1
|
Han X, Chen CC, Kuo CJ, Huang CH, Zheng Y, Ko TP, Zhu Z, Feng X, Wang K, Oldfield E, Wang AHJ, Liang PH, Guo RT, Ma Y. Crystal structures of ligand-bound octaprenyl pyrophosphate synthase from Escherichia coli reveal the catalytic and chain-length determining mechanisms. Proteins 2015; 83:37-45. [PMID: 24895191 PMCID: PMC4256133 DOI: 10.1002/prot.24618] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 05/12/2014] [Accepted: 05/27/2014] [Indexed: 01/07/2023]
Abstract
Octaprenyl pyrophosphate synthase (OPPs) catalyzes consecutive condensation reactions of one allylic substrate farnesyl pyrophosphate (FPP) and five homoallylic substrate isopentenyl pyrophosphate (IPP) molecules to form a C40 long-chain product OPP, which serves as a side chain of ubiquinone and menaquinone. OPPs belongs to the trans-prenyltransferase class of proteins. The structures of OPPs from Escherichia coli were solved in the apo-form as well as in complexes with IPP and a FPP thio-analog, FsPP, at resolutions of 2.2-2.6 Å, and revealed the detailed interactions between the ligands and enzyme. At the bottom of the active-site tunnel, M123 and M135 act in concert to form a wall which determines the final chain length. These results represent the first ligand-bound crystal structures of a long-chain trans-prenyltransferase and provide new information on the mechanisms of catalysis and product chain elongation.
Collapse
Affiliation(s)
- Xu Han
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chun-Chi Chen
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chih-Jung Kuo
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Chun-Hsiang Huang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yingying Zheng
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Zhen Zhu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xinxin Feng
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Ke Wang
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Eric Oldfield
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan,Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | - Po-Huang Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan,Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan,Contact information of corresponding authors: Yanhe Ma Ph.D., Address: 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China, , Telephone number: +86 22 84861977, Fax number: +86 22 84861926. Rey-Ting Guo Ph.D., Address: 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China, , Telephone number: +86 22 84861999, Fax number: +86 22 24828701. Po-Huang Liang Ph.D., Address: Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, , Telephone number: +886-2-2785-5696 ext. 6070, Fax number:+886-2-2788-9759
| | - Rey-Ting Guo
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China,Contact information of corresponding authors: Yanhe Ma Ph.D., Address: 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China, , Telephone number: +86 22 84861977, Fax number: +86 22 84861926. Rey-Ting Guo Ph.D., Address: 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China, , Telephone number: +86 22 84861999, Fax number: +86 22 24828701. Po-Huang Liang Ph.D., Address: Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, , Telephone number: +886-2-2785-5696 ext. 6070, Fax number:+886-2-2788-9759
| | - Yanhe Ma
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China,Contact information of corresponding authors: Yanhe Ma Ph.D., Address: 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China, , Telephone number: +86 22 84861977, Fax number: +86 22 84861926. Rey-Ting Guo Ph.D., Address: 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China, , Telephone number: +86 22 84861999, Fax number: +86 22 24828701. Po-Huang Liang Ph.D., Address: Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, , Telephone number: +886-2-2785-5696 ext. 6070, Fax number:+886-2-2788-9759
| |
Collapse
|
3
|
Chang KM, Chen SH, Kuo CJ, Chang CK, Guo RT, Yang JM, Liang PH. Roles of amino acids in the Escherichia coli octaprenyl diphosphate synthase active site probed by structure-guided site-directed mutagenesis. Biochemistry 2012; 51:3412-9. [PMID: 22471615 DOI: 10.1021/bi300069j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Octaprenyl diphosphate synthase (OPPS) catalyzes consecutive condensation reactions of farnesyl diphosphate (FPP) with five molecules of isopentenyl diphosphates (IPP) to generate C(40) octaprenyl diphosphate, which constitutes the side chain of ubiquinone or menaquinone. To understand the roles of active site amino acids in substrate binding and catalysis, we conducted site-directed mutagenesis studies with Escherichia coli OPPS. In conclusion, D85 is the most important residue in the first DDXXD motif for both FPP and IPP binding through an H-bond network involving R93 and R94, respectively, whereas R94, K45, R48, and H77 are responsible for IPP binding by providing H-bonds and ionic interactions. K170 and T171 may stabilize the farnesyl carbocation intermediate to facilitate the reaction, whereas R93 and K225 may stabilize the catalytic base (MgPP(i)) for H(R) proton abstraction after IPP condensation. K225 and K235 in a flexible loop may interact with FPP when the enzyme becomes a closed conformation, which is therefore crucial for catalysis. Q208 is near the hydrophobic part of IPP and is important for IPP binding and catalysis.
Collapse
Affiliation(s)
- Keng-Ming Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | | | | | |
Collapse
|
4
|
Chang TH, Hsieh FL, Ko TP, Teng KH, Liang PH, Wang AHJ. Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation. THE PLANT CELL 2010; 22:454-67. [PMID: 20139160 PMCID: PMC2845413 DOI: 10.1105/tpc.109.071738] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Terpenes (isoprenoids), derived from isoprenyl pyrophosphates, are versatile natural compounds that act as metabolism mediators, plant volatiles, and ecological communicators. Divergent evolution of homomeric prenyltransferases (PTSs) has allowed PTSs to optimize their active-site pockets to achieve catalytic fidelity and diversity. Little is known about heteromeric PTSs, particularly the mechanisms regulating formation of specific products. Here, we report the crystal structure of the (LSU . SSU)(2)-type (LSU/SSU = large/small subunit) heterotetrameric geranyl pyrophosphate synthase (GPPS) from mint (Mentha piperita). The LSU and SSU of mint GPPS are responsible for catalysis and regulation, respectively, and this SSU lacks the essential catalytic amino acid residues found in LSU and other PTSs. Whereas no activity was detected for individually expressed LSU or SSU, the intact (LSU . SSU)(2) tetramer produced not only C(10)-GPP at the beginning of the reaction but also C(20)-GGPP (geranylgeranyl pyrophosphate) at longer reaction times. The activity for synthesizing C(10)-GPP and C(20)-GGPP, but not C(15)-farnesyl pyrophosphate, reflects a conserved active-site structure of the LSU and the closely related mustard (Sinapis alba) homodimeric GGPPS. Furthermore, using a genetic complementation system, we showed that no C(20)-GGPP is produced by the mint GPPS in vivo. Presumably through protein-protein interactions, the SSU remodels the active-site cavity of LSU for synthesizing C(10)-GPP, the precursor of volatile C(10)-monoterpenes.
Collapse
Affiliation(s)
- Tao-Hsin Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | | | | | | | | | | |
Collapse
|
5
|
Chang TH, Guo RT, Ko TP, Wang AHJ, Liang PH. Crystal Structure of Type-III Geranylgeranyl Pyrophosphate Synthase from Saccharomyces cerevisiae and the Mechanism of Product Chain Length Determination. J Biol Chem 2006; 281:14991-5000. [PMID: 16554305 DOI: 10.1074/jbc.m512886200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Geranylgeranyl pyrophosphate synthase (GGPPs) catalyzes a condensation reaction of farnesyl pyrophosphate with isopentenyl pyrophosphate to generate C(20) geranylgeranyl pyrophosphate, which is a precursor for carotenoids, chlorophylls, geranylgeranylated proteins, and archaeal ether-linked lipid. For short-chain trans-prenyltransferases that synthesize C(10)-C(25) products, bulky amino acid residues generally occupy the fourth or fifth position upstream from the first DDXXD motif to block further elongation of the final products. However, the short-chain type-III GGPPs in eukaryotes lack any large amino acid at these positions. In this study, the first structure of type-III GGPPs from Saccharomyces cerevisiae has been determined to 1.98 A resolution. The structure is composed entirely of 15 alpha-helices joined by connecting loops and is arranged with alpha-helices around a large central cavity. Distinct from other known structures of trans-prenyltransferases, the N-terminal 17 amino acids (9-amino acid helix A and the following loop) of this GGPPs protrude from the helix core into the other subunit and contribute to the tight dimer formation. Deletion of the first 9 or 17 amino acids caused the dissociation of dimer into monomer, and the Delta(1-17) mutant showed abolished enzyme activity. In each subunit, an elongated hydrophobic crevice surrounded by D, F, G, H, and I alpha-helices contains two DDXXD motifs at the top for substrate binding with one Mg(2+) coordinated by Asp(75), Asp(79), and four water molecules. It is sealed at the bottom with three large residues of Tyr(107), Phe(108), and His(139). Compared with the major product C(30) synthesized by mutant H139A, the products generated by mutant Y107A and F108A are predominantly C(40) and C(30), respectively, suggesting the most important role of Tyr(107) in determining the product chain length.
Collapse
Affiliation(s)
- Tao-Hsin Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | |
Collapse
|
6
|
Pysz MA, Conners SB, Montero CI, Shockley KR, Johnson MR, Ward DE, Kelly RM. Transcriptional analysis of biofilm formation processes in the anaerobic, hyperthermophilic bacterium Thermotoga maritima. Appl Environ Microbiol 2004; 70:6098-112. [PMID: 15466556 PMCID: PMC522082 DOI: 10.1128/aem.70.10.6098-6112.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Thermotoga maritima, a fermentative, anaerobic, hyperthermophilic bacterium, was found to attach to bioreactor glass walls, nylon mesh, and polycarbonate filters during chemostat cultivation on maltose-based media at 80 degrees C. A whole-genome cDNA microarray was used to examine differential expression patterns between biofilm and planktonic populations. Mixed-model statistical analysis revealed differential expression (twofold or more) of 114 open reading frames in sessile cells (6% of the genome), over a third of which were initially annotated as hypothetical proteins in the T. maritima genome. Among the previously annotated genes in the T. maritima genome, which showed expression changes during biofilm growth, were several that corresponded to biofilm formation genes identified in mesophilic bacteria (i.e., Pseudomonas species, Escherichia coli, and Staphylococcus epidermidis). Most notably, T. maritima biofilm-bound cells exhibited increased transcription of genes involved in iron and sulfur transport, as well as in biosynthesis of cysteine, thiamine, NAD, and isoprenoid side chains of quinones. These findings were all consistent with the up-regulation of iron-sulfur cluster assembly and repair functions in biofilm cells. Significant up-regulation of several beta-specific glycosidases was also noted in biofilm cells, despite the fact that maltose was the primary carbon source fed to the chemostat. The reasons for increased beta-glycosidase levels are unclear but are likely related to the processing of biofilm-based polysaccharides. In addition to revealing insights into the phenotype of sessile T. maritima communities, the methodology developed here can be extended to study other anaerobic biofilm formation processes as well as to examine aspects of microbial ecology in hydrothermal environments.
Collapse
Affiliation(s)
- Marybeth A Pysz
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Guo RT, Kuo CJ, Chou CC, Ko TP, Shr HL, Liang PH, Wang AHJ. Crystal Structure of Octaprenyl Pyrophosphate Synthase from Hyperthermophilic Thermotoga maritima and Mechanism of Product Chain Length Determination. J Biol Chem 2004; 279:4903-12. [PMID: 14617622 DOI: 10.1074/jbc.m310161200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Octaprenyl pyrophosphate synthase (OPPs) catalyzes consecutive condensation reactions of farnesyl pyrophosphate (FPP) with isopentenyl pyrophosphate (IPP) to generate C40 octaprenyl pyrophosphate (OPP), which constitutes the side chain of bacterial ubiquinone or menaquinone. In this study, the first structure of long chain C40-OPPs from Thermotoga maritima has been determined to 2.28-A resolution. OPPs is composed entirely of alpha-helices joined by connecting loops and is arranged with nine core helices around a large central cavity. An elongated hydrophobic tunnel between D and F alpha-helices contains two DDXXD motifs on the top for substrate binding and is occupied at the bottom with two large residues Phe-52 and Phe-132. The products of the mutant F132A OPPs are predominantly C50, longer than the C40 synthesized by the wild-type and F52A mutant OPPs, suggesting that Phe-132 is the key residue for determining the product chain length. Ala-76 and Ser-77 located close to the FPP binding site and Val-73 positioned further down the tunnel were individually mutated to larger amino acids. A76Y and S77F mainly produce C20 indicating that the mutated large residues in the vicinity of the FPP site limit the substrate chain elongation. Ala-76 is the fifth amino acid upstream from the first DDXXD motif on helix D of OPPs, and its corresponding amino acid in FPPs is Tyr. In contrast, V73Y mutation led to additional accumulation of C30 intermediate. The new structure of the trans-type OPPs, together with the recently determined cis-type UPPs, significantly extends our understanding on the biosynthesis of long chain polyprenyl molecules.
Collapse
Affiliation(s)
- Rey-Ting Guo
- Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | |
Collapse
|