crassostrea gigas. Int J Biol Macromol 2021; 179:388-397. [PMID: 33689771 DOI: 10.1016/j.ijbiomac.2021.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/25/2023]
Abstract
Pacific oyster (Crassostrea gigas), the most productive economical bivalve mollusc, is identified as an attractive model for developmental studies due to its classical mosaic developmental pattern. Myosin heavy chain is a structural and functional component of myosin, the key muscle protein of thick filament. Here, full length cDNA of striated myosin heavy chains in C. gigas (CgSmhc) was obtained, and the expression profiles were examined in different development stage. CgSmhc had a high expression level in trochophore and D-shaped stage during embryo-larval stage. In adult, CgSmhc was a muscle-specific gene and primarily expressed in muscle tissues. Then, activity of 5' flanking region of CgSmhc were examined through an reconstructed EGFP vector. The results indicated that 3098 bp 5'-flanking region of CgSmhc owned various conserved binding sites of myogenesis-related regulatory elements, and the 2000 bp 5'-flanking sequence was sufficient to induce the CgSmhc expression. Subsequently, the CRISPR/Cas9-mediated target disruption of CgSmhc was generated by co-injection of Cas9mRNA and CgSmhc-sgRNAs into one-cell stage embryos of C. gigas. Loss of CgSmhc had a visible effect on the sarcomeric organization of thin filaments in larval musculature, indicating that CgSmhc was required during larval myogenesis to regulate the correct assembly of sarcomere.
Collapse
Affiliation(s)
- Huijuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
3
|
Chevigny M, Guérin-Montpetit K, Vargas A, Lefebvre-Lavoie J, Lavoie JP. Contribution of SRF, Elk-1, and myocardin to airway smooth muscle remodeling in heaves, an asthma-like disease of horses. Am J Physiol Lung Cell Mol Physiol 2015; 309:L37-45. [PMID: 25979077 DOI: 10.1152/ajplung.00050.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/11/2015] [Indexed: 12/28/2022] Open
Abstract
Myocyte hyperplasia and hypertrophy contribute to the increased mass of airway smooth muscle (ASM) in asthma. Serum-response factor (SRF) is a transcription factor that regulates myocyte differentiation in vitro in vascular and intestinal smooth muscles. When SRF is associated with phosphorylated (p)Elk-1, it promotes ASM proliferation while binding to myocardin (MYOCD) leading to the expression of contractile elements in these tissues. The objective of this study was therefore to characterize the expression of SRF, pElk-1, and MYOCD in ASM cells from central and peripheral airways in heaves, a spontaneously occurring asthma-like disease of horses, and in controls. Six horses with heaves and five aged-matched controls kept in the same environment were studied. Nuclear protein expression of SRF, pElk-1, and MYOCD was evaluated in peripheral airways and endobronchial biopsies obtained during disease remission and after 1 and 30 days of naturally occurring antigenic exposure using immunohistochemistry and immunofluorescence techniques. Nuclear expression of SRF (P = 0.03, remission vs. 30 days) and MYOCD (P = 0.05, controls vs. heaves at 30 days) increased in the peripheral airways of horses with heaves during disease exacerbation, while MYOCD (P = 0.04, remission vs. 30 days) decreased in the central airways of control horses. No changes were observed in the expression of pElk-1 protein in either tissue. In conclusion, SRF and its cofactor MYOCD likely contribute to the hypertrophy of peripheral ASM observed in equine asthmatic airways, while the remodeling of the central airways is more static or involves different transcription factors.
Collapse
Affiliation(s)
- Mylène Chevigny
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Karine Guérin-Montpetit
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Amandine Vargas
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Josiane Lefebvre-Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
4
|
Zhang XJ, Jiang DS, Li H. The interferon regulatory factors as novel potential targets in the treatment of cardiovascular diseases. Br J Pharmacol 2015; 172:5457-76. [PMID: 25131895 DOI: 10.1111/bph.12881] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/26/2014] [Accepted: 08/12/2014] [Indexed: 02/06/2023] Open
Abstract
The family of interferon regulatory factors (IRFs) consists of nine members (IRF1-IRF9) in mammals. They act as transcription factors for the interferons and thus exert essential regulatory functions in the immune system and in oncogenesis. Recent clinical and experimental studies have identified critically important roles of the IRFs in cardiovascular diseases, arising from their participation in divergent and overlapping molecular programmes beyond the immune response. Here we review the current knowledge of the regulatory effects and mechanisms of IRFs on the immune system. The role of IRFs and their potential molecular mechanisms as novel stress sensors and mediators of cardiovascular diseases are highlighted.
Collapse
Affiliation(s)
- Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ding-Sheng Jiang
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Interferon regulatory factor 8 modulates phenotypic switching of smooth muscle cells by regulating the activity of myocardin. Mol Cell Biol 2013; 34:400-14. [PMID: 24248596 DOI: 10.1128/mcb.01070-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Interferon regulatory factor 8 (IRF8), a member of the IRF transcription factor family, was recently implicated in vascular diseases. In the present study, using the mouse left carotid artery wire injury model, we unexpectedly observed that the expression of IRF8 was greatly enhanced in smooth muscle cells (SMCs) by injury. Compared with the wild-type controls, IRF8 global knockout mice exhibited reduced neointimal lesions and maintained SMC marker gene expression. We further generated SMC-specific IRF8 transgenic mice using an SM22α-driven IRF8 plasmid construct. In contrast to the knockout mice, mice with SMC-overexpressing IRF8 exhibited a synthetic phenotype and enhanced neointima formation. Mechanistically, IRF8 inhibited SMC marker gene expression through regulating serum response factor (SRF) transactivation in a myocardin-dependent manner. Furthermore, a coimmunoprecipitation assay indicated a direct interaction of IRF8 with myocardin, in which a specific region of myocardin was essential for recruiting acetyltransferase p300. Altogether, IRF8 is crucial in modulating SMC phenotype switching and neointima formation in response to vascular injury via direct interaction with the SRF/myocardin complex.
Collapse
|
6
|
Ramachandran A, Gangopadhyay SS, Krishnan R, Ranpura SA, Rajendran K, Ram-Mohan S, Mulone M, Gong EM, Adam RM. JunB mediates basal- and TGFβ1-induced smooth muscle cell contractility. PLoS One 2013; 8:e53430. [PMID: 23308222 PMCID: PMC3537614 DOI: 10.1371/journal.pone.0053430] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 11/30/2012] [Indexed: 01/17/2023] Open
Abstract
Smooth muscle contraction is a dynamic process driven by acto-myosin interactions that are controlled by multiple regulatory proteins. Our studies have shown that members of the AP-1 transcription factor family control discrete behaviors of smooth muscle cells (SMC) such as growth, migration and fibrosis. However, the role of AP-1 in regulation of smooth muscle contractility is incompletely understood. In this study we show that the AP-1 family member JunB regulates contractility in visceral SMC by altering actin polymerization and myosin light chain phosphorylation. JunB levels are robustly upregulated downstream of transforming growth factor beta-1 (TGFβ1), a known inducer of SMC contractility. RNAi-mediated silencing of JunB in primary human bladder SMC (pBSMC) inhibited cell contractility under both basal and TGFβ1-stimulated conditions, as determined using gel contraction and traction force microscopy assays. JunB knockdown did not alter expression of the contractile proteins α-SMA, calponin or SM22α. However, JunB silencing decreased levels of Rho kinase (ROCK) and myosin light chain (MLC20). Moreover, JunB silencing attenuated phosphorylation of the MLC20 regulatory phosphatase subunit MYPT1 and the actin severing protein cofilin. Consistent with these changes, cells in which JunB was knocked down showed a reduction in the F:G actin ratio in response to TGFβ1. Together these findings demonstrate a novel function for JunB in regulating visceral smooth muscle cell contractility through effects on both myosin and the actin cytoskeleton.
Collapse
Affiliation(s)
- Aruna Ramachandran
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Samudra S. Gangopadhyay
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sandeep A. Ranpura
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kavitha Rajendran
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Sumati Ram-Mohan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Michelle Mulone
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Edward M. Gong
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rosalyn M. Adam
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Boucher J, Gridley T, Liaw L. Molecular pathways of notch signaling in vascular smooth muscle cells. Front Physiol 2012; 3:81. [PMID: 22509166 PMCID: PMC3321637 DOI: 10.3389/fphys.2012.00081] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 03/19/2012] [Indexed: 11/20/2022] Open
Abstract
Notch signaling in the cardiovascular system is important during embryonic development, vascular repair of injury, and vascular pathology in humans. The vascular smooth muscle cell (VSMC) expresses multiple Notch receptors throughout its life cycle, and responds to Notch ligands as a regulatory mechanism of differentiation, recruitment to growing vessels, and maturation. The goal of this review is to provide an overview of the current understanding of the molecular basis for Notch regulation of VSMC phenotype. Further, we will explore Notch interaction with other signaling pathways important in VSMC.
Collapse
Affiliation(s)
- Joshua Boucher
- Center for Molecular Medicine, Maine Medical Center Research Institute Scarborough, ME, USA
| | | | | |
Collapse
|
8
|
Cardiac expression of ms1/STARS, a novel gene involved in cardiac development and disease, is regulated by GATA4. Mol Cell Biol 2012; 32:1830-43. [PMID: 22431517 DOI: 10.1128/mcb.06374-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ms1/STARS is a novel muscle-specific actin-binding protein that specifically modulates the myocardin-related transcription factor (MRTF)-serum response factor (SRF) regulatory axis within striated muscle. This ms1/STARS-dependent regulatory axis is of central importance within the cardiac gene regulatory network and has been implicated in cardiac development and postnatal cardiac function/homeostasis. The dysregulation of ms1/STARS is associated with and causative of pathological cardiac phenotypes, including cardiac hypertrophy and cardiomyopathy. In order to gain an understanding of the mechanisms governing ms1/STARS expression in the heart, we have coupled a comparative genomic in silico analysis with reporter, gain-of-function, and loss-of-function approaches. Through this integrated analysis, we have identified three evolutionarily conserved regions (ECRs), α, SINA, and DINA, that act as cis-regulatory modules and confer differential cardiac cell-specific activity. Two of these ECRs, α and DINA, displayed distinct regulatory sensitivity to the core cardiac transcription factor GATA4. Overall, our results demonstrate that within embryonic, neonatal, and adult hearts, GATA4 represses ms1/STARS expression with the pathologically associated depletion of GATA4 (type 1/type 2 diabetic models), resulting in ms1/STARS upregulation. This GATA4-dependent repression of ms1/STARS expression has major implications for MRTF-SRF signaling in the context of cardiac development and disease.
Collapse
|
9
|
Asaduzzaman M, Kinoshita S, Siddique BS, Asakawa S, Watabe S. Multiple cis-elements in the 5'-flanking region of embryonic/larval fast-type of the myosin heavy chain gene of torafugu, MYH(M743-2), function in the transcriptional regulation of its expression. Gene 2011; 489:41-54. [PMID: 21893174 DOI: 10.1016/j.gene.2011.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/10/2011] [Accepted: 08/17/2011] [Indexed: 01/10/2023]
Abstract
The myosin heavy chain gene, MYH(M743-2), is highly expressed in fast muscle fibers of torafugu embryos and larvae, suggesting its functional roles for embryonic and larval muscle development. However, the transcriptional regulatory mechanism involved in its expression remained unknown. Here, we analyzed the 2075bp 5'-flanking region of torafugu MYH(M743-2) to examine the spatial and temporal regulation by using transgenic and transient expression techniques in zebrafish embryos. Combining both transient and transgenic analyses, we demonstrated that the 2075bp 5'-flanking sequences was sufficient for its expression in skeletal, craniofacial and pectoral fin muscles. The immunohistochemical observation revealed that the zebrafish larvae from the stable transgenic line consistently expressed enhanced green fluorescent protein (EGFP) in fast muscle fibers. Promoter deletion analyses demonstrated that the minimum 468bp promoter region could direct MYH(M743-2) expression in zebrafish larvae. We discovered that the serum response factor (SRF)-like binding sites are required for promoting MYH(M743-2) expression and myoblast determining factor (MyoD) and myocyte enhancer factor-2 (MEF2) binding sites participate in the transcriptional control of MYH(M743-2) expression in fast skeletal muscles. We further discovered that MyoD binding sites, but not MEF2, participate in the transcriptional regulation of MYH(M743-2) expression in pectoral fin and craniofacial muscles. These results clearly demonstrated that multiple cis-elements in the 5'-flanking region of MYH(M743-2) function in the transcriptional control of its expression.
Collapse
Affiliation(s)
- Md Asaduzzaman
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
10
|
Goss AM, Tian Y, Cheng L, Yang J, Zhou D, Cohen ED, Morrisey EE. Wnt2 signaling is necessary and sufficient to activate the airway smooth muscle program in the lung by regulating myocardin/Mrtf-B and Fgf10 expression. Dev Biol 2011; 356:541-52. [PMID: 21704027 DOI: 10.1016/j.ydbio.2011.06.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 02/08/2023]
Abstract
Smooth muscle in the lung is thought to derive from the developing lung mesenchyme. Smooth muscle formation relies upon coordination of both autocrine and paracrine signaling between the budding epithelium and adjacent mesenchyme to govern its proliferation and differentiation. However, the pathways initiating the earliest aspects of smooth muscle specification and differentiation in the lung are poorly understood. Here, we identify the Wnt2 ligand as a critical regulator of the earliest aspects of lung airway smooth muscle development. Using Wnt2 loss and gain of function models, we show that Wnt2 signaling is necessary and sufficient for activation of a transcriptional and signaling network critical for smooth muscle specification and differentiation including myocardin/Mrtf-B and the signaling factor Fgf10. These studies place Wnt2 high in a hierarchy of signaling molecules that promote the earliest aspects of lung airway smooth muscle development.
Collapse
Affiliation(s)
- Ashley M Goss
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Weng M, Raher MJ, Leyton P, Combs TP, Scherer PE, Bloch KD, Medoff BD. Adiponectin decreases pulmonary arterial remodeling in murine models of pulmonary hypertension. Am J Respir Cell Mol Biol 2010; 45:340-7. [PMID: 21075862 DOI: 10.1165/rcmb.2010-0316oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Remodeling of the pulmonary arteries is a common feature among the heterogeneous disorders that cause pulmonary hypertension. In these disorders, the remodeled pulmonary arteries often demonstrate inflammation and an accumulation of pulmonary artery smooth muscle cells (PASMCs) within the vessels. Adipose tissue secretes multiple bioactive mediators (adipokines) that can influence both inflammation and remodeling, suggesting that adipokines may contribute to the development of pulmonary hypertension. We recently reported on a model of pulmonary hypertension induced by vascular inflammation, in which a deficiency of the adipokine adiponectin (APN) was associated with the extensive proliferation of PASMCs and increased pulmonary artery pressures. Based on these data, we hypothesize that APN can suppress pulmonary hypertension by directly inhibiting the proliferation of PASMCs. Here, we tested the effects of APN overexpression on pulmonary arterial remodeling by using APN-overexpressing mice in a model of pulmonary hypertension induced by inflammation. Consistent with our hypothesis, mice that overexpressed APN manfiested reduced pulmonary hypertension and remodeling compared with wild-type mice, despite developing similar levels of pulmonary vascular inflammation in the model. The overexpression of APN was also protective in a hypoxic model of pulmonary hypertension. Furthermore, APN suppressed the proliferation of PASMCs, and reduced the activity of the serum response factor-serum response element pathway, which is a critical signaling pathway for smooth muscle cell proliferation. Overall, these data suggest that APN can regulate pulmonary hypertension and pulmonary arterial remodeling through its direct effects on PASMCs. Hence, the activation of APN-like activity in the pulmonary vasculature may be beneficial in pulmonary hypertension.
Collapse
Affiliation(s)
- Meiqian Weng
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Ustiyan V, Wang IC, Ren X, Zhang Y, Snyder J, Xu Y, Wert SE, Lessard JL, Kalin TV, Kalinichenko VV. Forkhead box M1 transcriptional factor is required for smooth muscle cells during embryonic development of blood vessels and esophagus. Dev Biol 2009; 336:266-79. [PMID: 19835856 DOI: 10.1016/j.ydbio.2009.10.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 09/17/2009] [Accepted: 10/06/2009] [Indexed: 12/16/2022]
Abstract
The forkhead box m1 (Foxm1 or Foxm1b) transcription factor (previously called HFH-11B, Trident, Win, or MPP2) is expressed in a variety of tissues during embryogenesis, including vascular, airway, and intestinal smooth muscle cells (SMCs). Although global deletion of Foxm1 in Foxm1(-/-) mice is lethal in the embryonic period due to multiple abnormalities in the liver, heart, and lung, the specific role of Foxm1 in SMC remains unknown. In the present study, Foxm1 was deleted conditionally in the developing SMC (smFoxm1(-/-) mice). The majority of smFoxm1(-/-) mice died immediately after birth due to severe pulmonary hemorrhage and structural defects in arterial wall and esophagus. Although Foxm1 deletion did not influence SMC differentiation, decreased proliferation of SMC was found in smFoxm1(-/-) blood vessels and esophagus. Depletion of Foxm1 in cultured SMC caused G(2) arrest and decreased numbers of cells undergoing mitosis. Foxm1-deficiency in vitro and in vivo was associated with reduced expression of cell cycle regulatory genes, including cyclin B1, Cdk1-activator Cdc25b phosphatase, Polo-like 1 and JNK1 kinases, and cMyc transcription factor. Foxm1 is critical for proliferation of smooth muscle cells and is required for proper embryonic development of blood vessels and esophagus.
Collapse
Affiliation(s)
- Vladimir Ustiyan
- Divisions of Pulmonary Biology, Perinatal Institute of the Cincinnati Children's Hospital Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Camoretti-Mercado B, Fernandes DJ, Dewundara S, Churchill J, Ma L, Kogut PC, McConville JF, Parmacek MS, Solway J. Inhibition of transforming growth factor beta-enhanced serum response factor-dependent transcription by SMAD7. J Biol Chem 2006; 281:20383-92. [PMID: 16690609 DOI: 10.1074/jbc.m602748200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Transforming growth factor (TGF)-beta is present in large amounts in the airways of patients with asthma and with other diseases of the lung. We show here that TGFbeta treatment increased transcriptional activation of SM22alpha, a smooth muscle-specific promoter, in airway smooth muscle cells, and we demonstrate that this effect stems in part from TGFbeta-induced enhancement of serum response factor (SRF) DNA binding and transcription promoting activity. Overexpression of Smad7 inhibited TGFbeta-induced stimulation of SRF-dependent promoter function, and chromatin immunoprecipitation as well as co-immunoprecipitation assays established that endogenous or recombinant SRF interacts with Smad7 within the nucleus. The SRF binding domain of Smad7 mapped to the C-terminal half of the Smad7 molecule. TGFbeta treatment weakened Smad7 association with SRF, and conversely the Smad7-SRF interaction was increased by inhibition of the TGFbeta pathway through overexpression of a dominant negative mutant of TGFbeta receptor I or of Smad3 phosphorylation-deficient mutant. Our findings thus reveal that SRF-Smad7 interactions in part mediate TGFbeta regulation of gene transcription in airway smooth muscle. This offers potential targets for interventions in treating lung inflammation and asthma.
Collapse
|
15
|
René C, Taulan M, Iral F, Doudement J, L'Honoré A, Gerbon C, Demaille J, Claustres M, Romey MC. Binding of serum response factor to cystic fibrosis transmembrane conductance regulator CArG-like elements, as a new potential CFTR transcriptional regulation pathway. Nucleic Acids Res 2005; 33:5271-90. [PMID: 16170155 PMCID: PMC1216340 DOI: 10.1093/nar/gki837] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CFTR expression is tightly controlled by a complex network of ubiquitous and tissue-specific cis-elements and trans-factors. To better understand mechanisms that regulate transcription of CFTR, we examined transcription factors that specifically bind a CFTR CArG-like motif we have previously shown to modulate CFTR expression. Gel mobility shift assays and chromatin immunoprecipitation analyses demonstrated the CFTR CArG-like motif binds serum response factor both in vitro and in vivo. Transient co-transfections with various SRF expression vector, including dominant-negative forms and small interfering RNA, demonstrated that SRF significantly increases CFTR transcriptional activity in bronchial epithelial cells. Mutagenesis studies suggested that in addition to SRF other co-factors, such as Yin Yang 1 (YY1) previously shown to bind the CFTR promoter, are potentially involved in the CFTR regulation. Here, we show that functional interplay between SRF and YY1 might provide interesting perspectives to further characterize the underlying molecular mechanism of the basal CFTR transcriptional activity. Furthermore, the identification of multiple CArG binding sites in highly conserved CFTR untranslated regions, which form specific SRF complexes, provides direct evidence for a considerable role of SRF in the CFTR transcriptional regulation into specialized epithelial lung cells.
Collapse
Affiliation(s)
- Céline René
- Laboratoire de Génétique Moléculaire et Chromosomique, Institut Universitaire de Recherche Clinique, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Miano JM, Ramanan N, Georger MA, de Mesy Bentley KL, Emerson RL, Balza RO, Xiao Q, Weiler H, Ginty DD, Misra RP. Restricted inactivation of serum response factor to the cardiovascular system. Proc Natl Acad Sci U S A 2004; 101:17132-7. [PMID: 15569937 PMCID: PMC535359 DOI: 10.1073/pnas.0406041101] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Serum response factor (SRF) directs programs of gene expression linked to growth and muscle differentiation. To investigate the role of SRF in cardiovascular development, we generated mice in which SRF is knocked out in >80% of cardiomyocytes and >50% of vascular smooth muscle cells (SMC) through SM22alpha-Cre-mediated excision of SRF's promoter and first exon. Mutant mice display vascular patterning, cardiac looping, and SRF-dependent gene expression through embryonic day (e)9.5. At e10.5, attenuation in cardiac trabeculation and compact layer expansion is noted, with an attendant decrease in vascular SMC recruitment to the dorsal aorta. Ultrastructurally, cardiac sarcomeres and Z disks are highly disorganized in mutant embryos. Moreover, SRF mutant mice exhibit vascular SMC lacking organizing actin/intermediate filament bundles. These structural defects in the heart and vasculature coincide with decreases in SRF-dependent gene expression, such that by e11.5, when mutant embryos succumb to death, no SRF-dependent mRNA expression is evident. These results suggest a vital role for SRF in contractile/cytoskeletal architecture necessary for the proper assembly and function of cardiomyocytes and vascular SMC.
Collapse
Affiliation(s)
- Joseph M Miano
- Center for Cardiovascular Research, Aab Institute of Biomedical Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Spin JM, Nallamshetty S, Tabibiazar R, Ashley EA, King JY, Chen M, Tsao PS, Quertermous T. Transcriptional profiling of in vitro smooth muscle cell differentiation identifies specific patterns of gene and pathway activation. Physiol Genomics 2004; 19:292-302. [PMID: 15340120 DOI: 10.1152/physiolgenomics.00148.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mesodermal and epidermal precursor cells undergo phenotypic changes during differentiation to the smooth muscle cell (SMC) lineage that are relevant to pathophysiological processes in the adult. Molecular mechanisms that underlie lineage determination and terminal differentiation of this cell type have received much attention, but the genetic program that regulates these processes has not been fully defined. Study of SMC differentiation has been facilitated by development of the P19-derived A404 embryonal cell line, which differentiates toward this lineage in the presence of retinoic acid and allows selection for cells adopting a SMC fate through a differentiation-specific drug marker. We sought to define global alterations in gene expression by studying A404 cells during SMC differentiation with oligonucleotide microarray transcriptional profiling. Using an in situ 60-mer array platform with more than 20,000 mouse genes derived from the National Institute on Aging clone set, we identified 2,739 genes that were significantly upregulated after differentiation was completed (false-detection ratio <1). These genes encode numerous markers known to characterize differentiated SMC, as well as many unknown factors. We further characterized the sequential patterns of gene expression during the differentiation time course, particularly for known transcription factor families, providing new insights into the regulation of the differentiation process. Changes in genes associated with specific biological ontology-based pathways were evaluated, and temporal trends were identified for functional pathways. In addition to confirming the utility of the A404 model, our data provide a large-scale perspective of gene regulation during SMC differentiation.
Collapse
Affiliation(s)
- Joshua M Spin
- Donald W. Reynolds Cardiovascular Clinical Research Center, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|