1
|
Jorgensen AN, Rashdan NA, Rao KNS, Delgadillo LF, Kolluru GK, Krzywanski DM, Pattillo CB, Kevil CG, Nam HW. Neurogranin expression regulates mitochondrial function and redox balance in endothelial cells. Redox Biol 2024; 70:103085. [PMID: 38359746 PMCID: PMC10878108 DOI: 10.1016/j.redox.2024.103085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024] Open
Abstract
Endothelial dysfunction and endothelial activation are common early events in vascular diseases and can arise from mitochondrial dysfunction. Neurogranin (Ng) is a 17kD protein well known to regulate intracellular Ca2+-calmodulin (CaM) complex signaling, and its dysfunction is significantly implicated in brain aging and neurodegenerative diseases. We found that Ng is also expressed in human aortic endothelial cells (HAECs), and depleting Ng promotes Ca2+-CaM complex-dependent endothelial activation and redox imbalances. Endothelial-specific Ng knockout (Cre-CDH5-Ngf/f) mice demonstrate a significant delay in the flow-mediated dilation (FMD) response. Therefore, it is critical to characterize how endothelial Ng expression regulates reactive oxygen species (ROS) generation and affects cardiovascular disease. Label-free quantification proteomics identified that mitochondrial dysfunction and the oxidative phosphorylation pathway are significantly changed in the aorta of Cre-CDH5-Ngf/f mice. We found that a significant amount of Ng is expressed in the mitochondrial fraction of HAECs using western blotting and colocalized with the mitochondrial marker, COX IV, using immunofluorescence staining. Seahorse assay demonstrated that a lack of Ng decreases mitochondrial respiration. Treatment with MitoEbselen significantly restores the oxygen consumption rate in Ng knockdown cells. With the RoGFP-Orp1 approach, we identified that Ng knockdown increases mitochondrial-specific hydrogen peroxide (H2O2) production, and MitoEbselen treatment significantly reduced mitochondrial ROS (mtROS) levels in Ng knockdown cells. These results suggest that Ng plays a significant role in mtROS production. We discovered that MitoEbselen treatment also rescues decreased eNOS expression and nitric oxide (NO) levels in Ng knockdown cells, which implicates the critical role of Ng in mtROS-NO balance in the endothelial cells.
Collapse
Affiliation(s)
- Ashton N Jorgensen
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Nabil A Rashdan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - K N Shashanka Rao
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Luisa F Delgadillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Gopi K Kolluru
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - David M Krzywanski
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Hyung W Nam
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA.
| |
Collapse
|
2
|
Nam HW, Grant CA, Jorgensen AN, Holtz-Heppelmann CJ, Trutschl M, Cvek U. Neurogranin Regulates Alcohol Sensitivity through AKT Pathway in the Nucleus Accumbens. Proteomics 2019; 20:e1900266. [PMID: 31814311 DOI: 10.1002/pmic.201900266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/19/2019] [Indexed: 01/03/2023]
Abstract
Dysfunction of glutamate neurotransmission in the nucleus accumbens (NAc) has been implicated in the pathophysiology of alcohol use disorders (AUD). Neurogranin (Ng) is exclusively expressed in the brain and mediates N-methyl-d-aspartate receptor (NMDAR) hypo-function by regulating the intracellular calcium-calmodulin (Ca2+ -CaM) pathway. Ng null mice (Ng-/- mice) demonstrate increased alcohol drinking compared to wild-type mice, while also showing less tolerance to the effect of alcohol. To identify the molecular mechanism related to alcohol seeking, both in vivo microdialysis and label-free quantification proteomics comparing Ng genotype and effects of alcohol treatment on the NAc are utilized. There is significant difference in glutamate and gamma-aminobutyric acid (GABA) neurotransmission between genotypes; however, alcohol administration normalizes both glutamate and GABA levels in the NAc. Using label-free proteomics, 427 protein expression changes are identified against alcohol treatment in the NAc among 4347 total proteins detected. Bioinformatics analyses reveal significant molecular differences in Ng null mice in response to acute alcohol treatment. Ingenuity pathway analysis found that the AKT network is altered significantly between genotypes, which may increase the sensitivity of alcohol in Ng null mice. The pharmacoproteomics results presented here illustrate a possible molecular basis of the alcohol sensitivity through Ng signaling in the NAc.
Collapse
Affiliation(s)
- Hyung W Nam
- Department of Pharmacology, Toxicology, and Neuroscience, Health Science Center, Louisiana State University, Shreveport, LA, 71130, USA
| | - Caleb A Grant
- Department of Pharmacology, Toxicology, and Neuroscience, Health Science Center, Louisiana State University, Shreveport, LA, 71130, USA
| | - Ashton N Jorgensen
- Department of Pharmacology, Toxicology, and Neuroscience, Health Science Center, Louisiana State University, Shreveport, LA, 71130, USA
| | | | - Marjan Trutschl
- Department of Computer Science, Louisiana State University-Shreveport, Shreveport, LA, 71115, USA
| | - Urska Cvek
- Department of Computer Science, Louisiana State University-Shreveport, Shreveport, LA, 71115, USA
| |
Collapse
|
3
|
Germany CE, Reker AN, Hinton DJ, Oliveros A, Shen X, Andres-Beck LG, Wininger KM, Trutschl M, Cvek U, Choi DS, Nam HW. Pharmacoproteomics Profile in Response to Acamprosate Treatment of an Alcoholism Animal Model. Proteomics 2019; 18:e1700417. [PMID: 29437267 DOI: 10.1002/pmic.201700417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/19/2018] [Indexed: 12/20/2022]
Abstract
Acamprosate is an FDA-approved medication for the treatment of alcoholism that is unfortunately only effective in certain patients. Although acamprosate is known to stabilize the hyper-glutamatergic state in alcoholism, pharmacological mechanisms of action in brain tissue remains unknown. To investigate the mechanism of acamprosate efficacy, the authors employ a pharmacoproteomics approach using an animal model of alcoholism, type 1 equilibrative nucleoside transporter (ENT1) null mice. The results demonstrate that acamprosate treatment significantly decreased both ethanol drinking and preference in ENT1 null mice compared to that of wild-type mice. Then, to elucidate acamprosate efficacy mechanism in ENT1 null mice, the authors utilize label-free quantification proteomics comparing both genotype and acamprosate treatment effects in the nucleus accumbens (NAc). A total of 1040 protein expression changes are identified in the NAc among 3634 total proteins detected. The proteomics and Western blot result demonstrate that acamprosate treatment decreased EAAT expression implicating stabilization of the hyper-glutamatergic condition in ENT1 null mice. Pathway analysis suggests that acamprosate treatment in ENT1 null mice seems to rescue glutamate toxicity through restoring of RTN4 and NF-κB medicated neuroimmune signaling compared to wild-type mice. Overall, pharmacoproteomics approaches suggest that neuroimmune restoration is a potential efficacy mechanism in the acamprosate treatment of certain sub-populations of alcohol dependent subjects.
Collapse
Affiliation(s)
- Caroline E Germany
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Ashlie N Reker
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - David J Hinton
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Alfredo Oliveros
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Xinggui Shen
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Lindsey G Andres-Beck
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Katheryn M Wininger
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Marjan Trutschl
- Department of Computer Science, Louisiana State University-Shreveport, Shreveport, LA, USA
| | - Urska Cvek
- Department of Computer Science, Louisiana State University-Shreveport, Shreveport, LA, USA
| | - Doo-Sup Choi
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Hyung W Nam
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
4
|
Manich M, Hernandez-Cuevas N, Ospina-Villa JD, Syan S, Marchat LA, Olivo-Marin JC, Guillén N. Morphodynamics of the Actin-Rich Cytoskeleton in Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:179. [PMID: 29896453 PMCID: PMC5986921 DOI: 10.3389/fcimb.2018.00179] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/09/2018] [Indexed: 02/01/2023] Open
Abstract
Entamoeba histolytica is the anaerobic protozoan parasite responsible for human amoebiasis, the third most deadly parasitic disease worldwide. This highly motile eukaryotic cell invades human tissues and constitutes an excellent experimental model of cell motility and cell shape deformation. The absence of extranuclear microtubules in Entamoeba histolytica means that the actin-rich cytoskeleton takes on a crucial role in not only amoebic motility but also other processes sustaining pathogenesis, such as the phagocytosis of human cells and the parasite's resistance of host immune responses. Actin is highly conserved among eukaryotes, although diverse isoforms exist in almost all organisms studied to date. However, E. histolytica has a single actin protein, the structure of which differs significantly from those of its human homologs. Here, we studied the expression, structure and dynamics of actin in E. histolytica. We used molecular and cellular approaches to evaluate actin gene expression during intestinal invasion by E. histolytica trophozoites. Based on a three-dimensional structural bioinformatics analysis, we characterized protein domains differences between amoebic actin and human actin. Fine-tuned molecular dynamics simulations enabled us to examine protein motion and refine the three-dimensional structures of both actins, including elements potentially accounting for differences changes in the affinity properties of amoebic actin and deoxyribonuclease I. The dynamic, multifunctional nature of the amoebic cytoskeleton prompted us to examine the pleiotropic forms of actin structures within live E. histolytica cells; we observed the cortical cytoskeleton, stress fibers, "dot-like" structures, adhesion plates, and macropinosomes. In line with these data, a proteomics study of actin-binding proteins highlighted the Arp2/3 protein complex as a crucial element for the development of macropinosomes and adhesion plaques.
Collapse
Affiliation(s)
- Maria Manich
- BioImaging Unit, Institut Pasteur, Paris, France.,Cell Biology of Parasitism Unit, Institut Pasteur, Paris, France
| | | | - Juan D Ospina-Villa
- Instituto Politécnico Nacional, Escuela Nacional de Medicina y Homeopatía, Mexico City, Mexico
| | - Sylvie Syan
- Cell Biology of Parasitism Unit, Institut Pasteur, Paris, France
| | - Laurence A Marchat
- Instituto Politécnico Nacional, Escuela Nacional de Medicina y Homeopatía, Mexico City, Mexico
| | | | - Nancy Guillén
- Cell Biology of Parasitism Unit, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, CNRS-ERL9195, Paris, France
| |
Collapse
|
5
|
Nishida KM, Sakakibara K, Iwasaki YW, Yamada H, Murakami R, Murota Y, Kawamura T, Kodama T, Siomi H, Siomi MC. Hierarchical roles of mitochondrial Papi and Zucchini in Bombyx germline piRNA biogenesis. Nature 2018; 555:260-264. [PMID: 29489748 DOI: 10.1038/nature25788] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/26/2018] [Indexed: 01/04/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are small regulatory RNAs that bind to PIWI proteins to control transposons and maintain genome integrity in animal germ lines. piRNA 3' end formation in the silkworm Bombyx mori has been shown to be mediated by the 3'-to-5' exonuclease Trimmer (Trim; known as PNLDC1 in mammals), and piRNA intermediates are bound with PIWI anchored onto mitochondrial Tudor domain protein Papi. However, it remains unclear whether the Zucchini (Zuc) endonuclease and Nibbler (Nbr) 3'-to-5' exonuclease, both of which have pivotal roles in piRNA biogenesis in Drosophila, are required for piRNA processing in other species. Here we show that the loss of Zuc in Bombyx had no effect on the levels of Trim and Nbr, but resulted in the aberrant accumulation of piRNA intermediates within the Papi complex, and that these were processed to form mature piRNAs by recombinant Zuc. Papi exerted its RNA-binding activity only when bound with PIWI and phosphorylated, suggesting that complex assembly involves a hierarchical process. Both the 5' and 3' ends of piRNA intermediates within the Papi complex showed hallmarks of PIWI 'slicer' activity, yet no phasing pattern was observed in mature piRNAs. The loss of Zuc did not affect the 5'- and 3'-end formation of the intermediates, strongly supporting the idea that the 5' end of Bombyx piRNA is formed by PIWI slicer activity, but independently of Zuc, whereas the 3' end is formed by the Zuc endonuclease. The Bombyx piRNA biogenesis machinery is simpler than that of Drosophila, because Bombyx has no transcriptional silencing machinery that relies on phased piRNAs.
Collapse
Affiliation(s)
- Kazumichi M Nishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Kazuhiro Sakakibara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yuka W Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 162-8582, Japan
| | - Hiromi Yamada
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Ryo Murakami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yukiko Murota
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Takeshi Kawamura
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan.,Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 162-8582, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| |
Collapse
|
6
|
Perdomo D, Manich M, Syan S, Olivo-Marin JC, Dufour AC, Guillén N. Intracellular traffic of the lysine and glutamic acid rich protein KERP1 reveals features of endomembrane organization in Entamoeba histolytica. Cell Microbiol 2016; 18:1134-52. [PMID: 26857352 DOI: 10.1111/cmi.12576] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 01/06/2016] [Accepted: 02/01/2016] [Indexed: 12/12/2022]
Abstract
The development of amoebiasis is influenced by the expression of the lysine and glutamic acid rich protein 1 (KERP1), a virulence factor involved in Entamoeba histolytica adherence to human cells. Up to date, it is unknown how the protein transits the parasite cytoplasm towards the plasma membrane, specially because this organism lacks a well-defined endoplasmic reticulum (ER) and Golgi apparatus. In this work we demonstrate that KERP1 is present at the cell surface and in intracellular vesicles which traffic in a pathway that is independent of the ER-Golgi anterograde transport. The intracellular displacement of vesicles enriched in KERP1 relies on the actin-rich cytoskeleton activities. KERP1 is also present in externalized vesicles deposited on the surface of human cells. We further report the interactome of KERP1 with its association to endomembrane components and lipids. The model for KERP1 traffic here proposed hints for the first time elements of the endocytic and exocytic paths of E. histolytica.
Collapse
Affiliation(s)
- Doranda Perdomo
- Cell Biology of Parasitism Unit, Institut Pasteur, Paris, France.,INSERM U786, Paris, France.,Sorbonne Paris Cité, Cellule Pasteur, Université Paris Diderot, Paris, France
| | - Maria Manich
- Cell Biology of Parasitism Unit, Institut Pasteur, Paris, France.,INSERM U786, Paris, France
| | - Sylvie Syan
- Cell Biology of Parasitism Unit, Institut Pasteur, Paris, France.,INSERM U786, Paris, France
| | | | - Alexandre C Dufour
- Bioimage Analysis Unit, Institut Pasteur, Paris, France.,CNRS UMR 3691, Paris, France
| | - Nancy Guillén
- Cell Biology of Parasitism Unit, Institut Pasteur, Paris, France.,INSERM U786, Paris, France
| |
Collapse
|
7
|
Hahm JB, Schroeder AC, Privalsky ML. The two major isoforms of thyroid hormone receptor, TRα1 and TRβ1, preferentially partner with distinct panels of auxiliary proteins. Mol Cell Endocrinol 2014; 383:80-95. [PMID: 24325866 DOI: 10.1016/j.mce.2013.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 10/25/2022]
Abstract
Thyroid hormone receptors (TRs) are expressed primarily as two major isoforms, TRα1 and TRβ1, which are expressed at different times in development and at different tissue abundances in the adult. The transcription properties and biological properties of TRα1 and TRβ1 can differ. We report here that although overlapping, TRα1 and TRβ1 recruit distinct panels of partner proteins that may account for their divergent biological functions, and which appear to explain their distinct target gene regulatory properties.
Collapse
Affiliation(s)
- Johnnie B Hahm
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, Davis, CA 95616, USA.
| | - Amy C Schroeder
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, Davis, CA 95616, USA.
| | - Martin L Privalsky
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
8
|
Albrethsen J, Agner J, Piersma SR, Højrup P, Pham TV, Weldingh K, Jimenez CR, Andersen P, Rosenkrands I. Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems. Mol Cell Proteomics 2013; 12:1180-91. [PMID: 23345537 PMCID: PMC3650330 DOI: 10.1074/mcp.m112.018846] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In order to successfully enter the latent stage, Mycobacterium tuberculosis must adapt to conditions such as nutrient limitation and hypoxia. In vitro models that mimic latent infection are valuable tools for describing the changes in metabolism that occur when the bacterium exists in a non-growing form. We used two complementary proteomic approaches, label-free LC-MS/MS analysis and two-dimensional difference gel electrophoresis, to determine the proteome profile of extracellular proteins from M. tuberculosis cultured under nutrient starvation. Through the label-free LC-MS/MS analysis of fractionated samples, 1176 proteins were identified from culture filtrates of log phase and nutrient-starved cultures, and the protein levels of 230 proteins were increased in nutrient-starved culture filtrates, whereas those of 208 proteins were decreased. By means of Gene Ontology clustering analysis, significant differences in the overall metabolism during nutrient starvation were detected. Notably, members of the toxin–antitoxin systems were present in larger quantities in nutrient-starved cultures, supporting a role for these global modules as M. tuberculosis switches its metabolism into dormancy. Decreased abundance of proteins involved in amino acid and protein synthesis was apparent, as well as changes in the lipid metabolism. Further analysis of the dataset identified increased abundance of lipoproteins and decreased abundance of ESAT-6 family proteins. Results from the two-dimensional difference gel electrophoresis proteomics demonstrated overall agreement with the LC-MS/MS data and added complementary insights about protein degradation and modification.
Collapse
Affiliation(s)
- Jakob Albrethsen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Miranda HC, Herai RH, Thomé CH, Gomes GG, Panepucci RA, Orellana MD, Covas DT, Muotri AR, Greene LJ, Faça VM. A quantitative proteomic and transcriptomic comparison of human mesenchymal stem cells from bone marrow and umbilical cord vein. Proteomics 2012; 12:2607-17. [PMID: 22778083 DOI: 10.1002/pmic.201200111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 06/05/2012] [Accepted: 06/11/2012] [Indexed: 12/26/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are adult multipotent cells that have high therapeutic potential due to their immunological properties. They can be isolated from several different tissues with bone marrow (BM) being the most common source. Because the isolation procedure is invasive, other tissues such as human umbilical cord vein (UCV) have been considered. However, their interchangeability remains unclear. In the present study, total protein extracts of BM-hMSCs and UCV-hMSCs were quantitatively compared using gel-LC-MS/MS. Previous SAGE analysis of the same cells was re-annotated to enable comparison and combination of these two data sets. We observed a more than 63% correlation between proteomic and transcriptomic data. In silico analysis of highly expressed genes in cells of both origins suggests that they can be modulated by microRNA, which can change protein abundance. Our results showed that MSCs from both tissues shared high similarity in metabolic and functional processes relevant to their therapeutic potential, especially in the immune system process, response to stimuli, and processes related to the delivery of the hMSCs to a given tissue, such as migration and adhesion. Hence, our results support the idea that the more accessible UCV could be a potentially less invasive source of MSCs.
Collapse
|
10
|
Demant M, Trapphoff T, Fröhlich T, Arnold GJ, Eichenlaub-Ritter U. Vitrification at the pre-antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected. Hum Reprod 2012; 27:1096-111. [PMID: 22258663 DOI: 10.1093/humrep/der453] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Vitrification is a fast and effective method to cryopreserve ovarian tissue, but it might influence mitochondrial activity and affect gene expression to cause persistent alterations in the proteome of oocytes that grow and mature following cryopreservation. METHODS In part one of the study, the inner mitochondrial membrane potential (Ψ(mit)) of JC-1 stained oocytes from control and CryoTop vitrified pre-antral follicles was analyzed by confocal microscopy at Day 0, or after culture of follicles for 1 or 12 days. In part two, proteins of in vivo grown germinal vesicle (GV) oocytes were subjected to proteome analysis by SDS polyacrylamide gel electrophoresis, tryptic in-gel digestion of gel slices, and one-dimensional-nano-liquid chromatography of peptides on a multi-dimensional-nano-liquid chromatography system followed by mass spectrometry (LC-MS/MS) and Uniprot Gene Ontology (GO) analysis. In part three, samples containing the protein amount of 40 GV and metaphase II (MII) oocytes, respectively, from control and vitrified pre-antral follicles cultured for 12 or 13 days were subjected to 2D DIGE saturation labeling and separated by isoelectric focusing and SDS gel electrophoresis (2D DIGE), followed by DeCyder(Tm) analysis of spot patterns in three independent biological replicates. Statistical and hierarchical cluster analysis was employed to compare control and vitrified groups. RESULTS (i) Mitochondrial inner membrane potential differs significantly between control and vitrified GV oocytes at Day 0 and Day 1, but is similar at Day 12 of culture. (ii) LC-MS/MS analysis of SDS gel fractionated protein lysates of 988 mouse GV oocytes revealed identification of 1123 different proteins with a false discovery rate of <1%. GO analysis assigned 811 proteins to the 'biological process' subset. Thirty-five percent of the proteins corresponded to metabolic processes, about 15% to mitochondrion and transport, each, and close to 8% to oxidation-reduction processes. (iii) From the 2D-saturation DIGE analysis 1891 matched spots for GV-stage and 1718 for MII oocyte proteins were detected and the related protein abundances in vitrified and control oocytes were quantified. None of the spots was significantly altered in intensity, and hierarchical cluster analysis as well as histograms of p and q values suggest that vitrification at the pre-antral stage does not significantly alter the proteome of GV or MII oocytes compared with controls. CONCLUSIONS Vitrification appears to be associated with a significant transient increase in Ψ(mit) in oocyte mitochondria, which disappears when oocyte/cumulus cell apposition is restored upon development to the antral stage. The nano-LC-MS/MS analysis of low numbers of oocytes is useful to obtain information on relevant biological signaling pathways based on protein identifications. For quantitative comparisons, saturation 2D DIGE analysis is superior to LC-MS/MS due to its high sensitivity in cases where the biological material is very limited. Genetic background, age of the female, and/or stimulation protocol appear to influence the proteome pattern. However, the quantitative 2D DIGE approach provides evidence that vitrification does not affect the oocyte proteome after recovery from transient loss of cell-cell interactions, in vitro growth and in vitro maturation under tested conditions. Therefore, transient changes in mitochondrial activity by vitrification do not appear causal to persistent alterations in the mitochondrial or overall oocyte proteome.
Collapse
Affiliation(s)
- Myriam Demant
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität, München 81377, Germany
| | | | | | | | | |
Collapse
|
11
|
Nishida KM, Okada TN, Kawamura T, Mituyama T, Kawamura Y, Inagaki S, Huang H, Chen D, Kodama T, Siomi H, Siomi MC. Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO J 2010; 28:3820-31. [PMID: 19959991 DOI: 10.1038/emboj.2009.365] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 11/10/2009] [Indexed: 12/25/2022] Open
Abstract
In Drosophila, the PIWI proteins, Aubergine (Aub), AGO3, and Piwi are expressed in germlines and function in silencing transposons by associating with PIWI-interacting RNAs (piRNAs). Recent studies show that PIWI proteins contain symmetric dimethyl-arginines (sDMAs) and that dPRMT5/Capsuleen/DART5 is the modifying enzyme. Here, we show that Tudor (Tud), one of Tud domain-containing proteins, associates with Aub and AGO3, specifically through their sDMA modifications and that these three proteins form heteromeric complexes. piRNA precursor-like molecules are detected in these complexes. The expression levels of Aub and AGO3, along with their degree of sDMA modification, were not changed by tud mutations. However, the population of transposon-derived piRNAs associated with Aub and AGO3 was altered by tud mutations, whereas the total amounts of small RNAs on Aub and AGO3 was increased. Loss of dprmt5 did not change the stability of Aub, but impaired its association with Tud and lowered piRNA association with Aub. Thus, in germline cells, piRNAs are quality-controlled by dPRMT5 that modifies PIWI proteins, in tight association with Tud.
Collapse
Affiliation(s)
- Kazumichi M Nishida
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yassine MM, Guo N, Zhong H, Li L, Lucy CA. Off-line coupling of preparative capillary zone electrophoresis with microwave-assisted acid hydrolysis and matrix-assisted laser desorption ionization mass spectrometry for protein sequencing. Anal Chim Acta 2007; 597:41-9. [PMID: 17658311 DOI: 10.1016/j.aca.2007.05.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/25/2007] [Accepted: 05/31/2007] [Indexed: 11/16/2022]
Abstract
An off-line coupling of capillary electrophoresis (CE) with microwave-assisted acid hydrolysis/matrix-assisted laser desorption ionization mass spectrometry (MAAH/MALDI) has been developed for protein identification and characterization. Preparative scale protein separations enable collection of 10-50 pmol of purified cytochrome c for subsequent sequencing using MAAH/MALDI. To reduce protein adsorption onto the silica surface, the cationic surfactant-based coatings, dimethylditetradecylammonium bromide and dimethyldioctadecylammonium bromide, are employed. The choice of the buffer conditions is critical for both the preparative CE and MAAH/MALDI method. The use of high buffer concentrations (100 mM Bis-tris) reduces electromigration dispersion, but suppressed MALDI ionization such that a peptide sequence coverage of only 80% was achieved at a sample loading of 40 g L(-1) of each cytochrome c. By reducing the buffer concentration to 25 mM Bis-tris, the sequence coverage increased to 95% at a sample loading of 40 g L(-1).
Collapse
Affiliation(s)
- Mahmoud M Yassine
- Department of Chemistry, Gunning/Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | | | | | | |
Collapse
|
13
|
Havugimana PC, Wong P, Emili A. Improved proteomic discovery by sample pre-fractionation using dual-column ion-exchange high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 847:54-61. [PMID: 17140863 DOI: 10.1016/j.jchromb.2006.10.075] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 09/28/2006] [Accepted: 10/23/2006] [Indexed: 10/23/2022]
Abstract
Clinically relevant biomarkers are urgently needed for improving patient diagnosis, risk stratification, prognosis and therapeutic treatments. There is a particularly compelling motivation for identifying protein-based indicators of early-stage disease for more effective interventions. Despite recent progress, the proteomic discovery process remains a daunting challenge due to the sheer heterogeneity and skewed protein abundances in biofluids. Even the most advanced mass spectrometry systems exhibit limiting overall dynamic ranges and sensitivities relative to the needs of modern biomedical applications. To this end, we report the development of a robust, rapid, and reproducible high performance ion-exchange liquid chromatography pre-fractionation method that allows for improved proteomic detection coverage of complex biological specimens using basic tandem mass spectrometry screening procedures. This form of sample simplification prior to global proteomic profiling, which we refer to collectively as 'fractionomics', increases the number and diversity of proteins that can be confidently identified in tissue and cell lysates as compared to the straight analysis of unfractionated crude extracts.
Collapse
Affiliation(s)
- Pierre C Havugimana
- Banting and Best Department of Medical Research, Department of Medical Genetics and Microbiology, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | | | | |
Collapse
|
14
|
Yassine MM, Lucy CA. Preparative capillary zone electrophoresis using a dynamic coated wide-bore capillary. Electrophoresis 2006; 27:3066-74. [PMID: 16807937 DOI: 10.1002/elps.200500862] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Preparative capillary zone electrophoresis separations of cytochrome c from bovine and horse heart are performed efficiently in a surfactant-coated capillary. The surfactant, dimethylditetradecylammonium bromide (2C(14)DAB), effectively eliminated protein adsorption from the capillary surface, such that symmetrical peaks with efficiencies of 0.7 million plates/m were observed in 50-microm id capillaries when low concentrations of protein were injected. At protein concentrations greater than 1 g/L, electromigration dispersion became the dominant source of band broadening and the peak shape distorted to triangular fronting. Matching of the mobility of the buffer co-ion to that of the cytochrome c resulted in dramatic improvements in the efficiency and peak shape. Using 100 mM bis(2-hydroxyethyl)imino-tris(hydroxymethyl)methane phosphate buffer at pH 7.0 with a 100-microm id capillary, the maximum sample loading capacity in a single run was 160 pmol (2.0 microg) of each protein.
Collapse
Affiliation(s)
- Mahmoud M Yassine
- Department of Chemistry, Gunning/Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | | |
Collapse
|
15
|
Han MJ, Lee SY. The Escherichia coli proteome: past, present, and future prospects. Microbiol Mol Biol Rev 2006; 70:362-439. [PMID: 16760308 PMCID: PMC1489533 DOI: 10.1128/mmbr.00036-05] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteomics has emerged as an indispensable methodology for large-scale protein analysis in functional genomics. The Escherichia coli proteome has been extensively studied and is well defined in terms of biochemical, biological, and biotechnological data. Even before the entire E. coli proteome was fully elucidated, the largest available data set had been integrated to decipher regulatory circuits and metabolic pathways, providing valuable insights into global cellular physiology and the development of metabolic and cellular engineering strategies. With the recent advent of advanced proteomic technologies, the E. coli proteome has been used for the validation of new technologies and methodologies such as sample prefractionation, protein enrichment, two-dimensional gel electrophoresis, protein detection, mass spectrometry (MS), combinatorial assays with n-dimensional chromatographies and MS, and image analysis software. These important technologies will not only provide a great amount of additional information on the E. coli proteome but also synergistically contribute to other proteomic studies. Here, we review the past development and current status of E. coli proteome research in terms of its biological, biotechnological, and methodological significance and suggest future prospects.
Collapse
Affiliation(s)
- Mee-Jung Han
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | |
Collapse
|
16
|
Ekström S, Wallman L, Hök D, Marko-Varga G, Laurell T. Miniaturized Solid-Phase Extraction and Sample Preparation for MALDI MS Using a Microfabricated Integrated Selective Enrichment Target. J Proteome Res 2006; 5:1071-81. [PMID: 16674096 DOI: 10.1021/pr050434z] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A microfabricated proteomic sample preparation and sample presentation device, Integrated Selective Enrichment Target, (ISET), comprising an array of 96 perforated nanovials is described. Each perforated nanovial can be filled with solid-phase extraction media for purification and concentration of peptides prior to matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). The validity of the ISET sample preparation is shown by analysis of low nM-pM standard samples, as well as biological samples. The ISET solid-phase extraction sample preparation was compared to ZipTip and MassPREP PROtarget sample preparation, demonstrating a superior performance with respect to number of detected peptides and signal intensity of detected peptides.
Collapse
Affiliation(s)
- Simon Ekström
- Department of Electrical Measurements, Lund Institute of Technology, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
17
|
Ru QC, Zhu LA, Katenhusen RA, Silberman J, Brzeski H, Liebman M, Shriver CD. Exploring human plasma proteome strategies: High efficiency in-solution digestion protocol for multi-dimensional protein identification technology. J Chromatogr A 2006; 1111:175-91. [PMID: 16569577 DOI: 10.1016/j.chroma.2005.06.080] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 06/23/2005] [Indexed: 11/30/2022]
Abstract
Multi-dimensional protein identification technology (MudPIT) is becoming a prevalent proteomic approach due to its high-throughput separations and accurate mass detection. Prior to MudPIT analysis, complicated samples required in-solution digestion. Unlike in-gel digestion, in which enzymes work on just a few proteins, in-solution digestion involves simultaneous digestion of hundreds or thousands of proteins. In-solution digestion protocols must therefore be very efficient. Few investigations have evaluated the efficiency of in-solution digestion protocols. The present research compared three such protocols. Results suggest that a protocol utilizing trifluoroethanol (TFE) as denaturant is most efficient.
Collapse
|
18
|
Ahram M, Strittmatter EF, Monroe ME, Adkins JN, Hunter JC, Miller JH, Springer DL. Identification of shed proteins from Chinese hamster ovary cells: application of statistical confidence using human and mouse protein databases. Proteomics 2005; 5:1815-26. [PMID: 15815987 DOI: 10.1002/pmic.200401072] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The shedding process releases ligands, receptors, and other proteins from the surface of the cell and is a mechanism whereby cells communicate. Even though altered regulation of this process has been implicated in several diseases, global approaches to evaluate shed proteins have not been developed. A goal of this study was to identify global changes in shed proteins in media taken from cells exposed to low-doses of radiation to develop a fundamental understanding of the bystander response. Chinese hamster ovary cells were chosen because they have been widely used for radiation studies and are reported to respond to radiation by releasing factors into the media that cause genomic instability and cytotoxicity in unexposed cells, i.e., a bystander effect. Media samples taken for irradiated cells were evaluated using a combination of tandem- and Fourier transform-ion cyclotron resonance (FT-ICR)-mass spectrometry (MS) analyses. Since the hamster genome has not been sequenced, MS data was searched against the mouse and human protein databases. Nearly 150 proteins identified by tandem mass spectrometry were confirmed by FT-ICR. When both types of MS data were evaluated, using a new confidence scoring tool based on discriminant analyses, about 500 proteins were identified. Approximately 20% of these identifications were either integral membrane proteins or membrane associated proteins, suggesting that they were derived from the cell surface and, hence were likely shed. However, estimates of quantitative changes, based on two independent MS approaches, did not identify any protein abundance changes attributable to the bystander effect. Results from this study demonstrate the feasibility of global evaluation of shed proteins using MS in conjunction with cross-species protein databases and that significant improvement in peptide/protein identifications is provided by the confidence scoring tool.
Collapse
Affiliation(s)
- Mamoun Ahram
- Biological Sciences Division, Battelle, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Craft D, Li L. Integrated Sample Processing System Involving On-Column Protein Adsorption, Sample Washing, and Enzyme Digestion for Protein Identification by LC−ESI MS/MS. Anal Chem 2005; 77:2649-55. [PMID: 15828806 DOI: 10.1021/ac048152q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An automated system has been developed for protein identification using mass spectrometry that incorporates sample cleanup, preconcentration, and protein digestion in a single stage. The procedure involves the adsorption of a protein or a protein mixture from solution onto a hydrophobic medium that is contained within a microcolumn. The protein is digested while still bound to the hydrophobic support. The peptides are then eluted from surface digestion to an electrospray ionization mass spectrometer for detection and sequencing. The entire system is fully automated wherein the mass spectrometer is collecting data continuously. We demonstrate that this system is capable of identifying standard protein samples at concentrations down to 100 nM. Further development of this technique may offer a potential solution for proteomics applications that require unattended operation, such as on-line monitoring and identification of microorganisms on the basis of the detection of their protein biomarkers.
Collapse
Affiliation(s)
- David Craft
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | |
Collapse
|
20
|
Hydrophobic interaction chromatography coupled with atomic fluorescence spectrometric detection. Talanta 2004; 63:383-9. [DOI: 10.1016/j.talanta.2003.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Revised: 10/20/2003] [Accepted: 11/05/2003] [Indexed: 11/18/2022]
|
21
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:588-595. [PMID: 12794882 DOI: 10.1002/jms.408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
22
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2003. [PMCID: PMC2448450 DOI: 10.1002/cfg.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|